ISO/IEC JTC 1/SC 22 N
Date: 2021-07-09

ISO/IEC 8652:202x(E)
ISO/IEC JTC 1/SC 22/WG 9

Information technology — Programming languages — Ada
Technologies de l'information — Langages de programmation — Ada

Revision of third edition (ISO/IEC 8652:2012)

Copyright Notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While
the reproduction of working drafts or committee drafts in any form for use by participants in the ISO
standards development process is permitted without prior permission from ISO, neither this document
nor any extract from it may be reproduced, stored, or transmitted in any form for any other purpose
without prior written permission from ISO.

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

ISO/IEC 8652:DIS

Table of Contents

Table of Contents...........cccoiiiiiiiiiiiccc e r e ann e e e ees i
o] >N T oY o O Xi
L 4o o [0 T2 £} o xii
T € 7= 5 = - | P 1
1S T oo o - 1
1A EXEONT... s ————————— 1

I = 0 o T R 2
1.1.3 Conformity of an Implementation with the Standardccccciivminiiiiiicinnes 4
1.1.4 Method of Description and Syntax Notation............cccooccciiiicciine, 5
1.1.5 Classification Of ErTOrsccccccvecccciemmmmniinnssccssesere s s ss s ssssss s s s s s ssssse s e s s essnnnns 6

1.2 Normative References..... ... 7
1.3 Terms and Definitionsccccciiiiicccccemire e e 8
W T=5 o= 1 = 1= 4 = L 9
2.1 Character Setcooiiiiiiiiiecee e e e e e —————————— 9
2.2 Lexical Elements, Separators, and Delimitersccccceviriiiiiiiiiiiecccce e 11
2.3 1denNtifiers......cceeeeee e ——————————————————————————— 12
2.4 Numeric Literals..........oooo oot e nnnnnnn 13
2.4.1 Decimal Literalsceeeeeeeiiimiiiiiiieieeeeeeeeeneneneseness s 13
2.4.2 Based LIiterals ... s 14

2.5 Character Literalscccccciicciimmmirriiinnccsmmrrs s ssms s s sssms s e s ssssssmmss s e nsssnnses 14
2.6 String Literals.........ccoommiiiiiiieirr s 15
B A 0o T3 11 .4 1= 3 S 15
- N o -V | 1T T 16
2.9 ReSErved WOKAScooiiiiiiiiiiec e e ee e e ee e e ce e e e e e e e e e e e e e e e s e e e e e e e e e e e e e e e e e e eeesseeseeeeeeeeeeeeeennnnnnnnnnnnns 18
3 Declarations and TYpPes........ccouiiiiriiriiiinsisssssrers s 19
3.1 DeClarationscooeiiiiiiiiecece e arrrrarrrrrararrrnnrrrans 19
3.2 Types and SUDLYPESccccccmrrrrrriissssssssserrrerrrssssssssssser e e e e s ssssssssmmsreseessssssssnmnnseneessnnses 20
3.2.1 Type Declarations...........ooc i 22
3.2.2 Subtype Declarations.........ccccccmmiriiinniinner e ———— 23
3.2.3 Classification of Operations..........cccceeeeeeiiei i 24
3.2.4 Subtype Predicates ..o 24

3.3 Objects and Named NUMDErS..........cccoommmiriiiiicccemrrr s e 28
3.3.1 Object Declarations...........ccoocmmmiiiiinniirr s 30
3.3.2 Number Declarationscooeeeriieiiiiieieii e e e ee e e s e e e e e e e e e e e e e s s e e e e e e e e e e e e e eeeeennees 32

3.4 Derived Types and ClasSesccciiiiiimmmmniiiinisssssss s sssssssss s s sssmss s s s ssssssas 33
3.4.1 Derivation ClasSesccuvviiiiiiiiiiirieeisssssessss s s s s s s s sssssseesesssssessssssseesesssssnenssnnnnnnnnnnns 36
BT o 1 F- 1 I3/ o 1= 37
3.5.1 ENUMEration TYPESccoiiiiiimmmmriiiinsssss s ssssssss s sss s s s ssmns s s 41
3.5.2 CharacCter TYPESccccerrrriirrsssmrrnrrrsssssssssssnnsssssssssssssssnssssssssssssssnssnssssssssssssnnennnses 42
3.5.3 B0OIEAN TYPESuuuueeirriiiiiiiinsernr s s ssssss s smn s mn s n e e e nmnnn e 43
3.5.4 INtEGEr TYPES .. ooeeeieiieeeeeeeeee eeeeeneeeeeeeeeeeeeeeereeaeneeenennnneanennnnnnees 43
3.5.5 Operations of DisScrete TYPeS.......ccurrrimmmrrriinnnnsmrrr s 45
BT =T T T/ T = 46
3.5.7 Floating Point TYPescoooiiiiiiiiiiiiiirrirrrr s 47
3.5.8 Operations of Floating Point Types........cccccciiiiiiimmmnnes e 49
3.5.9 Fixed Point TYPeScooiiiiiiiiiiiiiiiiii s 50
3.5.10 Operations of Fixed Point TYPescccccomiiiiiiiiiimmnn s 52

© ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

B 4 = 0 18/ o 1= 53
3.6.1 Index Constraints and Discrete Rangesccccounciiimmmmnnnnsesnnsneens 55
3.6.2 Operations of Array TYPEScccccmmrrrrriissssssnmrrrrrsssssssssssmsrsesssssssssssmmssssssssssssssnnens 56
3.6.3 StriNG TYPES...uueiiiiiiiiiiicimrir s ms s mm s e ann e e e s s nnnnnns 57

3.7 DisSCrimiNants........ccoviemmiiiiiiiiice e 57
3.7.1 Discriminant Constraints...........cccccmiiiiiininisiirr s 60
3.7.2 Operations of Discriminated TYPeS........cccccrrrrrrrrrssssssmrerrerrsssssssssssssressssssssssnnnens 61

B =Y oo] o I I8/ o =P 61
3.8.1 Variant Parts and Discrete Choices..........ccocccmmiiiiiniiinimmmneern e 64

3.9 Tagged Types and Type EXteNSIiONS........ccoovviiiiiiiiiiiiiiiiiss s 65
3.9.1 Type EXteNSIONS ...t s nnnn e 69
3.9.2 Dispatching Operations of Tagged TYPEScccvverrrrvrmmmrrrrrrisssssssmmerereessssssssnnees 70
3.9.3 Abstract Types and Subprograms.............cccccmmmriiiinnnnssmrnr s 73
RO T 0 141 0=Y g - Lo =T N/ o - 74

3.10 ACCESS TYPES..ccccuemrrrrriiisssssssnrrrrrsssssssssnes e e s s sssssssssmnrs e s e e s sssssssnmnssenesssnsssnnnnsenesssnnns 77
3.10.1 Incomplete Type Declarationscccceemimmiiiiiicnisenrr e 79
3.10.2 Operations Of ACCESS TYPESccrrrrriiiirirsssmmrrrrrrisssssssssmrrrersssssssssssmsssessssssssssnnnes 81

3.11 Declarative Parts ... 87
3.11.1 Completions of Declarations...............eueeeeeeeeeeeeeeeee e 87

4 Names and EXPreSSiONScccceeuiiiiiiiiiiiiiinssrsssssssssssss s s s s sssssssssssssssssssssssnnns 89

T g T - 1 1T 89
4.1.1 Indexed COMPONENES........cciiiiccrr e 90
L T S 91
4.1.3 Selected COMPONENtS....... .. s 92
L I LN] oL 0 = SR 93
4.1.5 User-Defined References.........ccoommmiiiiiniiiimmnncsssnn s sssssnnens 95
4.1.6 User-Defined INAeXinNgcccceiiiiicimmmmriiinsssssssnre s ssssssmsss s s ssssssssmss s s s sssssssssnnens 96

T T =T - 97
4.2.1 User-Defined Literalscoccviiimmiiniiiier s 98

T JRC T X o | =Y - 1 (== 100
T 30 T I 2 L=YeZo] o X T | =Y o F= 1 = 101
4.3.2 Extension AgQregates ... s 103
4.3.3 Array Aggregates ..o 104
4.3.4 Delta Aggregates.......coi s 108
4.3.5 Container AgQregates.........ccccuememmmriiiinnisssssnrs s sssssssss s sssns s s snnns 110

4.4 EXPIrESSIONScoueuuueenunnnnnnnnnnnnnnnnnsnnnnsnsssnsssnnnnnn 115

4.5 Operators and Expression Evaluation ... 117
4.5.1 Logical Operators and Short-circuit Control Forms........cccccccveecccvmeererrnnnnnnnns 118
4.5.2 Relational Operators and Membership Testsccoovivmmmiiiiiciissrnnnes 119
4.5.3 Binary Adding Operators........cccuccccvmmrrerriiissssssmsrresrssssssssssssssssessssssssssmssessessnsses 123
4.5.4 Unary Adding Operators........cccucccevmmrmmrmiiinsssssmsrressssssssssssmsssssssssssssssssssssssssnsses 124
4.5.5 Multiplying Operatorsc.ccccoiiciiimmminnniisesrrn s s 124
4.5.6 Highest Precedence Operators........ccccccviicceemmmrnnnnnsssssssssssssssssssssssssmsssssssssnssns 126
4.5.7 Conditional EXPresSSioNsoccccemmmmriiinnnssssrrs s sssssssss s sssssss s ssnses 127
4.5.8 Quantified EXPreSSiONSccccccvvccccvrsmmrrrrrinssssssssserssrsssssssssssssssssssssssssssmssssseessnnses 129
4.5.9 Declare EXPresSSioNsccccoiiiiiiissmmnnsiinssssssssss s ssssssssssss s s s s ssssssssmss s s sssssnsses 130
4.5.10 Reduction EXPreSSiONScc...ccciiiiiiiiiieenccisse s s ssscsssssss s s s s ssnssssssssssesssnnnnnssssssnes 130

4.6 TYPE CONVEISIONSuueeeririiiiiiisssssnmsrrrrssssssssssmnnrsssssssssssssmsssssssssssssssnnsssssssssssssnnnssnnnes 134

4.7 Qualified EXPreSSiONS.......cciiiiiinmmriiiiiisssssrs s ssssssssss s sssss s ssss e 138

4.8 AllOCALONSeueeeiireiiiiiiciee s ———— 139

4.9 Static Expressions and Static Subtypes..........ccccriiiiini s 141
4.9.1 Statically Matching Constraints and Subtypescccccccrmmrririsccssneereernnsnnnns 144

4.10 Image Attributes ... ————— 145

© ISO/IEC 2021 — All rights reserved ii

5

6

7

8

ISO/IEC 8652:DIS

Statements ... ————— 151
5.1 Simple and Compound Statements - Sequences of Statements 151
5.2 Assignment Statements..........ccciiiiiiii e ———— 153

5.2.1 Target Name SymboOls ... e 154
5.3 If Statements ... 155
5.4 Case Statements.......ccccceveccceiimriirrr e e 155
5.5 LoOP Statements..........cooiimmiiiiernr s s 157

5.5.1 User-Defined Iterator TYPESccuccccccmmmrrrrrnsssssssmnsresssssssssssmsssssssssssssssssnssseees 160

5.5.2 Generalized Loop Iterationccoooiiiiiiiii e 162

5.5.3 Procedural Iterators ... 165
5.6 BIOCK Statements..........cooiicciiimmmmiiininccerrrr s sssssnn s 168

5.6.1 Parallel Block Statements...........ccoocciiimmmniierrr s 169
5.7 EXit Statements.......cccooeiiiccccrrre s e 170
5.8 Goto Statements..........oooiiiiiii e ———— 171

ST 0 0 o] oY | = o 1= RSO 173

6.1 Subprogram Declarations.......cccccccuccccecemerrrrnnissssssserrr e ssss s e e s s s sssmse e e eessnnses 173
6.1.1 Preconditions and Postconditionsccccocciiiiincccmrr e 175
6.1.2 The Global and Global'Class ASPectS.........cccceriiiiiiiiiiicccccececcee e 180

6.2 Formal Parameter Modes ... s smss e 183

6.3 Subprogram Bodies ... 184
6.3.1 Conformance RUIES..........ccoocmmiiiiinicceirr s sn e 185
6.3.2 Inline Expansion of SUbprogramsccccciciiinemmmn s 187

6.4 SUDbProgram CallS.........ccoicccceemmmrriinissssssmrrre e s sssssssssmrr e re s ssssssssmmerenessssssssmmesensessnnses 187
6.4.1 Parameter ASSOCIatioNs........ccccoiiiiiiemmnni e 189

6.5 Return Statements............ccccceeieiiiiscc e 192
6.5.1 Nonreturning Subprograms ... 195

6.6 Overloading of OPeratorsccccoiciiemmmirrr 195

6.7 NUII ProCedures ... s 196

6.8 EXpression FUNCLIONS ... isesn s ssn s 197

= Tod - Vo =P 199
7.1 Package Specifications and Declarations..........cccccccvviiccinmmnnninnnncssseere s 199
7.2 Package Bodies ... s s 200
7.3 Private Types and Private EXtensions.........cc, 201

7.3.1 Private Operations........ccoccccmmminimrrr s s 204

7.3.2Type INVAariantsoooooiiiiiiioieeeeeeeee et e e e e e e e e e e enneennnes 206

7.3.3 Default Initial Conditions ... ——— 209

7.3.4 Stable Properties of @ TYPEccvviirccccrmmrmrrrrrrssssssssmrrre s e s s sssssssmesse s s esssssssssmsssesees 210
7.4 Deferred Constants ..o s 212
7.5 Limited TyPes. ..ot sss s e ammn e 213
7.6 Assignment and Finalizationccccccmmmiiiiiicccceirre s 214

7.6.1 Completion and Finalization............cccooommiiiiiiiriii e 217

Visibility RUIESccoeeieeeecreerrec s e r s e s s e s e e e e s e r e 221
8.1 Declarative Region ... 221
8.2 Scope of Declarationscccccccmmmiiiiiniiniirr e ———— 222
LS BT =11 1 223

8.3.1 Overriding INdicators ... —— 225
8.4 USE ClAUSEScooeeceeeecrrerirsssssssssen e e s ssssssssssmsns s e e e sssssssssmmn s s e nessanssssnnneseneesanssssnnnnnnnnnes 226
8.5 Renaming Declarations.........ccccccmiiiiiiiiiineirrr s 227

8.5.1 Object Renaming Declarationscccccccmmriiiiniiiissimnn e 228

8.5.2 Exception Renaming Declarations ... 229

8.5.3 Package Renaming Declarationscccciiiiiiiemmmnnnnccssesn s 229

8.5.4 Subprogram Renaming Declarationscccceevcmmmmriiiinsssssemresssnsssssssseesesees 230

© ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

8.5.5 Generic Renaming Declarations.........ccccocccceemmminninnnccsssssrre s s s ssses 232
8.6 The Context of Overload Resolution ..o 232
9 Tasks and Synchronization ..o 237
9.1 Task Units and Task ObBJECtS........cccoiiiiiiriinmmrri e 237
9.2 Task Execution - Task Activationcccoommiiinirinie e 240
9.3 Task Dependence - Termination of Tasks...........cceueeeemmmmmmmmmmmnnmmnnnmmnnnnnnnnnnnnnnnnnnnnne 241
9.4 Protected Units and Protected Objects........ccccccciiriiimmiinccc e 242
9.5 Intertask CommuUNICAtIONcccueeeiieiiiicccceerrr e e 245
9.5.1 Protected Subprograms and Protected Actionscccccceiiiriiiiciccccccccccccnnnns 249
9.5.2 Entries and Accept Statements ... —————— 251
O.5.3 ENtry Calls......ueiiiiiiiceiirn s s 254
9.5.4 Requeue Statements.........cccieimmnesrr s 256
9.6 Delay Statements, Duration, and Timecccccciiiiicciismrrrrnnseerr e 258
9.6.1 Formatting, Time Zones, and other operations for Time..........cccceeveeeeeeeennnn. 261
9.7 Select Statements.........ccciiiiiiccicr e ———— 267
9.7.1 Selective ACCePt.......ooccciiiiiiri i 267
9.7.2 Timed Entry Callscccccemmmmriiiiiiceeeenersssssssssssssss s s e s s s s sssmms s s e e s s sssssssssmsseneessnnses 269
9.7.3 Conditional Entry Calls..........cccoiiimminniiicsrre s s 270
9.7.4 Asynchronous Transfer of Control............ccooomiinccii s 270
9.8 Abort of a Task - Abort of a Sequence of Statements..........ccccccevrrrrrrririreniiiinnnnnn, 271
9.9 Task and Entry Attributes..........ccooommiiiiiicii 273
9.10 Shared Variablescccoiiiiiiciiimrririnssssrre s sssms s smmns e 273
9.10.1 Conflict Check Policies........cccccciiiiiriicrrrrrrrrrrrr s 275
9.11 Example of Tasking and Synchronization............cccccccmrrriiiisccssecrrrn s ssscsseeeeeeee 277
10 Program Structure and Compilation Issues........cccceeeeeeecciciiiiiiininnneeeeennens 279
10.1 Separate Compilation..........cccccmiiiiiiiciii e ———— 279
10.1.1 Compilation Units - Library Unitscccccviricccnmmemmnmnnsssccsseeree e s sssssssseeseeees 279
10.1.2 Context Clauses - With Clausesccccciiiiiiiimmnineer e 282
10.1.3 Subunits of Compilation Units..........cccoorrririiiiiiiiiii e 284
10.1.4 The Compilation ProCess ... ccce st sse et e e e e 286
10.1.5 Pragmas and Program URNItsccccemmmmiiiiiniiinsminn s sssssssneee 287
10.1.6 Environment-Level Visibility RUleScooiiiiiiiiiiiiiirrrrrrr s 287
10.2 Program EX@CULION.........ccciimmmiiiiiiicseen s sss s 288
10.2.1 Elaboration Control...........ccccccrimiiiiiccsssmerresensssssssssser s e sssssssssmsssesesssssssmmsssenees 290
T 5 = o1 oY TN 295
11.1 Exception Declarations..........ccoeimmnicirr s 295
11.2 Exception Handlers ... s s s s s s s s s s e e 295
11.3 Raise Statements and Raise EXPressionsccccciiiiicinemnnnnsssssmsnssssssnnns 296
I 55 o= o 7T o N =T Lo 11T 297
11.4.1 The Package EXCepPLionsccccccimmiinniiniicceesns s 298
11.4.2 Pragmas Assert and Assertion_PoliCyccccccmiiiiiiiiiisemnnnnccseennnenns 300
11.4.3 Example of Exception Handling.........cccccoiiiiiiiciinmmmmnnnsscsemere e 302
11.5 Suppressing CheckKs ... 303
11.6 Exceptions and Optimization ..., 307
P € 7= 4 U= T o U T PN 309
12.1 Generic Declarations...........ccco o 309
12.2 GENEriC BOIScovviiiiiiiiecirre s e 311
12.3 Generic Instantiation..........ccco o ———— 311
12.4 FOrmal ODjJECLSoceeiiiiiiccceerrrrrrrrssssssssese e sss s s sssssns e s e s s e s s s smmn s s e e e s snnssssnnnneenensnnssen 314
12.5 FOrmMal TYPEScuueemmiiiiiiiiimerir s sssn s sms s mmn s s amnna e n e e 315
12.5.1 Formal Private and Derived TYPEeSccoovreriiiiiiieiieeeeeeeeee e ee e e e e e e e e e e e e e e e eeeeees 317

© ISO/IEC 2021 — All rights reserved iv

ISO/IEC 8652:DIS

12.5.2 Formal Scalar TYPEScccccerrrrriiiriisssmmrrressssssssssssmnsses s s s ssssssssmssssssssssssssssmssssnses 319
12.5.3 Formal Array TYPeSccccciimmmmiriiiiiiisssssnns s nssssssssss s ssssns s s s s mssnnnssenas 320
12.5.4 Formal ACCESS TYPES....ccciirirriirriirrrrrnrsnsssss s 320
12.5.5 Formal Interface TYPEeScccciiiiiiimmmmnriinnsesnr s 321
12.6 FOormal SUDProgramsccicccccccmmemmermnnsssssssssesessssssssssssssssssessssssssnssssssesssnssssnnnes 321
12.7 FOrmal Packagescccoommriiiiiiiseinne s ssssns s ssms s s s ssns e s e s s ssmmnns 324
12.8 Example of @ Generic Package.......ccccccvvicccesmmmrrerrnsssssssssnsesssssssssssssssssssessssssssnnnes 326
13 Representation ISSUES........ccccceeeimitiimriiin s 329
13.1 Operational and Representation ASpPectsccccceeiiiiiiiiiiiisnssscccsc s 329
13.1.1 Aspect Specifications ... 333
T o= T =Y o I I/ o T 336
13.3 Operational and Representation Attributesccccooerrriirrririrccccccc e, 337
13.4 Enumeration Representation Clauses.........ccccccciiiiiiiiiiiiiicicccrccrcrccccccr e 343
13.5 ReCOrd LayouUt...........oocciimmmiiiiiisennr s isssms s sssss s smsn s e 345
13.5.1 Record Representation ClausSesccccccciiiiiiiiiiiiiiiiinssssssssssccs s 345
13.5.2 Storage Place Attributes...........coooii 347
13.5.3 Bit Ordering......ccccceeriiiiicimerrerrrisssssssssssss e s s esssssssssmnssesessssssssssmsssssesssssssssnnnnsenees 348
13.6 Change of Representationccccuiiiiiiiiiiimnneerr e 348
13.7 The Package SysStem ... s sannens 349
13.7.1 The Package System.Storage_Elementscccccciiiiiiicicmmmnnninnscsssseenneennnns 351
13.7.2 The Package System.Address_To_Access_Conversions...........ccccerreriinnnns 352
13.8 Machine Code INSErtionsccccocvriiniiinii s 352
13.9 Unchecked Type CONVEISIONS.......cccciiiiiissmmnnesiinsssssss s ssssssss s s s s s ssssssssmnns 353
13.9.1 Data Validitycccooimiiiiire e 354
13.9.2 The Valid Attribute..........cooieeeee e e 356
13.10 Unchecked Access Value Creation...........ccccumriiniiiiinsmmnnsnnnnsssess s ssssssssssnnns 356
13.11 Storage Managementooocccocmmriiiinissssnrr e ssmn s e 357
13.11.1 Storage Allocation Attributes..........cccciiiiiiiiiiii 360
13.11.2 Unchecked Storage Deallocation.............cccooemmmriiiiiicccsmmnnn e 360
13.11.3 Default Storage POOIS ... s 362
13.11.4 Storage SUDPOOIS........ccccccrmrrriirrcccrnerrr s s ssssssrr e smmn e e e s mmnn e e e s 363
13.11.5 Subpool Reclamation...........ccoociiimmnirr s 365
13.11.6 Storage Subpool Example.........ccooommmmiiiiininnemnr s 366
13.12 Pragma Restrictions and Pragma Profileccccceiiimmiiiiinicccenrnee s 368
13.12.1 Language-Defined Restrictions and Profiles.............ccoovvommriiinniiiiiinnnnnnn, 369
13,13 SHrE@AMS...cc it ——— 371
13.13.1 The Streams Subsystem...........cccoomiiiicr 372
13.13.2 Stream-Oriented Attributes ... 374
13.14 Freezing RUIES ...t e 379
The Standard Libraries........ccccccuvieiiiiiiiiiiiiisssssssssssssssssssesss s 383
Annex A (normative) Predefined Language Environment...........cccccceeiiiiiiinnnn. 385
A.1 The Package Standard..............oooooiiiiiiiiiire e 388
A.2 The Package Ada ... e 392
A.3 Character Handlingcccoociiiiiiiiiiire e 392
A.3.1 The Packages Characters, Wide_Characters, and Wide_Wide_Characters 392
A.3.2 The Package Characters.Handling...........cccoooommiiiinniciiisnneeenn s 393
A.3.3 The Package Characters.Latin_1.........ccoooooiimmiiiinincccerrre e 395
A.3.4 The Package Characters.Conversionscccceiininmmnnssnnnsssssssssssssssnnnes 400
A.3.5 The Package Wide_Characters.Handlingccccccceeeccevmmmmmeminnsccsnneeeesssnsnsnnnns 401
A.3.6 The Package Wide_Wide_Characters.Handling..........cccccciiiiriimmnnnniinnicinnns 404
N 3= Yo B T T |11 4T R 404
A.4.1 The Package Strings......cccccciiiiiiiissmmmrrrisnsssssssmsns s s sssssssmms s s s s s s ssssssssssssssssnns 404

\" © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

A.4.2 The Package Strings.Mapscccceemmmriiiinnnssssmrrre s sssssssssnr s s ssms e s ssssnses 405
A.4.3 Fixed-Length String Handling ..o 408
A.4.4 Bounded-Length String Handlingccooccoomiiiinnicccceerrnre e 416
A.4.5 Unbounded-Length String Handling...........cccoooomiiiiiniciiiceeneeenes 422
A.4.6 String-Handling Sets and Mappingscccevvmrrrrrriinsssssserrerssssssssssmseessessnnses 427
A.4.7 Wide_String Handlingccccoiiiiiimmiiemrrn s 428
A.4.8 Wide_Wide_String Handling..........ccccccermiiiiicccsmmmrernsnssssssssssss e e s ss s ssss s e s s ennsnsnes 430
A.4.9 String Hashingcccccoo i 432
A.4.10 String COMPAriSONccccummiiiiiiiiiinerrr s mmr e e nnas 433
A.4.11 String ENCOAING -...ccoiiiicemmrinriiiccsnnrs s s s s ssssmn s s s ssmn s e s s s s s ssmn s e e s e ssnnsnns 434
A.4.12 Universal Text BUuffers........mmiernn s 439
A.5 The Numerics Packages........cccoooriiriiriiiniicir s 441
A.5.1 Elementary FUNCLIONS ... s 442
A.5.2 Random Number Generation...........cccoocoiriiiiierirccre e 445
A.5.3 Attributes of Floating Point TYPescccccccvvcceiimmmnninnnnscssscsrre s 450
A.5.4 Attributes of Fixed Point Types........cccciiiiiiiiiimminncsssrn s 454
A.5.5 Big NUMDbDEIS ..o 454
A.5.6 Big INtEgers ...t 454
AL 7 BIgREAIS ...t 456
A6 INPULE-OULPUL ... s s 458
A.7 External Files and File ODbjJects........ccccccoviricicmmmmmriinsscccssssse e esssssssssnss e e s sssssssssnnens 458
A.8 Sequential and Direct Files ... 459
A.8.1 The Generic Package Sequential_lO ..o 460
A.8.2 File Management..........ccoo s 461
A.8.3 Sequential Input-Output Operations..........ccooecmmiiiiiniicin . 463
A.8.4 The Generic Package Direct_lOcccccccccimmmmmmrninsssssssseese e s sssssssssssssessessnsses 464
A.8.5 Direct Input-Output Operations..........ccccciiiciiimmnn s 465
A.9 The Generic Package Storage_lOccccccemmmmrriinnsssssssssreersesssssssssmsesesssssssssssnees 466
A0 Text INPUt-OULPUL.........ceiiie e 467
A.10.1 The Package Text_lO....... s ssss s sssns 468
A.10.2 Text File Management ... s 474
A.10.3 Default Input, Output, and Error Files.........cccccomrriiiiiiiiiminnccennsesinnnns 475
A.10.4 Specification of Line and Page Lengths........ccccccceveiccciemmrinnnissccssneeeeeeeennnens 476
A.10.5 Operations on Columns, Lines, and Pages...........cccccevvmmmmmiiinnncsimnnnnnnnnnens 477
A.10.6 Get and Put Procedures...........coocoiiiiicimimincicie s s 479
A.10.7 Input-Output of Characters and Stringsccccciiiiiriiimnccerr s 481
A.10.8 Input-Output for Integer TYPeS......cccciriiiiniiiimmmrr s 483
A.10.9 Input-Output for Real TYPeSccccvermrmrrriiiscsimrirnr s ssmss s e s snses 484
A.10.10 Input-Output for Enumeration Typesccccccmrriiiiiiiissmmmmnnsssnss s 487
A.10.11 Input-Output for Bounded Stringsccccvermmmrriinscsssmmrrrrrnnssssssseeeeseessnnses 488
A.10.12 Input-Output for Unbounded Strings........cccoccimmriiiiniiismmnnccerreneenens 489
A.11 Wide Text Input-Output and Wide Wide Text Input-Output...........ccccceeriiinnnnnnn. 490
A.12 Stream INPUt-OULPUL ... e 491
A.12.1 The Package Streams.Stream_lO............cccoimmmmiiiiniininsmnr s 491
A.12.2 The Package Text_lO.Text_Streams.........ccccccmrrriiiiiicssmmmmrnnnnnsssssssmeeeesssssnns 494
A.12.3 The Package Wide_Text_|O.Text_Streamsccccvimmmmriiiinncisssennnnnninnns 494
A.12.4 The Package Wide_Wide_Text_IO.Text_Streams.........cccccerrrrrrersssnerrrerennnnns 494
A.13 Exceptions in INput-Output.........ccccccmiiiiiiiiciii s 494
g e L= o =]V 496
A.15 The Package Command_Line.........ccccoiiiiiimmmmninnsssss s sssssss s ssssnnnns 496
A.15.1 The Packages Wide_Command_Line and Wide_Wide_Command_Line....497
A.16 The Package DireCtoriesccceirmmrrriiiiisssssnmrrresessssssssssmsss s s s s s sssssssmsssssssssnssssnnnes 497
A.16.1 The Package Directories.Hierarchical_File_Namescccccccniriiiiinnnnnnnnnn. 505
A.16.2 The Packages Wide_Directories and Wide_Wide_Directories 507

© ISO/IEC 2021 — All rights reserved Vi

ISO/IEC 8652:DIS

A.17 The Package Environment_Variablesccccccuvvrmrrmmimmmmmmmeemmemeeenneeeeeeeeeeeeeeennneees 507
A.17.1 The Packages Wide_Environment_Variables and
Wide_Wide_Environment_Variables ... s s s 509

A8 CONLAINELS ... s e e e e e mmnr e 510
A.18.1 The Package CoNtaiNersccccccmmrrrrrrissssssmmrreressssssssssmsrsssessssssssssssssssessnnes 511
A.18.2 The Generic Package Containers.Vectors...........ccccceivmmmrninnnicssseennnnnnnnnnns 511
A.18.3 The Generic Package Containers.Doubly_Linked_Lists.........cccccerrriiniinnns 543
N T - 'L 563
A.18.5 The Generic Package Containers.Hashed_Maps........ccccccciiiiinmemnniniiniiinnes 572
A.18.6 The Generic Package Containers.Ordered_Maps.......ccccccvvrivnmmmrrnrinsnssssnnes 581
N T~ T 592
A.18.8 The Generic Package Containers.Hashed_Setsccccccvviccccmerrnnnnisncccnnes 602
A.18.9 The Generic Package Containers.Ordered_Setscccoeiiiiiiiiiennnninnnnnnes 611
A.18.10 The Generic Package Containers.Multiway_Trees.........cccccccervmmmrrerrnnnnnns 622
A.18.11 The Generic Package Containers.Indefinite_Vectors.........ccccccccrrrrrrinnnnes 655
A.18.12 The Generic Package Containers.Indefinite_Doubly_Linked_Lists......... 656
A.18.13 The Generic Package Containers.Indefinite_Hashed_Maps..................... 657
A.18.14 The Generic Package Containers.Indefinite_Ordered_Maps.................... 657
A.18.15 The Generic Package Containers.Indefinite_Hashed_Sets 658
A.18.16 The Generic Package Containers.Indefinite_Ordered_Sets 658
A.18.17 The Generic Package Containers.Indefinite_Multiway_Trees 658
A.18.18 The Generic Package Containers.Indefinite_Holders...........cccccccrrrrrrnneen 659
A.18.19 The Generic Package Containers.Bounded_Vectors...........cccccccmrrrrrrnnnnnes 663
A.18.20 The Generic Package Containers.Bounded_Doubly_Linked_Lists 665
A.18.21 The Generic Package Containers.Bounded_Hashed_Maps...................... 667
A.18.22 The Generic Package Containers.Bounded_Ordered_Mapscccuuuue 668
A.18.23 The Generic Package Containers.Bounded_Hashed_Sets....................... 670
A.18.24 The Generic Package Containers.Bounded_Ordered_Sets...................... 671
A.18.25 The Generic Package Containers.Bounded_Multiway_Trees................... 673
A.18.26 Array SOrtingccoccciiimmriiiinniennr s 675
A.18.27 The Generic Package Containers.Synchronized_Queue_Interfaces........ 676
A.18.28 The Generic Package Containers.Unbounded_Synchronized_Queues .. 677
A.18.29 The Generic Package Containers.Bounded_Synchronized_Queues....... 678
A.18.30 The Generic Package Containers.Unbounded_Priority_Queues.............. 679
A.18.31 The Generic Package Containers.Bounded_Priority_Queues.................. 680
A.18.32 The Generic Package Containers.Bounded_Indefinite_Holders.............. 681
A.18.33 Example of Container USe ..o 682

A.19 The Package LOCAIES.........ccccccmmrmrmiiiiiccnnirse s ssssmns s s s smn s s s s s s sssmmsnsnnes 684

Annex B (normative) Interface to Other Languages..........ccccccevvmmrriinniiennnnnnnns 685

B.1 Interfacing ASPeCtS.......ccccciiiiiiiiiiieiir s 685

B.2 The Package INterfacesccccccceeeemmmerinisscsssseerse s sssssssssssses s s e s ssssssssssssssesssnssssnnnes 688

B.3 Interfacing with C and CH+...........rr e 689
B.3.1 The Package Interfaces.C.Stringscccccccvrrcccsemmrrerrnnssssssssees e s s sssssssssmssssesens 696
B.3.2 The Generic Package Interfaces.C.Pointers........c.cccceeeicvimmrnininsccsseesnnnnnnnnns 698
B.3.3 Unchecked UnNion TYPEScccciiiiiiiiimmmmmniiinnsssss s sssssssssssss s ssssssssss s 701

B.4 Interfacing With COBOL...........cooiiiiiiimiiiriiiismnrre s ssssss s sssmss s s e s s ssssssnmnes 703

B.5 Interfacing with Fortran ... 709

Annex C (normative) Systems Programmingccceeeccceiiiiimireseesessmsssssssnssnennns 713

C.1 Access to Machine Operations..........cciiiiiiii e 713

C.2 Required Representation SUPPOIt.........ccoiiiirr s 714

C.3INterrupt SUPPOIt.......coo o ——————————————— 714
C.3.1 Protected Procedure Handlerscccccmmiiiinicinsmmmnrnnnnnssssssssse s ssss s ssssmsense e 716

Vii © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

C.3.2 The Package INterruptscccccimmrriiiiccismmmrens s ssssssss s s s ssssssssmmss s s s sssssssssnnnnes 718
C.4 Preelaboration Requirements..........ccocciiimmmniinccnenr s 720
C.5 Aspect Discard_Namescooiiiiiiiiiiiicicceeeeeeeee e e s e e e e e e e eenee 721
C.6 Shared Variable Controlccccimiiiiiiiir s 722

C.6.1 The Package System.Atomic_Operations..........cccceccrrrrrrrrsscssssmmerrerrssssssssnennes 724

C.6.2 The Package System.Atomic_Operations.Exchange.........ccccccomrriiiiiiinernnnnn. 725

C.6.3 The Package System.Atomic_Operations.Test_and_Set............cccccccnmerrenn. 726

C.6.4 The Package System.Atomic_Operations.Integer_Arithmetic....................... 726

C.6.5 The Package System.Atomic_Operations.Modular_Arithmetic..................... 727
C.7 Task INformation ..o 728

C.7.1 The Package Task_Ildentificationccccommiiiiiiiiiimmnncee s 728

C.7.2 The Package Task_Attributes..........cccccevrmmmmrrriiiscccsssmerre s s s ssssssmee e e s sssssnnees 730

C.7.3 The Package Task_Terminationcccccccmmmriiiiniiissmmmnnnsnnnssssssssn s ssssnnees 732

Annex D (normative) Real-Time Systemsccccociiiimmmmmmmmmnnrrre s 735
D.1 Task Prioritiesccccccmiiiiiiiiimiiiin s 735
D.2 Priority SChedulingccocccciiimiiiiinirscccccrre s s e 737

D.2.1 The Task Dispatching Modelcccoommmiiiiinicii 737

D.2.2 Task Dispatching Pragmas..........cccciiriiiiiiiiiiiiiniinssssssrssssr s 739

D.2.3 Preemptive DispatChing.........ccccoriiiiiciimmnnnemrrnr s 740

D.2.4 Non-Preemptive DispatChing..........cccoorrriiiiiiiiiii e 741

D.2.5 Round Robin DispatChing........c.cccciiiiiimmnincemr s 742

D.2.6 Earliest Deadline First Dispatchingcoooovroriiiiie e 743
D.3 Priority Ceiling LOCKING.......ccccciiiriiiiicimmrre e nsssssmrr s sssssssms s s ssmnn e e s ssnsas 746
D.4 Entry Queuing PoliCies. ... s 748

D.4.1 AdmisSion POlICIeS.......cccccciiummmmiiiinnsnerr s e 750
D.5 DYyNamicC Priorities ... s 750

D.5.1 Dynamic Priorities for TAskscccccccevmmmmrrmmnisssssssmrrressnsssssssssssresssssssssssssssssens 750

D.5.2 Dynamic Priorities for Protected Objects..........ccccomiiiiiiiiiimniccceenneeee 752
D.6 Preemptive ADOrtot e e e 752
D.7 Tasking Restrictions..........ccciiiiiiiiin s 753
[2R 011 To g Lo o o 1o I o = 756
D.9 Delay ACCUFACYcoooiiiiiiiiiiiinisiisii s s 759
D.10 Synchronous Task CONtrol ... 760

D.10.1 SyNnchronous BarTiersccccciriiiincssssmerrrrsisssssssssseressssssssssssssesssssssssssssmsssesees 761
D.11 Asynchronous Task Control...........cccoccmmiiiiiiiiimi e 762
D.12 Other Optimizations and Determinism Rules..........cccoooiiiiiiiiiiiiiniiiccecee, 763
D.13 The Ravenscar and Jorvik Profilescccccvvimiiniiiiininrn s 764
D.14 EXECULION TIME ...cooiiiiiiiiiieeirrn s 766

D.14.1 Execution Time TiMersccccciiiiiiiinmemmsr s 768

D.14.2 Group Execution Time Budgetscccorriiiiiiiiimmnncsernn e 770

D.14.3 Execution Time of Interrupt Handlers.............ccccoorriiirieecreeeeeeeeeeeeeees 772
D.15 Timing EVENLS ...t 772
D.16 Multiprocessor Implementation................cooccciirccc s 774

D.16.1 Multiprocessor Dispatching Domainsccccciiiiiiiiinise e 775

Annex E (normative) Distributed Systems..........ccccccvviimmmmrmmmmmnrnn s 779
E.1 Partitions.........o e 779
E.2 Categorization of Library Units.........ccccccmmmiiiiiiccismrririssssesnr e 780

E.2.1 Shared Passive Library Unitsccoovmmiiniciinsenrnn s 781

E.2.2 Remote Types Library Units ... 782

E.2.3 Remote Call Interface Library Unitscccccoiiiiiiiimnnnccennneeenneen 783
E.3 Consistency of a Distributed System............ccccoovmmriiiniccccceerrr e 784
E.4 Remote Subprogram Callsccccciiiceimmmmmminiinccsmrrsss s ssssssssmsss e sssms s e sssssnnses 785

© ISO/IEC 2021 — All rights reserved viii

ISO/IEC 8652:DIS

E.4.1 Asynchronous Remote Callscccccommimiiiiiisssssmmrnn s sssmmnns e 786
E.4.2 Example of Use of a Remote Access-to-Class-Wide Type.........cccceevvveereeenn. 787
E.5 Partition Communication Subsystem.............cccccmiiiiiiiriccsnmrre e 788
Annex F (normative) Information Systemsccccccccmmmmmmmmmmnnnes s 791
F.1 Machine_Radix Attribute Definition Clause............ccocoeiiimmiiiicne s 791
F.2 The Package Decimal.......... . 791
F.3 Edited Output for Decimal TYPes......cccccoiirriinmmmmiriinsmrrr s ssnnens 792
F.3.1 Picture String FOrmationccccccovecccciemmmimnnnssscccsssce e ssssss e e s ssmmenn e e 794
F.3.2 Edited Output Generation............ccceee e 797
F.3.3 The Package Text_IO.Editingcccoocmmmmiiiiiiiiinmrr s 801
F.3.4 The Package Wide_Text_IO.Editingcccceiemmmmmmriiniscccsemrre s e 804
F.3.5 The Package Wide_Wide_Text_IO.Editing........cccccrrriiiiiriiismmnniinnccceeenneeeen 804
Annex G (Normative) NUMEIICScuiieeeeeccciieii s e srr s s s snnsss s sssss s s s e s e e e s snsnmnnns s sssssnenes 805
G.1 Complex ArithmetiC ... ———— 805
G.1.1 COMPIEX TYPES ...oueemirirriiiiiinmrrr s ssms e mn e e e e e s mmn e e n s 805
G.1.2 Complex Elementary FUNCtionsccccmiiiiiiciinmmnsn s 809
G.1.3 Complex INpUut-OUutpUL...........ccoiiiiiiieecccecceerre e e e e e e eeenen 813
G.1.4 The Package Wide_Text_IO0.Complex_lO.......cccoccmmrriiinniiinsmmmnssinnssssenneeens 815
G.1.5 The Package Wide_Wide_Text_I0.Complex_lOcccccevvvmrrmrriiinssssnnennenns 815
G.2 Numeric Performance Requirements.............ccooommriiinnninnsennnnnssess s ssssssnnes 815
G.2.1 Model of Floating Point Arithmeticccccccevvicccimrre e 816
G.2.2 Model-Oriented Attributes of Floating Point Types........cccccomriiiiiciiieennnnnnn, 817
G.2.3 Model of Fixed Point Arithmetic........ccccccmmiriricccserrre e 818
G.2.4 Accuracy Requirements for the Elementary Functions........cccccccoeecicieenennn. 820
G.2.5 Performance Requirements for Random Number Generation 821
G.2.6 Accuracy Requirements for Complex Arithmetic...........cccoevcmmirriiiiccccceennnnn. 822
G.3 Vector and Matrix Manipulation.........ccccccmiiiiiiiciiceerrn s 824
G.3.1 Real Vectors and MatriCescccccvviiecrrmmmrrerinissssssmnreessesssssssssmes e s ssssssssssssssssees 824
G.3.2 Complex Vectors and Matricescccccmiriiiiiiiinmmnnnessn s 829
Annex H (normative) High Integrity Systems.........ccccooiicimmmmrnmnnreeeeeeeeeees 839
H.1 Pragma Normalize_Scalarsc.ccccvmriiiiiniinnsiinininnnessn e 839
H.2 Documentation of Implementation Decisions..........cccccciiiiiiiiiiniiniccccccccccccccce, 840
H.3 Reviewable Object Code ... s 840
H.3.1 Pragma Reviewable ... insncssnnr s s mmnn s 840
H.3.2 Pragma Inspection_Point............occoimiinccrr s 841
H.4 High Integrity ReStrictions 842
H.4.1 Aspect No_Controlled_Partscccccmiiiiiiiiiinirrisess e 845
H.5 Pragma Detect_BlocCKing...........ccooimmmmiiiiiicciirrn s ssnnens 845
H.6 Pragma Partition_Elaboration_Policyccccoiiiiiiiniiniinnnies 845
H.7 Extensions to Global and Global'Class ASpPectsccccrrriiiiiiinemmnnnnnncssnneenns 846
H.7.1 The Use_Formal and Dispatching Aspects...........cccciiiiiiiiiiiinnn, 847
Annex J (normative) Obsolescent Featurescccooirnnnnnn 851
J.1 Renamings of Library UNitsccciiieerne s 851
J.2 Allowed Replacements of Characterscccccoiiiiiiiiiiiiiiiiiiecscee e 851
J.3 Reduced Accuracy SUbtYyPescccoiiiiiinemmnni e 852
J.4 The Constrained Attribute...........cccoriiiiiiiiii 852
O T 0 | 853
J.6 NUMEIIC_EITOr ... s e 853
B 0 - T = - 853
J. 7.1 Interrupt ENtries. ... s s 854
J.8 MO ClaUSES......ceicccenemrrrrrrrsssssssssereesssssssssssssns s e e e sssssssssnmnssenessansssssnnesenesssnssssnnnnnsnnees 855

ix © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

J.9 The Storage_Size Attribute............ccooommiiiiiiicccrrr e 855
J.10 Specific Suppression of Checks..........ccccciiiimmmiiccir e 855
J.11 The Class Attribute of Untagged Incomplete Typesccccccvvmmrrrnrriisssssneennnen 856
J.12 Pragma INterface ... s 856
J.13 Dependence Restriction Identifiersee e, 856
J.14 Character and Wide_Character Conversion Functions...........cccccceeiiiiiiiiiicccnnne. 857
J.15 Aspect-related Pragmasccccccocememmmmmmmmmmnnnnnennnnnnnnnnnssssnnsssssssssnsssssss s ssssssnnns 857
J.A5.1 Pragma INliNe...... s 858
J.15.2 Pragma NO_Return ... s 858
J.15.3 Pragma PacK......cccc s 858
J.15.4 Pragma Storage_Size........ccccciiiiimmmimmmiiinsssnns s 859
J.15.5 Interfacing Pragmas.......cccccevvccccememmmesinsssssssssesss s sssssssssssssssssssssssssssnssssesensnnsses 859
J.15.6 Pragma Unchecked_Union..........cccciiiiiiiiiiiminissesn s 860
J.15.7 Pragmas Interrupt_Handler and Attach_Handlercccoeeiiiiiiiniiiiiinnnnnnn. 860
J.15.8 Shared Variable Pragmascccooocmimmiiinncnssmmrnninnsssssssmssssss s sssssssssssssssssnnses 861

O T T o Vo [T T o 861
J.15.10 Pragma Dispatching_Domaincccooiiiiiiiininin s 862
J.15.11 Pragmas Priority and Interrupt_Priorityccccoiiiiiiiiimmnincccceeeneennne 862
J.15.12 Pragma Relative_Deadlinecccoooooiiiiiii s 863
J.15.13 Pragma ASYNCRIONOUScccciimmmmiiiiii s ssss s mms s e 863
J.15.14 Elaboration Control Pragmas.......ccccccueeccevsmmrererrmnssssssssssssssssssssssssssssssssssssssses 864
J.15.15 Distribution Pragmas............cocoviiiiiiiinssssssss s 864
Annex K (informative) Language-Defined Aspects and Attributes.................... 867
K.1 Language-Defined ASPecCtS.........ccciiiiiimmmimiiiiierrnn s s 867
K.2 Language-Defined Attributes...........cccovicmmiiiiiiicccnmrrrr e 871
Annex L (informative) Language-Defined Pragmascccceciimmierinncicnnnnnnnnn, 889
Annex M (informative) Summary of Documentation Requirements 891
M.1 Specific Documentation Requirements...........cccoocmriiiiiiiciiinnneee e 891
M.2 Implementation-Defined Characteristics...........cccooiiiiiiiiiiiiiii e 893
M.3 Implementation AdVICe ... 899
Annex N (informative) GlOSSaryccccviiiiiiiisisssssssssssssnnnrrnrrrr s ssssssnnsas 909
Annex P (informative) Syntax SUMMaryccccocciirvnmmmmmmmemrrenrrners s ssssns 915
P.1 SYNtaxX RUIES ... 915
P.2 Syntax Cross Reference.........cccociiiiiiiiinciis s 936
Annex Q (informative) Language-Defined Entities..........ccccconniiiiiinniniiiicennnnn, 947
Q.1 Language-Defined Packages...........ccccciimmmmmmmiiinnninissssnnns s sssssssssss e 947
Q.2 Language-Defined Types and Subtypes..........cccociriiiimriiicrmrnnscsee e 950
Q.3 Language-Defined Subprograms...........cccccccmmmiiiinnininmmnnnnssssne s 954
Q.4 Language-Defined EXCEPLIONScccciiiiiiiiiriiiiie e 964
Q.5 Language-Defined ObjJectscccourimmiiniimninniir e 965
3 ' =N 971

© ISO/IEC 2021 — All rights reserved X

ISO/IEC 8652:DIS

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part
2.

The main task of the joint technical committee is to prepare International Standards. Draft
International Standards adopted by the joint technical committee are circulated to national bodies for
voting. Publication as an International Standard requires approval by at least 75 % of the national
bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 8652 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information Technology Subcommittee SC22, Programming languages, their environments and
system software interfaces.

This fourth edition cancels and replaces the third edition (ISO/IEC 8652:2012), which has been
technically revised. It also incorporates the Technical Corrigendum ISO/IEC 8652:2012:COR.1:2016.

Xi © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

Introduction

Design Goals

Ada was originally designed with three overriding concerns: program reliability and maintenance,
programming as a human activity, and efficiency. The 1995 revision to the language was designed to
provide greater flexibility and extensibility, additional control over storage management and
synchronization, and standardized packages oriented toward supporting important application areas,
while at the same time retaining the original emphasis on reliability, maintainability, and efficiency.
Subsequent editions, including this fourth edition, have provided further flexibility and added more
standardized packages within the framework provided by the 1995 revision.

The need for languages that promote reliability and simplify maintenance is well established. Hence
emphasis was placed on program readability over ease of writing. For example, the rules of the
language require that program variables be explicitly declared and that their type be specified. Since
the type of a variable is invariant, compilers can ensure that operations on variables are compatible
with the properties intended for objects of the type. Furthermore, error-prone notations have been
avoided, and the syntax of the language avoids the use of encoded forms in favor of more English-like
constructs. Finally, the language offers support for separate compilation of program units in a way
that facilitates program development and maintenance, and which provides the same degree of
checking between units as within a unit.

Concern for the human programmer was also stressed during the design. Above all, an attempt was
made to keep to a relatively small number of underlying concepts integrated in a consistent and
systematic way while continuing to avoid the pitfalls of excessive involution. The design especially
aims to provide language constructs that correspond intuitively to the normal expectations of users.

Like many other human activities, the development of programs is becoming ever more decentralized
and distributed. Consequently, the ability to assemble a program from independently produced
software components continues to be a central idea in the design. The concepts of packages, of private
types, and of generic units are directly related to this idea, which has ramifications in many other
aspects of the language. An allied concern is the maintenance of programs to match changing
requirements; type extension and the hierarchical library enable a program to be modified while
minimizing disturbance to existing tested and trusted components.

No language can avoid the problem of efficiency. Languages that require over-elaborate compilers, or
that lead to the inefficient use of storage or execution time, force these inefficiencies on all machines
and on all programs. Every construct of the language was examined in the light of present
implementation techniques. Any proposed construct whose implementation was unclear or that
required excessive machine resources was rejected. Parallel constructs were introduced to simplify
making safe and efficient use of modern multicore architectures.

Language Summary

An Ada program is composed of one or more program units. Program units may be subprograms
(which define executable algorithms), packages (which define collections of entities), task units
(which define concurrent computations), protected units (which define operations for the coordinated
sharing of data between tasks), or generic units (which define parameterized forms of packages and
subprograms). Each program unit normally consists of two parts: a specification, containing the
information that must be visible to other units, and a body, containing the implementation details,
which need not be visible to other units. Most program units can be compiled separately.

This distinction of the specification and body, and the ability to compile units separately, allows a
program to be designed, written, and tested as a set of largely independent software components.

An Ada program will normally make use of a library of program units of general utility. The language
provides means whereby individual organizations can construct their own libraries. All libraries are

© ISO/IEC 2021 — All rights reserved xii

ISO/IEC 8652:DIS

structured in a hierarchical manner; this enables the logical decomposition of a subsystem into
individual components. The text of a separately compiled program unit must name the library units it
requires.

Program Units

A subprogram is the basic unit for expressing an algorithm. There are two kinds of subprograms:
procedures and functions. A procedure is the means of invoking a series of actions. For example, it
may read data, update variables, or produce some output. It may have parameters, to provide a
controlled means of passing information between the procedure and the point of call. A function is the
means of invoking the computation of a value. It is similar to a procedure, but in addition will return a
result.

A package is the basic unit for defining a collection of logically related entities. For example, a
package can be used to define a set of type declarations and associated operations. Portions of a
package can be hidden from the user, thus allowing access only to the logical properties expressed by
the package specification.

Subprogram and package units may be compiled separately and arranged in hierarchies of parent and
child units giving fine control over visibility of the logical properties and their detailed
implementation.

A task unit is the basic unit for defining a task whose sequence of actions may be executed
concurrently with those of other tasks. Such tasks may be implemented on multicomputers,
multiprocessors, or with interleaved execution on a single processor. A task unit may define either a
single executing task or a task type permitting the creation of any number of similar tasks.

A protected unit is the basic unit for defining protected operations for the coordinated use of data
shared between tasks. Simple mutual exclusion is provided automatically, and more elaborate sharing
protocols can be defined. A protected operation can either be a subprogram or an entry. A protected
entry specifies a Boolean expression (an entry barrier) that must be True before the body of the entry
is executed. A protected unit may define a single protected object or a protected type permitting the
creation of several similar objects.

Declarations and Statements

The body of a program unit generally contains two parts: a declarative part, which defines the logical
entities to be used in the program unit, and a sequence of statements, which defines the execution of
the program unit.

The declarative part associates names with declared entities. For example, a name may denote a type,
a constant, a variable, or an exception. A declarative part also introduces the names and parameters of
other nested subprograms, packages, task units, protected units, and generic units to be used in the
program unit.

The sequence of statements describes a sequence of actions that are to be performed. The statements
are executed in succession (unless a transfer of control causes execution to continue from another
place).

An assignment statement changes the value of a variable. A procedure call invokes execution of a
procedure after associating any actual parameters provided at the call with the corresponding formal
parameters.

Case statements and if statements allow the selection of an enclosed sequence of statements based on
the value of an expression or on the value of a condition.

The loop statement provides the basic iterative mechanism in the language. A loop statement specifies
that a sequence of statements is to be executed repeatedly as directed by an iteration scheme, or until
an exit statement is encountered.

Xiii © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

A block statement comprises a sequence of statements preceded by the declaration of local entities
used by the statements.

Certain statements are associated with concurrent execution. A delay statement delays the execution
of a task for a specified duration or until a specified time. An entry call statement is written as a
procedure call statement; it requests an operation on a task or on a protected object, blocking the
caller until the operation can be performed. A called task may accept an entry call by executing a
corresponding accept statement, which specifies the actions then to be performed as part of the
rendezvous with the calling task. An entry call on a protected object is processed when the
corresponding entry barrier evaluates to true, whereupon the body of the entry is executed. The
requeue statement permits the provision of a service as a number of related activities with preference
control. One form of the select statement allows a selective wait for one of several alternative
rendezvous. Other forms of the select statement allow conditional or timed entry calls and the
asynchronous transfer of control in response to some triggering event. Various parallel constructs,
including parallel loops and parallel blocks, support the initiation of multiple logical threads of
control designed to execute in parallel when multiple processors are available.

Execution of a program unit may encounter error situations in which normal program execution
cannot continue. For example, an arithmetic computation may exceed the maximum allowed value of
a number, or an attempt may be made to access an array component by using an incorrect index value.
To deal with such error situations, the statements of a program unit can be textually followed by
exception handlers that specify the actions to be taken when the error situation arises. Exceptions can
be raised explicitly by a raise statement.

Data Types

Every object in the language has a type, which characterizes a set of values and a set of applicable
operations. The main categories of types are elementary types (comprising enumeration, numeric, and
access types) and composite types (including array and record types).

An enumeration type defines an ordered set of distinct enumeration literals, for example a list of states
or an alphabet of characters. The enumeration types Boolean, Character, Wide Character, and
Wide Wide Character are predefined.

Numeric types provide a means of performing exact or approximate numerical computations. Exact
computations use integer types, which denote sets of consecutive integers. Approximate computations
use either fixed point types, with absolute bounds on the error, or floating point types, with relative
bounds on the error. The numeric types Integer, Float, and Duration are predefined.

Composite types allow definitions of structured objects with related components. The composite types
in the language include arrays and records. An array is an object with indexed components of the
same type. A record is an object with named components of possibly different types. Task and
protected types are also forms of composite types. The array types String, Wide String, and
Wide Wide String are predefined.

Record, task, and protected types may have special components called discriminants which
parameterize the type. Variant record structures that depend on the values of discriminants can be
defined within a record type.

Access types allow the construction of linked data structures. A value of an access type represents a
reference to an object declared as aliased or to an object created by the evaluation of an allocator.
Several variables of an access type may designate the same object, and components of one object may
designate the same or other objects. Both the elements in such linked data structures and their relation
to other elements can be altered during program execution. Access types also permit references to
subprograms to be stored, passed as parameters, and ultimately dereferenced as part of an indirect call.

© ISO/IEC 2021 — All rights reserved Xiv

ISO/IEC 8652:DIS

Private types permit restricted views of a type. A private type can be defined in a package so that only
the logically necessary properties are made visible to the users of the type. The full structural details
that are externally irrelevant are then only available within the package and any child units.

From any type a new type may be defined by derivation. A type, together with its derivatives (both
direct and indirect) form a derivation class. Class-wide operations may be defined that accept as a
parameter an operand of any type in a derivation class. For record and private types, the derivatives
may be extensions of the parent type. Types that support these object-oriented capabilities of class-
wide operations and type extension must be tagged, so that the specific type of an operand within a
derivation class can be identified at run time. When an operation of a tagged type is applied to an
operand whose specific type is not known until run time, implicit dispatching is performed based on
the tag of the operand.

Interface types provide abstract models from which other interfaces and types may be composed and
derived. This provides a reliable form of multiple inheritance. Interface types may also be
implemented by task types and protected types thereby enabling concurrent programming and
inheritance to be merged.

The concept of a type is further refined by the concept of a subtype, whereby a user can constrain the
set of allowed values of a type. Subtypes can be used to define subranges of scalar types, arrays with a
limited set of index values, and records and private types with particular discriminant values.

Other Facilities

Aspect clauses can be used to specify the mapping between types and features of an underlying
machine. For example, the user can specify that objects of a given type must be represented with a
given number of bits, or that the components of a record are to be represented using a given storage
layout. Other features allow the controlled use of low level, nonportable, or implementation-
dependent aspects, including the direct insertion of machine code.

Aspect clauses can also be used to specify more abstract properties of program entities, such as the
pre- and postconditions of a subprogram, or the invariant for a private type. Additional aspects are
specifiable to allow user-defined types to use constructs of the language, such as literals, aggregates,
or indexing, normally reserved for particular language-defined categories of types, such as numeric
types, record types, or array types.

The predefined environment of the language provides for input-output and other capabilities by means
of standard library packages. Input-output is supported for values of user-defined as well as of
predefined types. Standard means of representing values in display form are also provided.

The predefined standard library packages provide facilities such as string manipulation, containers of
various kinds (vectors, lists, maps, etc.), mathematical functions, random number generation, and
access to the execution environment.

The specialized annexes define further predefined library packages and facilities with emphasis on
areas such as real-time scheduling, interrupt handling, distributed systems, numerical computation,
and high-integrity systems.

Finally, the language provides a powerful means of parameterization of program units, called generic
program units. The generic parameters can be types and subprograms (as well as objects and
packages) and so allow general algorithms and data structures to be defined that are applicable to all
types of a given class.

Language Changes

This International Standard replaces the third edition of 2012. It modifies the previous edition by
making changes and additions that improve the capability of the language and the reliability of
programs written in the language.

Significant changes in this edition are:

XV © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

e Improved support for parallel execution is provided via the introduction of parallel loops,
parallel blocks, parallel container iteration, and parallel reduction.

e More precise specification of subprogram interfaces is supported via the new aspects Global,
Global'Class, and Nonblocking. The Global aspects, in particular, help to determine whether
two constructs can safely execute in parallel.

e Pre and Post aspects may now be specified for access-to-subprogram types and for generic
formal subprograms; a postcondition for the default initialization of a type may be specified
using the new Default _Initial Condition aspect.

e The behavior of many predefined container operations is now more precisely specified by
using pre- and postcondition specifications instead of English descriptions; a restricted
(“stable”) view for most containers is introduced to support more efficient iteration.

e More flexible uses of static expressions are supported via the introduction of static expression
functions along with fewer restrictions on static strings.

e The Image attribute is supported for nonscalar types, and a user-specifiable attribute
Put Image is provided, which determines the value of the Image attribute for a user-defined

type.
e The use of numeric and string literals is generalized to allow their use with other categories of
types, via the new aspects Integer Literal, Real Literal, and String_Literal.

e Array and record aggregates are made more flexible: index parameters are allowed in an array
aggregate to define the components as a function of their array index; discriminants can be
defined more flexibly within an aggregate for a variant record type.

e New types of aggregates are provided: delta aggregates to allow the construction of a new
object by incremental updates to an existing object; container aggregates to allow
construction of an object of a container type by directly specifying its elements.

¢ A shorthand is provided, using the token '@/, to refer to the target of an assignment statement
in the expression defining its new value.

e Declare expressions are provided that permit the definition and use of local constants or
renamings, to allow a large expression to be simplified by defining common parts as named
entities.

e Support for lightweight iteration is added via the introduction of procedural iterators.

e Support for the map-reduce programming strategy is added via the introduction of reduction
expressions.

¢ For constructs that use iterators of any sort, a filter may be specified that restricts the elements
produced by the iteration to those that satisfy the condition of the filter.

¢ Predefined packages supporting arbitrary-precision integer and real arithmetic are provided.

e The Jorvik profile is introduced to support hard real-time applications that need to go beyond
the restrictions of the Ravenscar profile.

© ISO/IEC 2021 — All rights reserved XVi

ISO/IEC 8652:DIS

Instructions for Comment Submission

Informal comments on this International Standard may be sent via e-mail to ada-comment@ada-
auth.org. If appropriate, the Project Editor will initiate the defect correction procedure.

Comments should use the following format:

topic Title summarizing comment
!reference Ada 202x RMss.ss(pp)
from Author Name yy-mm-dd
'keywords keywords related to topic
!discussion

text of discussion

where ss.ss is the clause or subclause number, pp is the paragraph number where applicable, and yy-
mm-dd is the date the comment was sent. The date is optional, as is the !keywords line.

Please use a descriptive “Subject” in your e-mail message, and limit each message to a single
comment.

When correcting typographical errors or making minor wording suggestions, please put the correction
directly as the topic of the comment; use square brackets [| to indicate text to be omitted and curly
braces { } to indicate text to be added, and provide enough context to make the nature of the
suggestion self-evident or put additional information in the body of the comment, for example:

Itopic [c]{C}haracter
!topic it[']s meaning is not defined

Formal requests for interpretations and for reporting defects in the International Standard may be
made in accordance with the ISO/IEC JTC 1 Directives and the ISO/IEC JTC 1/SC 22 policy for
interpretations. National Bodies may submit a Defect Report to ISO/IEC JTC 1/SC 22 for resolution
under the JTC 1 procedures. A response will be provided and, if appropriate, a Technical
Corrigendum will be issued in accordance with the procedures.

Xvii © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

INTERNATIONAL STANDARD ISO/IEC 8652:202x

Information technology — Programming
Languages — Ada

1 General

1.1 Scope

This International Standard specifies the form and meaning of programs written in Ada. Its purpose is
to promote the portability of Ada programs to a variety of computing systems.

Ada is a programming language designed to support the construction of long-lived, highly reliable
software systems. The language includes facilities to define packages of related types, objects, and
operations. The packages may be parameterized and the types may be extended to support the
construction of libraries of reusable, adaptable software components. The operations may be
implemented as subprograms using conventional sequential control structures, or as entries that
include synchronization of concurrent threads of control as part of their invocation. Ada supports
object-oriented programming by providing classes and interfaces, inheritance, polymorphism of
variables and methods, and generic units. The language treats modularity in the physical sense as
well, with a facility to support separate compilation.

The language provides rich support for real-time, concurrent programming, and includes facilities for
multicore and multiprocessor programming. Errors can be signaled as exceptions and handled
explicitly. The language also covers systems programming; this requires precise control over the
representation of data and access to system-dependent properties. Finally, a predefined environment
of standard packages is provided, including facilities for, among others, input-output, string
manipulation, numeric elementary functions, random number generation, and definition and use of
containers.

1.1.1 Extent

This International Standard specifies:
e The form of a program written in Ada;
e The effect of translating and executing such a program;
e The manner in which program units may be combined to form Ada programs;
e The language-defined library units that a conforming implementation is required to supply;

e The permissible variations within the standard, and the manner in which they are to be
documented,;

1 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

e Those violations of the standard that a conforming implementation is required to detect, and
the effect of attempting to translate or execute a program containing such violations;

e Those violations of the standard that a conforming implementation is not required to detect.

This International Standard does not specify:

e The means whereby a program written in Ada is transformed into object code executable by a
processor;

e The means whereby translation or execution of programs is invoked and the executing units
are controlled;

e The size or speed of the object code, or the relative execution speed of different language
constructs;

e The form or contents of any listings produced by implementations; in particular, the form or
contents of error or warning messages;

e The effect of unspecified execution;

e The size of a program or program unit that will exceed the capacity of a particular conforming
implementation.

1.1.2 Structure
This International Standard contains thirteen clauses, fifteen annexes, and an index.
The core of the Ada language consists of:

e Clauses 1 through 13

e Annex A, “Predefined Language Environment”

e Annex B, “Interface to Other Languages”

e Annex J, “Obsolescent Features”

The following Specialized Needs Annexes define features that are needed by certain application areas:
e Annex C, “Systems Programming”
e Annex D, “Real-Time Systems”
e Annex E, “Distributed Systems”
e Annex F, “Information Systems”
o Annex G, “Numerics”

e Annex H, “High Integrity Systems”

The core language and the Specialized Needs Annexes are normative, except that the material in each
of the items listed below is informative:

e Text under a NOTES or Examples heading.

¢ Each subclause whose title starts with the word “Example” or “Examples”.

All implementations shall conform to the core language. In addition, an implementation may conform
separately to one or more Specialized Needs Annexes.

The following Annexes are informative:
¢ Annex K, “Language-Defined Aspects and Attributes”
e Annex L, “Language-Defined Pragmas”
e Annex M, “Summary of Documentation Requirements”

e Annex N, “Glossary”

© ISO/IEC 2021 — All rights reserved 2

ISO/IEC 8652:DIS

e Annex P, “Syntax Summary”
e Annex Q, “Language-Defined Entities”

Each clause is divided into subclauses that have a common structure. Each clause and subclause first
introduces its subject. After the introductory text, text is labeled with the following headings:

Syntax

Syntax rules (indented).

Name Resolution Rules

Compile-time rules that are used in name resolution, including overload resolution.

Legality Rules

Rules that are enforced at compile time. A construct is legal if it obeys all of the Legality Rules.

Static Semantics

A definition of the compile-time effect of each construct.

Post-Compilation Rules

Rules that are enforced before running a partition. A partition is legal if its compilation units are legal
and it obeys all of the Post-Compilation Rules.

Dynamic Semantics

A definition of the run-time effect of each construct.

Bounded (Run-Time) Errors

Situations that result in bounded (run-time) errors (see 1.1.5).

Erroneous Execution

Situations that result in erroneous execution (see 1.1.5).

Implementation Requirements

Additional requirements for conforming implementations.

Documentation Requirements

Documentation requirements for conforming implementations.

Metrics

Metrics that are specified for the time/space properties of the execution of certain language constructs.

Implementation Permissions

Additional permissions given to the implementer.

Implementation Advice

Optional advice given to the implementer. The word “should” is used to indicate that the advice is a
recommendation, not a requirement. It is implementation defined whether or not a given
recommendation is obeyed.

NOTES
1 Notes emphasize consequences of the rules described in the (sub)clause or elsewhere. This material is informative.

Examples

Examples illustrate the possible forms of the constructs described. This material is informative.

3 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

1.1.3 Conformity of an Implementation with the Standard

Implementation Requirements
A conforming implementation shall:

e Translate and correctly execute legal programs written in Ada, provided that they are not so
large as to exceed the capacity of the implementation;

e Identify all programs or program units that are so large as to exceed the capacity of the
implementation (or raise an appropriate exception at run time);

e Identify all programs or program units that contain errors whose detection is required by this
International Standard;

¢ Supply all language-defined library units required by this International Standard;

e Contain no variations except those explicitly permitted by this International Standard, or
those that are impossible or impractical to avoid given the implementation's execution
environment;

e Specify all such variations in the manner prescribed by this International Standard.

The external effect of the execution of an Ada program is defined in terms of its interactions with its
external environment. The following are defined as external interactions:

e Any interaction with an external file (see A.7);

e The execution of certain code_statements (see 13.8); which code_statements cause external
interactions is implementation defined.

e Any call on an imported subprogram (see Annex B), including any parameters passed to it;

e Any result returned or exception propagated from a main subprogram (see 10.2) or an
exported subprogram (see Annex B) to an external caller;

¢ Any read or update of an atomic or volatile object (see C.6);

e The values of imported and exported objects (see Annex B) at the time of any other
interaction with the external environment.

A conforming implementation of this International Standard shall produce for the execution of a given
Ada program a set of interactions with the external environment whose order and timing are
consistent with the definitions and requirements of this International Standard for the semantics of the
given program.

An implementation that conforms to this Standard shall support each capability required by the core
language as specified. In addition, an implementation that conforms to this Standard may conform to
one or more Specialized Needs Annexes (or to none). Conformance to a Specialized Needs Annex
means that each capability required by the Annex is provided as specified.

An implementation conforming to this International Standard may provide additional aspects,
attributes, library units, and pragmas. However, it shall not provide any aspect, attribute, library unit,
or pragma having the same name as an aspect, attribute, library unit, or pragma (respectively)
specified in a Specialized Needs Annex unless the provided construct is either as specified in the
Specialized Needs Annex or is more limited in capability than that required by the Annex. A program
that attempts to use an unsupported capability of an Annex shall either be identified by the
implementation before run time or shall raise an exception at run time.

For an implementation that conforms to this Standard, the implementation of a language-defined unit
shall abide by all postconditions, type invariants, and default initial conditions specified for the unit
by this International Standard (see 11.4.2).

© ISO/IEC 2021 — All rights reserved 4

ISO/IEC 8652:DIS

Documentation Requirements

Certain aspects of the semantics are defined to be either implementation defined or unspecified. In
such cases, the set of possible effects is specified, and the implementation may choose any effect in
the set. Implementations shall document their behavior in implementation-defined situations, but
documentation is not required for unspecified situations. The implementation-defined characteristics
are summarized in M.2.

The implementation may choose to document implementation-defined behavior either by
documenting what happens in general, or by providing some mechanism for the user to determine
what happens in a particular case.

Implementation Advice

If an implementation detects the use of an unsupported Specialized Needs Annex feature at run time,
it should raise Program_Error if feasible.

If an implementation wishes to provide implementation-defined extensions to the functionality of a
language-defined library unit, it should normally do so by adding children to the library unit.

NOTES
2 The above requirements imply that an implementation conforming to this Standard may support some of the
capabilities required by a Specialized Needs Annex without supporting all required capabilities.

1.1.4 Method of Description and Syntax Notation

The form of an Ada program is described by means of a context-free syntax together with context-
dependent requirements expressed by narrative rules.

The meaning of Ada programs is described by means of narrative rules defining both the effects of
each construct and the composition rules for constructs.

The context-free syntax of the language is described using a simple variant of Backus-Naur Form. In
particular:

e Lower case words in a sans-serif font, some containing embedded underlines, are used to
denote syntactic categories, for example:

case_statement
e Boldface words are used to denote reserved words, for example:
array
e Square brackets enclose optional items. Thus the two following rules are equivalent.

simple_return_statement ::= return [expression];
simple_return_statement ::= return; | return expression;

e Curly brackets enclose a repeated item. The item may appear zero or more times; the
repetitions occur from left to right as with an equivalent left-recursive rule. Thus the two
following rules are equivalent.

term ::= factor {multiplying_operator factor}
term ::= factor | term multiplying_operator factor

e A vertical line separates alternative items, for example:
constraint ::= scalar_constraint | composite_constraint

e For symbols used in this notation (square brackets, curly brackets, and the vertical line), the
symbols when surrounded by ' represent themselves, for example:

discrete_choice_list ::= discrete_choice {|' discrete_choice}
named_container_aggregate ::="[' container_element_association_list ']'

5 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

e If the name of any syntactic category starts with an italicized part, it is equivalent to the
category name without the italicized part. The italicized part is intended to convey some
semantic information. For example subtype name and fask name are both equivalent to
name alone.

The delimiters, compound delimiters, reserved words, and numeric_literals are exclusively made of
the characters whose code point is between 16#20# and 16#7E#, inclusively. The special characters
for which names are defined in this International Standard (see 2.1) belong to the same range. For
example, the character E in the definition of exponent is the character whose name is “LATIN
CAPITAL LETTER E”, not “GREEK CAPITAL LETTER EPSILON".

When this International Standard mentions the conversion of some character or sequence of characters
to upper case, it means the character or sequence of characters obtained by using simple upper case
mapping, as defined by documents referenced in Clause 2 of ISO/IEC 10646:2017.

A syntactic category is a nonterminal in the grammar defined in BNF under “Syntax”. Names of
syntactic categories are set in a different font, like_this.

A construct is a piece of text (explicit or implicit) that is an instance of a syntactic category defined
under “Syntax”.

A constituent of a construct is the construct itself, or any construct appearing within it.

Whenever the run-time semantics defines certain actions to happen in an arbitrary order, this means
that the implementation shall arrange for these actions to occur in a way that is equivalent to some
sequential order, following the rules that result from that sequential order. When evaluations are
defined to happen in an arbitrary order, with conversion of the results to some subtypes, or with some
runtime checks, the evaluations, conversions, and checks may be arbitrarily interspersed, so long as
each expression is evaluated before converting or checking its value. Note that the effect of a program
can depend on the order chosen by the implementation. This can happen, for example, if two actual
parameters of a given call have side effects.
NOTES

3 The syntax rules describing structured constructs are presented in a form that corresponds to the recommended
paragraphing. For example, an if_statement is defined as:

if_statement ::=
if condition then
sequence_of_statements
{elsif condition then
sequence_of_statements }
[else
sequence_of statements]
end if;

4 The line breaks and indentation in the syntax rules indicate the recommended line breaks and indentation in the
corresponding constructs. The preferred places for other line breaks are after semicolons.

1.1.5 Classification of Errors

Implementation Requirements
The language definition classifies errors into several different categories:
e Errors that are required to be detected prior to run time by every Ada implementation;

These errors correspond to any violation of a rule given in this International Standard, other
than those listed below. In particular, violation of any rule that uses the terms shall, allowed,
permitted, legal, or illegal belongs to this category. Any program that contains such an error is
not a legal Ada program; on the other hand, the fact that a program is legal does not mean, per
se, that the program is free from other forms of error.

The rules are further classified as either compile time rules, or post compilation rules,
depending on whether a violation has to be detected at the time a compilation unit is

© ISO/IEC 2021 — All rights reserved 6

ISO/IEC 8652:DIS

submitted to the compiler, or may be postponed until the time a compilation unit is
incorporated into a partition of a program.

e Errors that are required to be detected at run time by the execution of an Ada program;

The corresponding error situations are associated with the names of the predefined
exceptions. Every Ada compiler is required to generate code that raises the corresponding
exception if such an error situation arises during program execution. If such an error situation
is certain to arise in every execution of a construct, then an implementation is allowed
(although not required) to report this fact at compilation time.

e Bounded errors;

The language rules define certain kinds of errors that need not be detected either prior to or
during run time, but if not detected, the range of possible effects shall be bounded. The errors
of this category are called bounded errors. The possible effects of a given bounded error are
specified for each such error, but in any case one possible effect of a bounded error is the
raising of the exception Program_FError.

e Erroneous execution.

In addition to bounded errors, the language rules define certain kinds of errors as leading to
erroneous execution. Like bounded errors, the implementation need not detect such errors
either prior to or during run time. Unlike bounded errors, there is no language-specified
bound on the possible effect of erroneous execution; the effect is in general not predictable.

Implementation Permissions

An implementation may provide nonstandard modes of operation. Typically these modes would be
selected by a pragma or by a command line switch when the compiler is invoked. When operating in
a nonstandard mode, the implementation may reject compilation_units that do not conform to
additional requirements associated with the mode, such as an excessive number of warnings or
violation of coding style guidelines. Similarly, in a nonstandard mode, the implementation may apply
special optimizations or alternative algorithms that are only meaningful for programs that satisfy
certain criteria specified by the implementation. In any case, an implementation shall support a
standard mode that conforms to the requirements of this International Standard; in particular, in the
standard mode, all legal compilation_units shall be accepted.

Implementation Advice

If an implementation detects a bounded error or erroneous execution, it should raise Program_Error.

1.2 Normative References

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

ISO 639-3:2007, Codes for the representation of names of languages — Part 3: Alpha-3 code for
comprehensive coverage of languages.

ISO/IEC 646:1991, Information technology — ISO 7-bit coded character set for information
interchange.

ISO/TEC 1539-1:2018, Information technology — Programming languages — Fortran — Part 1:
Base language.

ISO/IEC 1989:2002, Information technology — Programming languages — COBOL.

ISO/TEC 3166-1:2006, Codes for the representation of names of countries and their subdivisions —
Part 1: Country Codes.

ISO/IEC 6429:1992, Information technology — Control functions for coded graphic character sets.

7 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

ISO 8601:2004, Data elements and interchange formats — Information interchange —
Representation of dates and times.

ISO/TEC 8859-1:1998, Information technology — 8-bit single-byte coded graphic character sets —
Part 1: Latin alphabet No. 1.

ISO/IEC 9899:2011, Information technology — Programming languages — C.
ISO/TEC 10646:2017, Information technology — Universal Coded Character Set (UCS).
ISO/TEC 14882:2011, Information technology — Programming languages — C++.

ISO/TIEC TR 19769:2004, Information technology — Programming languages, their environments
and system software interfaces — Extensions for the programming language C to support new
character data types.

1.3 Terms and Definitions

Terms are defined throughout this International Standard, indicated by ifalic type. Terms explicitly
defined in this International Standard are not to be presumed to refer implicitly to similar terms
defined elsewhere. Mathematical terms not defined in this International Standard are to be interpreted
according to the CRC Concise Encyclopedia of Mathematics, Second Edition. Other terms not defined
in this International Standard are to be interpreted according to the Webster's Third New International
Dictionary of the English Language. Informal descriptions of some terms are also given in Annex N,
“Glossary”.

© ISO/IEC 2021 — All rights reserved 8

ISO/IEC 8652:DIS

2 Lexical Elements

The text of a program consists of the texts of one or more compilations. The text of a compilation is a
sequence of lexical elements, each composed of characters; the rules of composition are given in this
clause. Pragmas, which provide certain information for the compiler, are also described in this clause.

2.1 Character Set

The character repertoire for the text of an Ada program consists of the entire coding space described
by the ISO/IEC 10646:2017 Universal Coded Character Set. This coding space is organized in planes,
each plane comprising 65536 characters.

Syntax

A character is defined by this International Standard for each cell in the coding space described
by ISO/IEC 10646:2017, regardless of whether or not ISO/IEC 10646:2017 allocates a character
to that cell.

Static Semantics

The coded representation for characters is implementation defined (it need not be a representation
defined within ISO/IEC 10646:2017). A character whose relative code point in its plane is 16#FFFE#
or 16#FFFF# is not allowed anywhere in the text of a program. The only characters allowed outside of
comments are those in categories other_format, format_effector, and graphic_character.

The semantics of an Ada program whose text is not in Normalization Form C (as defined by Clause
21 of ISO/IEC 10646:2017) is implementation defined.

The description of the language definition in this International Standard uses the character properties
General Category, Simple Uppercase Mapping, Uppercase Mapping, and Special Case Condition of
the documents referenced by Clause 2 of ISO/IEC 10646:2017. The actual set of graphic symbols
used by an implementation for the visual representation of the text of an Ada program is not specified.
Characters are categorized as follows:

letter_uppercase
Any character whose General Category is defined to be “Letter, Uppercase”.

letter_lowercase
Any character whose General Category is defined to be “Letter, Lowercase”.

letter_titlecase
Any character whose General Category is defined to be “Letter, Titlecase”.

letter_modifier
Any character whose General Category is defined to be “Letter, Modifier”.

letter_other
Any character whose General Category is defined to be “Letter, Other”.

mark_non_spacing
Any character whose General Category is defined to be “Mark, Non-Spacing”.

mark_spacing_combining
Any character whose General Category is defined to be “Mark, Spacing Combining”.

number_decimal
Any character whose General Category is defined to be “Number, Decimal”.

number_letter
Any character whose General Category is defined to be “Number, Letter”.

9 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

punctuation_connector
Any character whose General Category is defined to be “Punctuation, Connector”.

other_format
Any character whose General Category is defined to be “Other, Format”.

separator_space
Any character whose General Category is defined to be “Separator, Space”.

separator_line
Any character whose General Category is defined to be “Separator, Line”.

separator_paragraph
Any character whose General Category is defined to be “Separator, Paragraph”.

format_effector
The characters whose code points are 16#09# (CHARACTER TABULATION), 16#0A#
(LINE FEED), 16#0B# (LINE TABULATION), 16#0C# (FORM FEED), 16#0D#
(CARRIAGE RETURN), 16#85# (NEXT LINE), and the characters in categories
separator_line and separator_paragraph.

other_control
Any character whose General Category is defined to be “Other, Control”, and which is
not defined to be a format_effector.

other_private_use
Any character whose General Category is defined to be “Other, Private Use”.

other_surrogate
Any character whose General Category is defined to be “Other, Surrogate”.

graphic_character
Any character that is not in the categories other_control, other_ private_use,
other_surrogate, format_effector, and whose relative code point in its plane is neither
16#FFFE# nor 16#FFFF#.

© ISO/IEC 2021 — All rights reserved 10

ISO/IEC 8652:DIS

The following names are used when referring to certain characters (the first name is that given in

ISO/IEC 10646:2017):

graphic symbol name graphic symbol name
" quotation mark : colon
number sign ; semicolon
& ampersand < less-than sign
' apostrophe, tick = equals sign
(left parenthesis > greater-than sign
) right parenthesis B low line, underline
* asterisk, multiply | vertical line
+ plus sign / solidus, divide
, comma ! exclamation point
- hyphen-minus, minus % percent sign
. full stop, dot, point [left square bracket
@ commercial at, at sign] right square bracket

Implementation Requirements

An Ada implementation shall accept Ada source code in UTF-8 encoding, with or without a BOM
(see A.4.11), where every character is represented by its code point. The character pair CARRIAGE
RETURN/LINE FEED (code points 16#0D# 16#0A#) signifies a single end of line (see 2.2); every
other occurrence of a format_effector other than the character whose code point position is 16#09#
(CHARACTER TABULATION) also signifies a single end of line.

Implementation Permissions

The categories defined above, as well as case mapping and folding, may be based on an
implementation-defined version of ISO/IEC 10646 (2003 edition or later).

NOTES
1 The characters in categories other_control, other_private_use, and other_surrogate are only allowed in comments.

2.2 Lexical Elements, Separators, and Delimiters

Static Semantics

The text of a program consists of the texts of one or more compilations. The text of each compilation
is a sequence of separate lexical elements. Each lexical element is formed from a sequence of
characters, and is ecither a delimiter, an identifier, a reserved word, a numeric_literal, a
character_literal, a string_literal, or a comment. The meaning of a program depends only on the
particular sequences of lexical elements that form its compilations, excluding comments.

The text of a compilation is divided into /ines. In general, the representation for an end of line is
implementation defined. However, a sequence of one or more format_effectors other than the
character whose code point is 16#09# (CHARACTER TABULATION) signifies at least one end of
line.

In some cases an explicit separator is required to separate adjacent lexical elements. A separator is
any of a separator_space, a format_effector, or the end of a line, as follows:

e A separator_space is a separator except within a comment, a string_literal, or a
character_literal.

e The character whose code point is 16#09# (CHARACTER TABULATION) is a separator
except within a comment.

e The end of a line is always a separator.

1 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

One or more separators are allowed between any two adjacent lexical elements, before the first of
each compilation, or after the last. At least one separator is required between an identifier, a reserved
word, or a numeric_literal and an adjacent identifier, reserved word, or numeric_literal.

One or more other_format characters are allowed anywhere that a separator is; any such characters
have no effect on the meaning of an Ada program.

A delimiter is either one of the following characters:
&' () +, - /< =>@T]|

or one of the following compound delimiters each composed of two adjacent special characters
= | k= = >= <= << >> <>

Each of the special characters listed for single character delimiters is a single delimiter except if this
character is used as a character of a compound delimiter, or as a character of a comment,
string_literal, character _literal, or numeric_literal.

The following names are used when referring to compound delimiters:

delimiter name
=> arrow
double dot
ok double star, exponentiate

= assignment (pronounced: “becomes”)

/= inequality (pronounced: “not equal’)
>= greater than or equal

<= less than or equal

<< left label bracket

>> right label bracket

< box

Implementation Requirements

An implementation shall support lines of at least 200 characters in length, not counting any characters
used to signify the end of a line. An implementation shall support lexical elements of at least 200
characters in length. The maximum supported line length and lexical element length are
implementation defined.

2.3 Identifiers

Identifiers are used as names.

Syntax

identifier ::=
identifier_start {identifier_start | identifier_extend}

identifier_start ::=
letter_uppercase
| letter_lowercase

| letter_titlecase

| letter_modifier

© ISO/IEC 2021 — All rights reserved 12

ISO/IEC 8652:DIS

| letter_other
| number_letter

identifier_extend ::=
mark_non_spacing
| mark_spacing_combining
| number_decimal
| punctuation_connector

An identifier shall not contain two consecutive characters in category punctuation_connector, or
end with a character in that category.
Legality Rules
An identifier shall only contain characters that may be present in Normalization Form KC (as defined
by Clause 21 of ISO/IEC 10646:2017).

Static Semantics

Two identifiers are considered the same if they consist of the same sequence of characters after
applying locale-independent simple case folding, as defined by documents referenced in Clause 2 of
ISO/IEC 10646:2017.

After applying simple case folding, an identifier shall not be identical to a reserved word.

Implementation Permissions

In a nonstandard mode, an implementation may support other upper/lower case equivalence rules for
identifiers, to accommodate local conventions.

NOTES
2 ldentifiers differing only in the use of corresponding upper and lower case letters are considered the same.

Examples
Examples of identifiers:
Count X Get_ Symbol Ethelyn Marion
Snobol 4 X1 Page Count Store Next Item
A& TOV -- Plato
Yavikosckuin -- Tchaikovsky
0 o - - Angles

2.4 Numeric Literals

There are two kinds of numeric_literals, real literals and integer literals. A real literal is a
numeric_literal that includes a point; an integer literal is a numeric_literal without a point.

Syntax
numeric_literal ::= decimal_literal | based_literal

NOTES
3 The type of an integer literal is universal_integer. The type of a real literal is universal_real.

2.4.1 Decimal Literals

A decimal_literal is a numeric_literal in the conventional decimal notation (that is, the base is ten).

Syntax
decimal_literal ::= numeral [.numeral] [exponent]

numeral ::= digit {[underline] digit}

13 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

exponent ::= E [+] numeral | E — numeral
digit::=0]1]2]3|4|5]16]7]8]9
An exponent for an integer literal shall not have a minus sign.

Static Semantics

An underline character in a numeric_literal does not affect its meaning. The letter E of an exponent
can be written either in lower case or in upper case, with the same meaning.

An exponent indicates the power of ten by which the value of the decimal_literal without the
exponent is to be multiplied to obtain the value of the decimal_literal with the exponent.

Examples
Examples of decimal literals:
12 0 1E6 123 456 - - integer literals
12.0 0.0 0.456 3.14159_ 26 -- real literals

2.4.2 Based Literals

A based_literal is a numeric_literal expressed in a form that specifies the base explicitly.

Syntax

based_literal ::=
base # based_numeral [.based_numeral] # [exponent]

base ::= numeral

based_numeral ::=
extended_digit {[underline] extended_digit}

extended_digit ::= digit| A |B|C|D|E|F

Legality Rules

The base (the numeric value of the decimal numeral preceding the first #) shall be at least two and at
most sixteen. The extended_digits A through F represent the digits ten through fifteen, respectively.
The value of each extended_digit of a based_literal shall be less than the base.

Static Semantics

The conventional meaning of based notation is assumed. An exponent indicates the power of the base
by which the value of the based_literal without the exponent is to be multiplied to obtain the value of
the based_literal with the exponent. The base and the exponent, if any, are in decimal notation.

The extended_digits A through F can be written either in lower case or in upper case, with the same
meaning.

Examples
Examples of based literals:
2#1111 1111# 16#FF# 0l6#Off# - - integer literals of value 255
16H#EH#EL 2#1110_0000# - - integer literals of value 224
16#F.FF#E+2 2#1.1111_1111 1110#E11 -- real literals of value 4095.0

2.5 Character Literals

A character_literal is formed by enclosing a graphic character between two apostrophe characters.

© ISO/IEC 2021 — All rights reserved 14

ISO/IEC 8652:DIS

Syntax

character_literal ::= 'graphic_character'

NOTES
4 A character_literal is an enumeration literal of a character type. See 3.5.2.

Examples
Examples of character literals:
1 Al T %1 LI} 1 1
'L’ "I 'N! - - Various els.
ool 'R - - Big numbers - infinity and aleph.

2.6 String Literals

A string_literal is formed by a sequence of graphic characters (possibly none) enclosed between two
quotation marks used as string brackets. They are used to represent operator_symbols (see 6.1),
values of a string type (see 4.2), and array subaggregates (see 4.3.3).

Syntax
string_literal ::= "{string_element}"
string_element ::="" | non_quotation_mark_graphic_character
A string_element is either a pair of quotation marks (""), or a single graphic_character other
than a quotation mark.
Static Semantics

The sequence of characters of a string_literal is formed from the sequence of string_elements
between the bracketing quotation marks, in the given order, with a string_element that is "" becoming
a single quotation mark in the sequence of characters, and any other string_element being reproduced
in the sequence.

A null string literal is a string_literal with no string_elements between the quotation marks.

NOTES
5 An end of line cannot appear in a string_literal.

6 No transformation is performed on the sequence of characters of a string_literal.

Examples

Examples of string literals:
"Message of the day:"

nn - - a null string literal
o npmn URIRIN] - - three string literals of length 1

"Characters such as $, %, and } are allowed in string literals"

"Archimedes said ""EGpnka"""
"Wolume of cylinder (mr2h) = "

2.7 Comments

A comment starts with two adjacent hyphens and extends up to the end of the line.

Syntax
comment ::= --{non_end_of line_character}

A comment may appear on any line of a program.

15 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

Static Semantics

The presence or absence of comments has no influence on whether a program is legal or illegal.
Furthermore, comments do not influence the meaning of a program; their sole purpose is the
enlightenment of the human reader.

Examples

Examples of comments:

- - the last sentence above echoes the Algol 68 report
end; -- processing of Line is complete

-- along comment may be split onto
- - two or more consecutive lines

———————————————— the first two hyphens start the comment

2.8 Pragmas

A pragma is a compiler directive. There are language-defined pragmas that give instructions for
optimization, listing control, etc. An implementation may support additional (implementation-defined)
pragmas.

Syntax

pragma ::=
pragma identifier [(pragma_argument_association {, pragma_argument_association})];

pragma_argument_association ::=
[pragma_argument identifier =>] name
| [pragma_argument_identifier =>] expression
| pragma_argument aspect_mark => name
| pragma_argument aspect_mark => expression

In a pragma, any pragma_argument_associations without a pragma_argument identifier or
pragma_argument_aspect_mark shall precede any associations with a
pragma_argument_identifier or pragma_argument _aspect_mark.

Pragmas are only allowed at the following places in a program:

e After a semicolon delimiter, but not within a formal_part, discriminant_part, or
declare_expression.

e At any place where the syntax rules allow a construct defined by a syntactic category
whose name ends with “declaration”, “item”, “statement”, “clause”, or “alternative”, or
one of the syntactic categories variant or exception_handler; but not in place of such a
construct if the construct is required, or is part of a list that is required to have at least one
such construct.

e In place of a statement in a sequence_of statements.
e At any place where a compilation_unit is allowed.
Additional syntax rules and placement restrictions exist for specific pragmas.

The name of a pragma is the identifier following the reserved word pragma. The name or
expression of a pragma_argument_association is a pragma argument.

An identifier specific to a pragma is an identifier or reserved word that is used in a pragma argument
with special meaning for that pragma.

© ISO/IEC 2021 — All rights reserved 16

ISO/IEC 8652:DIS

Static Semantics

If an implementation does not recognize the name of a pragma, then it has no effect on the semantics
of the program. Inside such a pragma, the only rules that apply are the Syntax Rules.

Dynamic Semantics

Any pragma that appears at the place of an executable construct is executed. Unless otherwise
specified for a particular pragma, this execution consists of the evaluation of each evaluable pragma
argument in an arbitrary order.

Implementation Requirements

The implementation shall give a warning message for an unrecognized pragma name.

Implementation Permissions

An implementation may provide implementation-defined pragmas; the name of an implementation-
defined pragma shall differ from those of the language-defined pragmas.

An implementation may ignore an unrecognized pragma even if it violates some of the Syntax Rules,
if detecting the syntax error is too complex.
Implementation Advice

Normally, implementation-defined pragmas should have no semantic effect for error-free programs;
that is, if the implementation-defined pragmas in a working program are replaced with unrecognized
pragmas, the program should still be legal, and should still have the same semantics.

Normally, an implementation should not define pragmas that can make an illegal program legal,
except as follows:

e A pragma used to complete a declaration;
e A pragma used to configure the environment by adding, removing, or replacing
library_items.
Syntax
The forms of List, Page, and Optimize pragmas are as follows:
pragma List(identifier);
pragma Page;
pragma Optimize(identifier);
Other pragmas are defined throughout this International Standard, and are summarized in Annex
L.
Static Semantics

A pragma List takes one of the identifiers On or Off as the single argument. This pragma is allowed
anywhere a pragma is allowed. It specifies that listing of the compilation is to be continued or
suspended until a List pragma with the opposite argument is given within the same compilation. The
pragma itself is always listed if the compiler is producing a listing.

A pragma Page is allowed anywhere a pragma is allowed. It specifies that the program text which
follows the pragma should start on a new page (if the compiler is currently producing a listing).

A pragma Optimize takes one of the identifiers Time, Space, or Off as the single argument. This
pragma is allowed anywhere a pragma is allowed, and it applies until the end of the immediately
enclosing declarative region, or for a pragma at the place of a compilation_unit, to the end of the
compilation. It gives advice to the implementation as to whether time or space is the primary

17 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

optimization criterion, or that optional optimizations should be turned off. It is implementation
defined how this advice is followed.

Examples of pragmas:

pragma List (Off) ;
pragma Optimize (Off) ;
pragma Assertion_ Policy (Check) ;

pragma Assert (Exists (File Name),

Message => "Nonexistent file");

2.9 Reserved Words

- - turn off listing generation
- - turn off optional optimizations
- - check assertions

- - assert file exists

The following are the reserved words. Within a program, some or all of the letters of a reserved
word may be in upper case.

abort
abs
abstract
accept
access
aliased
all

and
array

at

begin
body

case
constant

declare
delay
delta
digits
do

NOTES

else

elsif

end

entry
exception
exit

for

function

generic
goto

if

in
interface
is
limited
loop

mod

new
not
null

of

or

others

out
overriding

package
parallel
pragma
private
procedure
protected

raise
range
record
rem
renames
requeue

return
reverse

select
separate
some
subtype
synchronized

tagged
task
terminate
then

type

until
use

when
while
with

Xxor

7 The reserved words appear in lower case boldface in this International Standard, except when used in the
designator of an attribute (see 4.1.4). Lower case boldface is also used for a reserved word in a string_literal used as an
operator_symbol. This is merely a convention — programs may be written in whatever typeface is desired and

available.

© ISO/IEC 2021 — All rights reserved

18

ISO/IEC 8652:DIS

3 Declarations and Types

This clause describes the types in the language and the rules for declaring constants, variables, and
named numbers.

3.1 Declarations

The language defines several kinds of named entities that are declared by declarations. The entity's
name is defined by the declaration, usually by a defining_identifier, but sometimes by a defining_-
character_literal or defining_operator_symbol. There are also entities that are not directly declared,;
some of these are elements of other entities, or are allocated dynamically. Such entities can be denoted
using indexed_component, selected_component, or dereference names (see 4.1).

There are several forms of declaration. A basic_declaration is a form of declaration defined as
follows.

Syntax
basic_declaration ::=

type_declaration | subtype_declaration
| object_declaration | number_declaration
| subprogram_declaration | abstract_subprogram_declaration
| null_procedure_declaration | expression_function_declaration
| package_declaration | renaming_declaration
| exception_declaration | generic_declaration

| generic_instantiation
defining_identifier ::= identifier
Static Semantics

A declaration is a language construct that associates a name with (a view of) an entity. A declaration
may appear explicitly in the program text (an explicit declaration), or may be supposed to occur at a
given place in the text as a consequence of the semantics of another construct (an implicit
declaration).

Each of the following is defined to be a declaration: any basic_declaration; an enumeration_literal_-
specification; a discriminant_specification; a component_declaration; a defining_identifier of an
iterated_component_association; a loop_parameter_specification; a defining_identifier of a
chunk_specification; an iterator_specification; a defining_identifier of an iterator_parameter_-
specification; a parameter_specification; a subprogram_body; an extended_return_object -
declaration; an entry_declaration; an entry_index_specification; a choice parameter -
specification; a generic_formal_parameter_declaration.

All declarations contain a definition for a view of an entity. A view consists of an identification of the
entity (the entity of the view), plus view-specific characteristics that affect the use of the entity
through that view (such as mode of access to an object, formal parameter names and defaults for a
subprogram, or visibility to components of a type). In most cases, a declaration also contains the
definition for the entity itself (a renaming_declaration is an example of a declaration that does not
define a new entity, but instead defines a view of an existing entity (see 8.5)).

When it is clear from context, the term object is used in place of view of an object. Similarly, the
terms #ype and subtype are used in place of view of a type and view of a subtype, respectively.

For each declaration, the language rules define a certain region of text called the scope of the
declaration (see 8.2). Most declarations associate an identifier with a declared entity. Within its scope,
and only there, there are places where it is possible to use the identifier to refer to the declaration, the
view it defines, and the associated entity; these places are defined by the visibility rules (see 8.3). At

19 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

such places the identifier is said to be a name of the entity (the direct_name or selector_name); the
name is said to denote the declaration, the view, and the associated entity (see 8.6). The declaration is
said to declare the name, the view, and in most cases, the entity itself.

As an alternative to an identifier, an enumeration literal can be declared with a character_literal as its
name (see 3.5.1), and a function can be declared with an operator_symbol as its name (see 6.1).

The syntax rules use the terms defining_identifier, defining_character_literal, and defining_-
operator_symbol for the defining occurrence of a name; these are collectively called defining names.
The terms direct_name and selector_name are used for usage occurrences of identifiers,
character_literals, and operator_symbols. These are collectively called usage names.

Dynamic Semantics

The process by which a construct achieves its run-time effect is called execution. This process is also
called elaboration for declarations and evaluation for expressions. One of the terms execution,
elaboration, or evaluation is defined by this International Standard for each construct that has a run-
time effect.

NOTES

1 At compile time, the declaration of an entity declares the entity. At run time, the elaboration of the declaration
creates the entity.

3.2 Types and Subtypes

Static Semantics

A type is characterized by a set of values, and a set of primitive operations which implement the
fundamental aspects of its semantics. An object of a given type is a run-time entity that contains (has)
a value of the type.

Types are grouped into categories of types. There exist several language-defined categories of types
(see NOTES below), reflecting the similarity of their values and primitive operations. Most categories
of types form classes of types. Elementary types are those whose values are logically indivisible;
composite types are those whose values are composed of component values.

The elementary types are the scalar types (discrete and real) and the access types (whose values
provide access to objects or subprograms). Discrete types are either integer types or are defined by
enumeration of their values (enumeration types). Real types are either floating point types or fixed
point types.

The composite types are the record types, record extensions, array types, interface types, task types,
and protected types.

There can be multiple views of a type with varying sets of operations. An incomplete type represents
an incomplete view (see 3.10.1) of a type with a very restricted usage, providing support for recursive
data structures. A private type or private extension represents a partial view (see 7.3) of a type,
providing support for data abstraction. The full view (see 3.2.1) of a type represents its complete
definition. An incomplete or partial view is considered a composite type, even if the full view is not.

Certain composite types (and views thereof) have special components called discriminants whose
values affect the presence, constraints, or initialization of other components. Discriminants can be
thought of as parameters of the type.

The term subcomponent is used in this International Standard in place of the term component to
indicate either a component, or a component of another subcomponent. Where other subcomponents
are excluded, the term component is used instead. Similarly, a part of an object or value is used to
mean the whole object or value, or any set of its subcomponents. The terms component,
subcomponent, and part are also applied to a type meaning the component, subcomponent, or part of
objects and values of the type.

© ISO/IEC 2021 — All rights reserved 20

ISO/IEC 8652:DIS

The set of possible values for an object of a given type can be subjected to a condition that is called a
constraint (the case of a null constraint that specifies no restriction is also included); the rules for
which values satisfy a given kind of constraint are given in 3.5 for range_constraints, 3.6.1 for
index_constraints, and 3.7.1 for discriminant_constraints. The set of possible values for an object of
an access type can also be subjected to a condition that excludes the null value (see 3.10).

A subtype of a given type is a combination of the type, a constraint on values of the type, and certain
attributes specific to the subtype. The given type is called the type of the subtype. Similarly, the
associated constraint is called the constraint of the subtype. The set of values of a subtype consists of
the values of its type that satisfy its constraint and any exclusion of the null value. Such values belong
to the subtype.

A subtype is called an unconstrained subtype if its type has unknown discriminants, or if its type
allows range, index, or discriminant constraints, but the subtype does not impose such a constraint;
otherwise, the subtype is called a constrained subtype (since it has no unconstrained characteristics).

NOTES

2 Any set of types can be called a “category” of types, and any set of types that is closed under derivation (see 3.4) can
be called a “class” of types. However, only certain categories and classes are used in the description of the rules of the
language — generally those that have their own particular set of primitive operations (see 3.2.3), or that correspond to a
set of types that are matched by a given kind of generic formal type (see 12.5). The following are examples of
“interesting” language-defined classes: elementary, scalar, discrete, enumeration, character, boolean, integer, signed
integer, modular, real, floating point, fixed point, ordinary fixed point, decimal fixed point, numeric, access, access-to-
object, access-to-subprogram, composite, array, string, (untagged) record, tagged, task, protected, nonlimited. Special
syntax is provided to define types in each of these classes. In addition to these classes, the following are examples of
“interesting” language-defined categories: abstract, incomplete, interface, limited, private, record.

These language-defined categories are organized like this:

all types
elementary
scalar
discrete
enumeration
character
boolean
other enumeration
integer
signed integer
modular integer
real
floating point
fixed point
ordinary fixed point
decimal fixed point
access
access-to-object
access-to-subprogram
composite
untagged
array
string
other array
record
task
protected
tagged (including interfaces)
nonlimited tagged record
limited tagged
limited tagged record
synchronized tagged
tagged task
tagged protected

There are other categories, such as “numeric” and “discriminated”, which represent other categorization dimensions,
but do not fit into the above strictly hierarchical picture.

21 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

3.2.1 Type Declarations
A type_declaration declares a type and its first subtype.

Syntax

type_declaration ::= full_type declaration
| incomplete_type declaration
| private_type_declaration
| private_extension_declaration

full_type_declaration ::=
type defining_identifier [known_discriminant_part] is type_definition
[aspect_specification];
| task_type_declaration
| protected_type_declaration

type_definition ::=
enumeration_type_definition | integer_type_definition

| real_type_definition | array_type_definition

| record_type_definition | access_type_definition

| derived_type_definition | interface_type_definition
Legality Rules

A given type shall not have a subcomponent whose type is the given type itself.

Static Semantics

The defining_identifier of a type_declaration denotes the first subtype of the type. The known_-
discriminant_part, if any, defines the discriminants of the type (see 3.7, “Discriminants”). The
remainder of the type_declaration defines the remaining characteristics of (the view of) the type.

A type defined by a type_declaration is a named type; such a type has one or more nameable
subtypes. Certain other forms of declaration also include type definitions as part of the declaration for
an object. The type defined by such a declaration is anonymous — it has no nameable subtypes. For
explanatory purposes, this International Standard sometimes refers to an anonymous type by a
pseudo-name, written in italics, and uses such pseudo-names at places where the syntax normally
requires an identifier. For a named type whose first subtype is T, this International Standard
sometimes refers to the type of T as simply “the type T

A named type that is declared by a full_type_declaration, or an anonymous type that is defined by an
access_definition or as part of declaring an object of the type, is called a full type. The declaration of
a full type also declares the full view of the type. The type_definition, task_definition, protected_-
definition, or access_definition that defines a full type is called a full type definition. Types declared
by other forms of type_declaration are not separate types; they are partial or incomplete views of
some full type.

The definition of a type implicitly declares certain predefined operators that operate on the type,
according to what classes the type belongs, as specified in 4.5, “Operators and Expression
Evaluation”.

The predefined types (for example the types Boolean, Wide Character, Integer, root integer, and
universal_integer) are the types that are defined in a predefined library package called Standard; this
package also includes the (implicit) declarations of their predefined operators. The package Standard
is described in A.1.

© ISO/IEC 2021 — All rights reserved 22

ISO/IEC 8652:DIS

Dynamic Semantics

The elaboration of a full_type_declaration consists of the elaboration of the full type definition. Each
elaboration of a full type definition creates a distinct type and its first subtype.

Examples

Examples of type definitions:

(White, Red, Yellow, Green, Blue, Brown, Black)
range 1 .. 72
array(l1 .. 10) of Integer

Examples of type declarations:
type Color is (White, Red, Yellow, Green, Blue, Brown, Black);

type Column is range 1 .. 72;
type Table 1is array(l .. 10) of Integer;
NOTES

3 Each of the above examples declares a named type. The identifier given denotes the first subtype of the type. Other
named subtypes of the type can be declared with subtype_declarations (see 3.2.2). Although names do not directly
denote types, a phrase like “the type Column” is sometimes used in this International Standard to refer to the type of
Column, where Column denotes the first subtype of the type. For an example of the definition of an anonymous type,
see the declaration of the array Color_Table in 3.3.1; its type is anonymous — it has no nameable subtypes.

3.2.2 Subtype Declarations
A subtype _declaration declares a subtype of some previously declared type, as defined by a
subtype_indication.

Syntax

subtype_declaration ::=
subtype defining_identifier is subtype_indication
[aspect_specification];

subtype_indication ::= [null_exclusion] subtype mark [constraint]
subtype_mark ::= subtype_name
constraint ::= scalar_constraint | composite_constraint

scalar_constraint ::=
range_constraint | digits_constraint | delta_constraint

composite_constraint ::=
index_constraint | discriminant_constraint

Name Resolution Rules

A subtype_mark shall resolve to denote a subtype. The type determined by a subtype_mark is the
type of the subtype denoted by the subtype_mark.

Dynamic Semantics

The elaboration of a subtype_declaration consists of the elaboration of the subtype_indication. The
elaboration of a subtype_indication creates a new subtype. If the subtype_indication does not include
a constraint, the new subtype has the same (possibly null) constraint as that denoted by the
subtype_mark. The elaboration of a subtype indication that includes a constraint proceeds as
follows:

e The constraint is first elaborated.

e A check is then made that the constraint is compatible with the subtype denoted by the
subtype_mark.

23 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

The condition imposed by a constraint is the condition obtained after elaboration of the constraint.
The rules defining compatibility are given for each form of constraint in the appropriate subclause.
These rules are such that if a constraint is compatible with a subtype, then the condition imposed by
the constraint cannot contradict any condition already imposed by the subtype on its values. The
exception Constraint_Error is raised if any check of compatibility fails.

NOTES

4 A scalar_constraint may be applied to a subtype of an appropriate scalar type (see 3.5, 3.5.9, and J.3), even if the

subtype is already constrained. On the other hand, a composite_constraint may be applied to a composite subtype (or
an access-to-composite subtype) only if the composite subtype is unconstrained (see 3.6.1 and 3.7.1).

Examples

Examples of subtype declarations:
subtype Rainbow is Color range Red .. Blue; -- see3.2.1
subtype Red Blue is Rainbow;
subtype Int is Integer;
subtype Small Int is Integer range -10 .. 10;
subtype Up To K is Column range 1 .. K; -- see3.2.1
subtype Square is Matrix(1 .. 10, 1 .. 10); -- see 3.6
subtype Male is Person(Sex => M) ; -- see 3.10.1
subtype Binop Ref is not null Binop Ptr; -- see3.10

3.2.3 Classification of Operations

Static Semantics

An operation operates on a type T if it yields a value of type 7, if it has an operand whose expected
type (see 8.6) is 7, or if it has an access parameter or access result type (see 6.1) designating 7. A
predefined operator, or other language-defined operation such as assignment or a membership test,
that operates on a type, is called a predefined operation of the type. The primitive operations of a type
are the predefined operations of the type, plus any user-defined primitive subprograms.

The primitive subprograms of a specific type are defined as follows:
e The predefined operators of the type (see 4.5);
e For a derived type, the inherited (see 3.4) user-defined subprograms;

e For an enumeration type, the enumeration literals (which are considered parameterless
functions — see 3.5.1);

e For a specific type declared immediately within a package_specification, any subprograms
(in addition to the enumeration literals) that are explicitly declared immediately within the
same package_specification and that operate on the type;

e For a specific type with an explicitly declared primitive
Boolean, the corresponding "/=" operator (see 6.6);

operator whose result type is

e For a nonformal type, any subprograms not covered above that are explicitly declared
immediately within the same declarative region as the type and that override (see 8.3) other
implicitly declared primitive subprograms of the type.

A primitive subprogram whose designator is an operator_symbol is called a primitive operator.

3.2.4 Subtype Predicates

The language-defined predicate aspects Static_Predicate and Dynamic Predicate may be used to
define properties of subtypes. A predicate specification is an aspect_specification for one of the two
predicate aspects. General rules for aspects and aspect_specifications are found in Clause 13 (13.1
and 13.1.1 respectively). The predicate aspects are assertion aspects (see 11.4.2). The predicate
aspects are not inherited, but their effects are additive, as defined below.

© ISO/IEC 2021 — All rights reserved 24

ISO/IEC 8652:DIS

Name Resolution Rules

The expected type for a predicate aspect expression is any boolean type.

Static Semantics
A predicate specification may be given on a type_declaration or a subtype_declaration, and applies
to the declared subtype. In addition, predicate specifications apply to certain other subtypes:
e For a (first) subtype defined by a type declaration, any predicates of parent or progenitor
subtypes apply.
e For a subtype created by a subtype_indication, the predicate of the subtype denoted by the
subtype_mark applies.
Predicate checks are defined to be enabled or disabled for a given subtype as follows:

e If a subtype is declared by a type_declaration or subtype_declaration that includes a
predicate specification, then:

e if performing checks is required by the Static_Predicate assertion policy (see 11.4.2) and

the declaration includes a Static_Predicate specification, then predicate checks are
enabled for the subtype;

e if performing checks is required by the Dynamic Predicate assertion policy (see 11.4.2)
and the declaration includes a Dynamic_Predicate specification, then predicate checks are
enabled for the subtype;

e otherwise, predicate checks are disabled for the subtype, regardless of whether predicate
checking is enabled for any other subtypes mentioned in the declaration;

e If a subtype is defined by a type declaration that does not include a predicate specification,
then predicate checks are enabled for the subtype if and only if any predicate checks are
enabled for parent or progenitor subtypes;

e If a subtype is created by a subtype_indication other than in one of the previous cases, then
predicate checks are enabled for the subtype if and only if predicate checks are enabled for
the subtype denoted by the subtype mark;

e Otherwise, predicate checks are disabled for the given subtype.

For a subtype with a directly-specified predicate aspect, the following additional language-defined
aspect may be specified with an aspect_specification (see 13.1.1):

Predicate Failure
This aspect shall be specified by an expression, which determines the action to be
performed when a predicate check fails because a directly-specified predicate aspect of
the subtype evaluates to False, as explained below.

Name Resolution Rules

The expected type for the Predicate Failure expression is String.

Legality Rules
The expression of a Static Predicate specification shall be predicate-static; that is, one of the
following:

e a static expression;

a membership test whose fested simple_expression is the current instance, and whose
membership_choice_list meets the requirements for a static membership test (see 4.9);

e a case_expression whose selecting expression is the current instance, and whose
dependent _expressions are static expressions;

e acall to a predefined equality or ordering operator, where one operand is the current instance,
and the other is a static expression;

25 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

e a call to a predefined boolean operator and, or, xor, or not, where each operand is predicate-
static;

e a short-circuit control form where both operands are predicate-static; or
e a parenthesized predicate-static expression.
A predicate shall not be specified for an incomplete subtype.

If a predicate applies to a subtype, then that predicate shall not mention any other subtype to which
the same predicate applies.

An index subtype, discrete_range of an index_constraint or slice, or a discrete_subtype_definition
of a constrained_array_definition, entry_declaration, or entry_index_specification shall not denote
a subtype to which predicate specifications apply.

The prefix of an attribute_reference whose attribute_designator is First, Last, or Range shall not
denote a scalar subtype to which predicate specifications apply.

The discrete_subtype definition of a loop_parameter_specification shall not denote a nonstatic
subtype to which predicate specifications apply or any subtype to which Dynamic Predicate
specifications apply.

The discrete_choice of a named_array_aggregate shall not denote a nonstatic subtype to which
predicate specifications apply.

In addition to the places where Legality Rules normally apply (see 12.3), these rules apply also in the
private part of an instance of a generic unit.

Dynamic Semantics

If any of the above Legality Rules is violated in an instance of a generic unit, Program_Error is raised
at the point of the violation.

To determine whether a value satisfies the predicates of a subtype S, the following tests are performed
in the following order, until one of the tests fails, in which case the predicates are not satisfied and no
further tests are performed, or all of the tests succeed, in which case the predicates are satisfied:

o the value is first tested to determine whether it satisfies any constraints or any null exclusion
of S;

e then:
e if Sis a first subtype, the value is tested to determine whether it satisfies the predicates of

the parent and progenitor subtypes (if any) of S (in an arbitrary order), after a (view)
conversion of the value to the corresponding parent or progenitor type;

e if S is defined by a subtype_indication, the value is tested to determine whether it
satisfies the predicates of the subtype denoted by the subtype mark of the
subtype_indication;

e finally, if S is defined by a declaration to which one or more predicate specifications apply,
the predicates are evaluated (in an arbitrary order) to test that all of them yield True for the
given value.

If predicate checks are enabled for a given subtype, then:

On a subtype conversion, a check is performed that the operand satisfies the predicates of the
target subtype, except for certain view conversions (see 4.6). In addition, after normal
completion and leaving of a subprogram, for each in out or out parameter that is passed by
reference, a check is performed that the value of the parameter satisfies the predicates of the
subtype of the actual. For an object created by an object_declaration with no explicit
initialization expression, or by an uninitialized allocator, if the types of any parts have
specified Default Value or Default Component Value aspects, or any subcomponents have

© ISO/IEC 2021 — All rights reserved 26

ISO/IEC 8652:DIS

default_expressions, a check is performed that the value of the created object satisfies the
predicates of the nominal subtype.

If any of the predicate checks fail, Assertion Error is raised, unless the subtype whose
directly-specified predicate aspect evaluated to False also has a directly-specified
Predicate Failure aspect. In that case, the specified Predicate Failure expression is
evaluated; if the evaluation of the Predicate Failure expression propagates an exception
occurrence, then this occurrence is propagated for the failure of the predicate check;
otherwise, Assertion Error is raised, with an associated message string defined by the value
of the Predicate Failure expression. In the absence of such a Predicate Failure aspect, an
implementation-defined message string is associated with the Assertion_Error exception.

NOTES
5 A predicate specification does not cause a subtype to be considered constrained.

6 A Static_Predicate, like a constraint, always remains True for all objects of the subtype, except in the case of
uninitialized variables and other invalid values. A Dynamic Predicate, on the other hand, is checked as specified
above, but can become False at other times. For example, the predicate of a record subtype is not checked when a
subcomponent is modified.

7 No predicates apply to the base subtype of a scalar type; every value of a scalar type T is considered to satisfy the
predicates of T'Base.

8 Predicate Failure expressions are never evaluated during the evaluation of a membership test (see 4.5.2) or Valid
attribute (see 13.9.2).

9 A Predicate Failure expression can be a raise_expression (see 11.3).

Examples
Examples of predicates applied to scalar types:
subtype Basic Letter is Character -- SeeA.3.2for "basic letter".
with Static Predicate => Basic Letter im 'A'..'Z' | 'a'..'z' | 'E'
- lgl | p! | 3 | 1! | lpl | R

subtype Even Integer is Integer
with Dynamic_ Predicate => Even Integer mod 2 = 0,
Predicate Failure => "Even Integer must be a multiple of 2";

Text 10 (see A.10.1) could have used predicates to describe some common exceptional conditions as
follows:

with Ada.IO_Exceptions;
package Ada.Text IO is

type File Type is limited private;

subtype Open File Type is File Type
with Dynamic_Predicate => Is Open (Open_File Type),
Predicate Failure => raise Status_ Error with "File not open";
subtype Input File Type is Open File Type
with Dynamic_Predicate => Mode (Input_File Type) = In File,
Predicate Failure => raise Mode Error with "Cannot read file: "
& Name (Input_ File Type) ;
subtype Output File Type is Open File Type
with Dynamic Predicate => Mode (Output File Type) /= In File,
Predicate_Failure => raise Mode_ Error with "Cannot write file: "
& Name (Output File Type) ;

function Mode (File : in Open File Type) return File Mode;
function Name (File : in Open File Type) return String;
function Form (File : in Open File Type) return String;

procedure Get (File : in Input File Type; Item : out Character);

procedure Put (File : in Output File Type; Item : in Character) ;

-~ Similarly for all of the other input and output subprograms.

27 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

3.3 Objects and Named Numbers

Objects are created at run time and contain a value of a given type. An object can be created and
initialized as part of elaborating a declaration, evaluating an allocator, aggregate, or function_call, or
passing a parameter by copy. Prior to reclaiming the storage for an object, it is finalized if necessary
(see 7.6.1).
Static Semantics

All of the following are objects:

o the entity declared by an object_declaration;

e a formal parameter of a subprogram, entry, or generic subprogram;

e a generic formal object;

e aloop parameter;

¢ the index parameter of an iterated_component_association;

o the chunk parameter of a chunk_specification;

e a choice parameter of an exception_handler;

e an entry index of an entry_body;

o the result of dereferencing an access-to-object value (see 4.1);

o the return object of a function;

o the result of evaluating an aggregate;

¢ a value conversion or qualified_expression whose operand denotes an object;

e a component, slice, or view conversion of another object.

An object is either a constant object or a variable object. Similarly, a view of an object is either a
constant or a variable. All views of a constant elementary object are constant. All views of a constant
composite object are constant, except for parts that are of controlled or immutably limited types;
variable views of those parts and their subcomponents may exist. In this sense, objects of controlled
and immutably limited types are inherently mutable. A constant view of an object cannot be used to
modify its value. The terms constant and variable by themselves refer to constant and variable views
of objects.

A constant object is known to have no variable views if it does not have a part that is immutably
limited, or of a controlled type, private type, or private extension.

The value of an object is read when the value of any part of the object is evaluated, or when the value
of an enclosing object is evaluated. The value of a variable is updated when an assignment is
performed to any part of the variable, or when an assignment is performed to an enclosing object.

Whether a view of an object is constant or variable is determined by the definition of the view. The
following (and no others) represent variables:

e an object declared by an object_declaration without the reserved word constant;

¢ a formal parameter of mode in out or out;

e a generic formal object of mode in out;

¢ anon-discriminant component of a variable;

e aslice of a variable;

¢ a loop parameter that is specified to be a variable for a generalized loop (see 5.5.2);

e aview conversion of a variable;

© ISO/IEC 2021 — All rights reserved 28

ISO/IEC 8652:DIS

e a dereference of an access-to-variable value;

e the return object declared by an extended_return_statement without the reserved word
constant;

o the current instance of a type other than a protected type, if the current instance is an object
and not a value (see 8.6);

e the current instance of a protected unit except within the body of a protected function of that
protected unit, or within a function declared immediately within the body of the protected
unit;

e an attribute_reference where the attribute is defined to denote a variable (for example, the
Storage Pool attribute — see 13.11).

At the place where a view of an object is defined, a nominal subtype is associated with the view. The
nominal type of a view is the type of the nominal subtype of the view. The object's actual subtype
(that is, its subtype) can be more restrictive than the nominal subtype of the view; it always is more
restrictive if the nominal subtype is an indefinite subtype. A subtype is an indefinite subtype if it is an
unconstrained array subtype, or if it has unknown discriminants or unconstrained discriminants
without defaults (see 3.7); otherwise, the subtype is a definite subtype (all elementary subtypes are
definite subtypes). A class-wide subtype is defined to have unknown discriminants, and is therefore
an indefinite subtype. An indefinite subtype does not by itself provide enough information to create an
object; an additional constraint or explicit initialization expression is necessary (see 3.3.1). A
component cannot have an indefinite nominal subtype.

A view of a composite object is known to be constrained if:

e its nominal subtype is constrained and not an untagged partial view, and it is neither a value
conversion nor a qualified_expression; or

e its nominal subtype is indefinite; or

e its type is immutably limited (see 7.5); or

e it is part of a stand-alone constant (including a generic formal object of mode in); or
e it is part of a formal parameter of mode in; or

e it is part of the object denoted by a function_call or aggregate; or

e it is a value conversion or qualified_expression where the operand denotes a view of a
composite object that is known to be constrained; or

e it is part of a constant return object of an extended_return_statement; or

e it is a dereference of a pool-specific access type, and there is no ancestor of its type that has a
constrained partial view.

For the purposes of determining within a generic body whether an object is known to be constrained:

e if a subtype is a descendant of an untagged generic formal private or derived type, and the
subtype is not an unconstrained array subtype, it is not considered indefinite and is considered
to have a constrained partial view;

e if a subtype is a descendant of a formal access type, it is not considered pool-specific.

A named number provides a name for a numeric value known at compile time. It is declared by a
number_declaration.
NOTES

10 A constant cannot be the target of an assignment operation, nor be passed as an in out or out parameter, between its
initialization and finalization, if any.

11 The value of a constant object cannot be changed after its initialization, except in some cases where the object has a
controlled or immutably limited part (see 7.5, 7.6, and 13.9.1).

12 The nominal and actual subtypes of an elementary object are always the same. For a discriminated or array object,
if the nominal subtype is constrained, then so is the actual subtype.

29 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

3.3.1 Object Declarations

An object_declaration declares a stand-alone object with a given nominal subtype and, optionally, an
explicit initial value given by an initialization expression. For an array, access, task, or protected
object, the object_declaration may include the definition of the (anonymous) type of the object.

Syntax

object_declaration ::=
defining_identifier_list : [aliased] [constant] subtype_indication [:= expression]
[aspect_specification];
| defining_identifier_list : [aliased] [constant] access_definition [:= expression]
[

B

[aspect_specification]
| defining_identifier_list : [aliased] [constant] array_type_definition [:= expression]
[aspect_specification];
| single_task_declaration
| single_protected_declaration

defining_identifier_list ::=
defining_identifier {, defining_identifier}

Name Resolution Rules

For an object_declaration with an expression following the compound delimiter :=, the type
expected for the expression is that of the object. This expression is called the initialization
expression.

Legality Rules

An object_declaration without the reserved word constant declares a variable object. If it has a
subtype_indication or an array_type_definition that defines an indefinite subtype, then there shall be
an initialization expression.

Static Semantics

An object_declaration with the reserved word constant declares a constant object. If it has an
initialization expression, then it is called a full constant declaration. Otherwise, it is called a deferred
constant declaration. The rules for deferred constant declarations are given in subclause 7.4. The rules
for full constant declarations are given in this subclause.

Any declaration that includes a defining_identifier_list with more than one defining_identifier is
equivalent to a series of declarations each containing one defining_identifier from the list, with the
rest of the text of the declaration copied for each declaration in the series, in the same order as the list.
The remainder of this International Standard relies on this equivalence; explanations are given for
declarations with a single defining_identifier.

The subtype_indication, access_definition, or full type definition of an object declaration defines
the nominal subtype of the object. The object declaration declares an object of the type of the
nominal subtype.

A component of an object is said to require late initialization if:
e it has an access discriminant value constrained by a per-object expression; or
¢ it has an initialization expression that includes a name denoting an access discriminant; or

e it has an initialization expression that includes a reference to the current instance of the type
either by name or implicitly as the target object of a call.

© ISO/IEC 2021 — All rights reserved 30

ISO/IEC 8652:DIS

Dynamic Semantics

If a composite object declared by an object_declaration has an unconstrained nominal subtype, then
if this subtype is indefinite or the object is constant the actual subtype of this object is constrained.
The constraint is determined by the bounds or discriminants (if any) of its initial value; the object is
said to be constrained by its initial value. When not constrained by its initial value, the actual and
nominal subtypes of the object are the same. If its actual subtype is constrained, the object is called a
constrained object.

For an object_declaration without an initialization expression, any initial values for the object or its
subcomponents are determined by the implicit initial values defined for its nominal subtype, as
follows:

e The implicit initial value for an access subtype is the null value of the access type.

e The implicit initial value for a scalar subtype that has the Default Value aspect specified is
the value of that aspect converted to the nominal subtype (which might raise Constraint Error
— see 4.6, “Type Conversions”);

e The implicit initial (and only) value for each discriminant of a constrained discriminated
subtype is defined by the subtype.

e For a (definite) composite subtype, the implicit initial value of each component with a
default_expression is obtained by evaluation of this expression and conversion to the
component's nominal subtype (which might raise Constraint_Error), unless the component is
a discriminant of a constrained subtype (the previous case), or is in an excluded variant (see
3.8.1). For each component that does not have a default_expression, if the composite subtype
has the Default Component Value aspect specified, the implicit initial value is the value of
that aspect converted to the component's nominal subtype; otherwise, any implicit initial
values are those determined by the component's nominal subtype.

e For a protected or task subtype, there is an implicit component (an entry queue)
corresponding to each entry, with its implicit initial value being an empty queue.

The elaboration of an object_declaration proceeds in the following sequence of steps:

1. The subtype_indication, access_definition, array_type_definition, single_ task declaration,
or single_protected_declaration is first elaborated. This creates the nominal subtype (and the
anonymous type in the last four cases).

2. If the object_declaration includes an initialization expression, the (explicit) initial value is
obtained by evaluating the expression and converting it to the nominal subtype (which might
raise Constraint_Error — see 4.6).

3. The object is created, and, if there is not an initialization expression, the object is initialized
by default. When an object is initialized by default, any per-object constraints (see 3.8) are
elaborated and any implicit initial values for the object or for its subcomponents are obtained
as determined by the nominal subtype. Any initial values (whether explicit or implicit) are
assigned to the object or to the corresponding subcomponents. As described in 5.2 and 7.6,
Initialize and Adjust procedures can be called.

For the third step above, evaluations and assignments are performed in an arbitrary order subject to
the following restrictions:

e Assignment to any part of the object is preceded by the evaluation of the value that is to be
assigned.

e The evaluation of a default_expression that includes the name of a discriminant is preceded
by the assignment to that discriminant.

e The evaluation of the default_expression for any component that depends on a discriminant
is preceded by the assignment to that discriminant.

e The assignments to any components, including implicit components, not requiring late
initialization precede the initial value evaluations for any components requiring late
initialization; if two components both require late initialization, then assignments to parts of

31 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

the component occurring earlier in the order of the component declarations precede the initial
value evaluations of the component occurring later.

There is no implicit initial value defined for a scalar subtype unless the Default Value aspect has been
specified for the type. In the absence of an explicit initialization or the specification of the
Default Value aspect, a newly created scalar object might have a value that does not belong to its
subtype (see 13.9.1 and H.1).

NOTES
13 Implicit initial values are not defined for an indefinite subtype, because if an object's nominal subtype is indefinite,
an explicit initial value is required.

14 As indicated above, a stand-alone object is an object declared by an object_declaration. Similar definitions apply to
“stand-alone constant” and “stand-alone variable”. A subcomponent of an object is not a stand-alone object, nor is an
object that is created by an allocator. An object declared by a loop_parameter_specification, iterator_specification,
iterated_component_association, chunk_specification, parameter_specification, entry_index_specification, choice_-
parameter_specification, extended_return_statement, or a formal_object declaration of mode in out is not
considered a stand-alone object.

15 The type of a stand-alone object cannot be abstract (see 3.9.3).

Examples
Example of a multiple object declaration:
- - the multiple object declaration
John, Paul : not null Person Name := new Person(Sex => M); -- see3.10.

- - is equivalent to the two single object declarations in the order given

John : not null Person Name := new Person(Sex => M);
Paul : not null Person Name := new Person(Sex => M) ;

Examples of variable declarations:

Count, Sum : Integer;

Size : Integer range 0 .. 10_000 := 0;

Sorted : Boolean := False;

Color Table : array(l .. Max) of Color;

Option : Bit Vector(l .. 10) := (others => True); -- see3.6
Hello : aliased String := "Hi, world.";

6, ¢ : Float range -T .. +W;

Examples of constant declarations:

Limit : constant Integer := 10_000;

Low_Limit : comnstant Integer := Limit/10;

Tolerance : constant Real := Dispersion(1l.15);

A String : comstant String := "A";

Hello Msg : constant access String := Hello'Access; -- see3.[0.2

3.3.2 Number Declarations

A number_declaration declares a named number.

Syntax

number_declaration ::=
defining_identifier_list : constant := static_expression;

Name Resolution Rules
The static_expression given for a number_declaration is expected to be of any numeric type.

A name that denotes a number_declaration is interpreted as a value of a universal type, unless the
expected type for the name is a non-numeric type with an Integer Literal or Real Literal aspect, in
which case it is interpreted to be of its expected type.

© ISO/IEC 2021 — All rights reserved 32

ISO/IEC 8652:DIS

Legality Rules
The static_expression given for a number declaration shall be a static expression, as defined by
subclause 4.9.
Static Semantics

The named number denotes a value of type universal integer if the type of the static_expression is
an integer type. The named number denotes a value of type universal real if the type of the static_-
expression is a real type.

The value denoted by the named number is the value of the static expression, converted to the
corresponding universal type.

Dynamic Semantics

The elaboration of a number_declaration has no effect.

Examples
Examples of number declarations:
Two_Pi : constant := 2.0*Ada.Numerics.Pi; - - a real number (see A.5)
Max : constant := 500; - - an integer number
Max Line Size : constant := Max/6; - - the integer 83
Power 16 : constant := 2%%*16; - - the integer 65 536
One, Un, Eins : comnstant := 1; - - three different names for 1

3.4 Derived Types and Classes

A derived_type_definition defines a derived type (and its first subtype) whose characteristics are
derived from those of a parent type, and possibly from progenitor types.

A class of types is a set of types that is closed under derivation; that is, if the parent or a progenitor
type of a derived type belongs to a class, then so does the derived type. By saying that a particular
group of types forms a class, we are saying that all derivatives of a type in the set inherit the
characteristics that define that set. The more general term category of types is used for a set of types
whose defining characteristics are not necessarily inherited by derivatives; for example, limited,
abstract, and interface are all categories of types, but not classes of types.

Syntax

derived_type_definition ::=
[abstract] [limited] new parent_subtype_indication [[and interface_list] record_extension_p
art]

Legality Rules

The parent subtype_indication defines the parent subtype; its type is the parent type. The
interface_list defines the progenitor types (see 3.9.4). A derived type has one parent type and zero or
more progenitor types.

A type shall be completely defined (see 3.11.1) prior to being specified as the parent type in a
derived_type_definition — the full_type_ declarations for the parent type and any of its
subcomponents have to precede the derived_type_definition.

If there is a record_extension_part, the derived type is called a record extension of the parent type. A
record_extension_part shall be provided if and only if the parent type is a tagged type. An
interface_list shall be provided only if the parent type is a tagged type.

If the reserved word limited appears in a derived_type_definition, the parent type shall be a limited
type. If the parent type is a tagged formal type, then in addition to the places where Legality Rules
normally apply (see 12.3), this rule applies also in the private part of an instance of a generic unit.

33 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

Static Semantics

The first subtype of the derived type is unconstrained if a known_discriminant_part is provided in the
declaration of the derived type, or if the parent subtype is unconstrained. Otherwise, the constraint of
the first subtype corresponds to that of the parent subtype in the following sense: it is the same as that
of the parent subtype except that for a range constraint (implicit or explicit), the value of each bound
of its range is replaced by the corresponding value of the derived type.

The first subtype of the derived type excludes null (see 3.10) if and only if the parent subtype
excludes null.

The characteristics and implicitly declared primitive subprograms of the derived type are defined as
follows:

o [f the parent type or a progenitor type belongs to a class of types, then the derived type also
belongs to that class. The following sets of types, as well as any higher-level sets composed
from them, are classes in this sense, and hence the characteristics defining these classes are
inherited by derived types from their parent or progenitor types: signed integer, modular
integer, ordinary fixed, decimal fixed, floating point, enumeration, boolean, character, access-
to-constant, general access-to-variable, pool-specific access-to-variable, access-to-
subprogram, array, string, non-array composite, nonlimited, untagged record, tagged, task,
protected, and synchronized tagged.

o [f the parent type is an elementary type or an array type, then the set of possible values of the
derived type is a copy of the set of possible values of the parent type. For a scalar type, the
base range of the derived type is the same as that of the parent type.

o If the parent type is a composite type other than an array type, then the components, protected
subprograms, and entries that are declared for the derived type are as follows:

e The discriminants specified by a new known_discriminant_part, if there is one;
otherwise, each discriminant of the parent type (implicitly declared in the same order with
the same specifications) — in the latter case, the discriminants are said to be inherited, or
if unknown in the parent, are also unknown in the derived type;

o Each nondiscriminant component, entry, and protected subprogram of the parent type,
implicitly declared in the same order with the same declarations; these components,
entries, and protected subprograms are said to be inherited,

o Each component declared in a record_extension_part, if any.

Declarations of components, protected subprograms, and entries, whether implicit or explicit,
occur immediately within the declarative region of the type, in the order indicated above,
following the parent subtype_indication.

e For each predefined operator of the parent type, there is a corresponding predefined operator
of the derived type.

e For each user-defined primitive subprogram (other than a user-defined equality operator —
see below) of the parent type or of a progenitor type that already exists at the place of the
derived_type_definition, there exists a corresponding inherited primitive subprogram of the
derived type with the same defining name. Primitive user-defined equality operators of the
parent type and any progenitor types are also inherited by the derived type, except when the
derived type is a nonlimited record extension, and the inherited operator would have a profile
that is type conformant with the profile of the corresponding predefined equality operator; in
this case, the user-defined equality operator is not inherited, but is rather incorporated into the
implementation of the predefined equality operator of the record extension (see 4.5.2).

The profile of an inherited subprogram (including an inherited enumeration literal) is obtained
from the profile of the corresponding (user-defined) primitive subprogram of the parent or
progenitor type, after systematic replacement of each subtype of its profile (see 6.1) that is of
the parent or progenitor type, other than those subtypes found in the designated profile of an
access_definition, with a corresponding subtype of the derived type. For a given subtype of

© ISO/IEC 2021 — All rights reserved 34

ISO/IEC 8652:DIS

the parent or progenitor type, the corresponding subtype of the derived type is defined as
follows:

o If the declaration of the derived type has neither a known_discriminant_part nor a
record_extension_part, then the corresponding subtype has a constraint that corresponds
(as defined above for the first subtype of the derived type) to that of the given subtype.

o If the derived type is a record extension, then the corresponding subtype is the first
subtype of the derived type.

o If the derived type has a new known_discriminant_part but is not a record extension,
then the corresponding subtype is constrained to those values that when converted to the
parent type belong to the given subtype (see 4.6).

The same formal parameters have default_expressions in the profile of the inherited
subprogram. Any type mismatch due to the systematic replacement of the parent or progenitor
type by the derived type is handled as part of the normal type conversion associated with
parameter passing — see 6.4.1.

If a primitive subprogram of the parent or progenitor type is visible at the place of the
derived_type_definition, then the corresponding inherited subprogram is implicitly declared
immediately after the derived_type_definition. Otherwise, the inherited subprogram is implicitly
declared later or not at all, as explained in 7.3.1.

A derived type can also be defined by a private_extension_declaration (see 7.3) or a formal_-
derived_type_definition (see 12.5.1). Such a derived type is a partial view of the corresponding full or
actual type.

All numeric types are derived types, in that they are implicitly derived from a corresponding root
numeric type (see 3.5.4 and 3.5.6).

Dynamic Semantics

The elaboration of a derived_type_definition creates the derived type and its first subtype, and
consists of the elaboration of the subtype_indication and the record_extension_part, if any. If the
subtype_indication depends on a discriminant, then only those expressions that do not depend on a
discriminant are evaluated.

For the execution of a call on an inherited subprogram, a call on the corresponding primitive
subprogram of the parent or progenitor type is performed; the normal conversion of each actual
parameter to the subtype of the corresponding formal parameter (see 6.4.1) performs any necessary
type conversion as well. If the result type of the inherited subprogram is the derived type, the result of
calling the subprogram of the parent or progenitor is converted to the derived type, or in the case of a
null extension, extended to the derived type using the equivalent of an extension_aggregate with the
original result as the ancestor_part and null record as the record_component_association_list.
NOTES

16 Classes are closed under derivation — any class that contains a type also contains its derivatives. Operations
available for a given class of types are available for the derived types in that class.

17 Evaluating an inherited enumeration literal is equivalent to evaluating the corresponding enumeration literal of the
parent type, and then converting the result to the derived type. This follows from their equivalence to parameterless
functions.

18 A generic subprogram is not a subprogram, and hence cannot be a primitive subprogram and cannot be inherited by
a derived type. On the other hand, an instance of a generic subprogram can be a primitive subprogram, and hence can
be inherited.

19 If the parent type is an access type, then the parent and the derived type share the same storage pool; there is a null
access value for the derived type and it is the implicit initial value for the type. See 3.10.

20 If the parent type is a boolean type, the predefined relational operators of the derived type deliver a result of the
predefined type Boolean (see 4.5.2). If the parent type is an integer type, the right operand of the predefined
exponentiation operator is of the predefined type Integer (see 4.5.6).

21 Any discriminants of the parent type are either all inherited, or completely replaced with a new set of discriminants.

35 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

22 For an inherited subprogram, the subtype of a formal parameter of the derived type need not have any value in
common with the first subtype of the derived type.

23 If the reserved word abstract is given in the declaration of a type, the type is abstract (see 3.9.3).

24 An interface type that has a progenitor type “is derived from” that type. A derived_type_definition, however, never
defines an interface type.

25 Tt is illegal for the parent type of a derived_type_definition to be a synchronized tagged type.

Examples
Examples of derived type declarations:
type Local Coordinate is new Coordinate; - - two different types
type Midweek is new Day range Tue .. Thu; -- see3.5.]
type Counter is new Positive; - - same range as Positive
type Special Key is new Key Manager.Key; -- see7.3.1

- - the inherited subprograms have the following specifications:
-- procedure Get_Key(K : out Special _Key);
-- function "<"(X)Y : Special_Key) return Boolean;

3.4.1 Derivation Classes

In addition to the various language-defined classes of types, types can be grouped into derivation
classes.

Static Semantics

A derived type is derived from its parent type directly; it is derived indirectly from any type from
which its parent type is derived. A derived type, interface type, type extension, task type, protected
type, or formal derived type is also derived from every ancestor of each of its progenitor types, if any.
The derivation class of types for a type T (also called the class rooted at T) is the set consisting of T
(the root type of the class) and all types derived from T (directly or indirectly) plus any associated
universal or class-wide types (defined below).

Every type is either a specific type, a class-wide type, or a universal type. A specific type is one
defined by a type_declaration, a formal_type declaration, or a full type definition embedded in
another construct. Class-wide and universal types are implicitly defined, to act as representatives for
an entire class of types, as follows:

Class-wide types
Class-wide types are defined for (and belong to) each derivation class rooted at a tagged
type (see 3.9). Given a subtype S of a tagged type 7T, S'Class is the subtype mark for a
corresponding subtype of the tagged class-wide type T'Class. Such types are called “class-
wide” because when a formal parameter is defined to be of a class-wide type 7T'Class, an
actual parameter of any type in the derivation class rooted at T is acceptable (see 8.6).

The set of values for a class-wide type T'Class is the discriminated union of the set of
values of each specific type in the derivation class rooted at T (the tag acts as the implicit
discriminant — see 3.9). Class-wide types have no primitive subprograms of their own.
However, as explained in 3.9.2, operands of a class-wide type 7T'Class can be used as part
of a dispatching call on a primitive subprogram of the type 7. The only components
(including discriminants) of 7'Class that are visible are those of T. If S is a first subtype,
then S'Class is a first subtype.

Universal types

Universal types are defined for (and belong to) the integer, real, fixed point, and access
classes, and are referred to in this standard as respectively, universal integer,
universal_real, universal_fixed, and universal_access. These are analogous to class-wide
types for these language-defined elementary classes. As with class-wide types, if a formal
parameter is of a universal type, then an actual parameter of any type in the corresponding
class is acceptable. In addition, a value of a universal type (including an integer or real
numeric_literal, or the literal null) is “universal” in that it is acceptable where some
particular type in the class is expected (see 8.6).

© ISO/IEC 2021 — All rights reserved 36

ISO/IEC 8652:DIS

The set of values of a universal type is the undiscriminated union of the set of values
possible for any definable type in the associated class. Like class-wide types, universal
types have no primitive subprograms of their own. However, their “universality” allows
them to be used as operands with the primitive subprograms of any type in the
corresponding class.

The integer and real numeric classes each have a specific root type in addition to their universal type,
named respectively root_integer and root_real.

A class-wide or universal type is said to cover all of the types in its class. In addition,
universal_integer covers a type that has a specified Integer Literal aspect, while universal real
covers a type that has a specified Real Literal aspect (see 4.2.1). A specific type covers only itself.

A specific type 72 is defined to be a descendant of a type T1 if T2 is the same as T/, or if 72 is
derived (directly or indirectly) from 77. A class-wide type 72'Class is defined to be a descendant of
type 71 if 72 is a descendant of 7/. Similarly, the numeric universal types are defined to be
descendants of the root types of their classes. If a type 72 is a descendant of a type T/, then T/ is
called an ancestor of T2. An ultimate ancestor of a type is an ancestor of that type that is not itself a
descendant of any other type. Every untagged type has a unique ultimate ancestor.

An inherited component (including an inherited discriminant) of a derived type is inherited from a
given ancestor of the type if the corresponding component was inherited by each derived type in the
chain of derivations going back to the given ancestor.

NOTES

26 Because operands of a universal type are acceptable to the predefined operators of any type in their class, ambiguity

can result. For universal _integer and universal real, this potential ambiguity is resolved by giving a preference (see

8.6) to the predefined operators of the corresponding root types (root_integer and root_real, respectively). Hence, in an
apparently ambiguous expression like

1+4<7

where each of the literals is of type universal integer, the predefined operators of root_integer will be preferred over
those of other specific integer types, thereby resolving the ambiguity.

3.5 Scalar Types

Scalar types comprise enumeration types, integer types, and real types. Enumeration types and integer
types are called discrete types; each value of a discrete type has a position number which is an integer
value. Integer types and real types are called numeric types. All scalar types are ordered, that is, all
relational operators are predefined for their values.

Syntax
range_constraint ::= range range

range ::= range_attribute_reference
| simple_expression .. simple_expression

A range has a lower bound and an upper bound and specifies a subset of the values of some scalar
type (the type of the range). A range with lower bound L and upper bound R is described by “L .. R”.
If R is less than L, then the range is a null range, and specifies an empty set of values. Otherwise, the
range specifies the values of the type from the lower bound to the upper bound, inclusive. A value
belongs to a range if it is of the type of the range, and is in the subset of values specified by the range.
A value satisfies a range constraint if it belongs to the associated range. One range is included in
another if all values that belong to the first range also belong to the second.

Name Resolution Rules

For a subtype_indication containing a range_constraint, either directly or as part of some other
scalar_constraint, the type of the range shall resolve to that of the type determined by the
subtype_mark of the subtype_indication. For a range of a given type, the simple_expressions of the

37 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

range (likewise, the simple_expressions of the equivalent range for a range_attribute reference)
are expected to be of the type of the range.

Static Semantics

The base range of a scalar type is the range of finite values of the type that can be represented in
every unconstrained object of the type; it is also the range supported at a minimum for intermediate
values during the evaluation of expressions involving predefined operators of the type.

A constrained scalar subtype is one to which a range constraint applies. The range of a constrained
scalar subtype is the range associated with the range constraint of the subtype. The range of an
unconstrained scalar subtype is the base range of its type.

Dynamic Semantics

A range is compatible with a scalar subtype if and only if it is either a null range or each bound of the
range belongs to the range of the subtype. A range_constraint is compatible with a scalar subtype if
and only if its range is compatible with the subtype.

The elaboration of a range_constraint consists of the evaluation of the range. The evaluation of a
range determines a lower bound and an upper bound. If simple_expressions are given to specify
bounds, the evaluation of the range evaluates these simple_expressions in an arbitrary order, and
converts them to the type of the range. If a range_attribute_reference is given, the evaluation of the
range consists of the evaluation of the range_attribute_reference.

Attributes

For every scalar subtype S, the following attributes are defined:

S'First S'First denotes the lower bound of the range of S. The value of this attribute is of the type
of S.

S'Last S'Last denotes the upper bound of the range of S. The value of this attribute is of the type
of S.

S'Range S'Range is equivalent to the range S'First .. S'Last.

S'Base S'Base denotes an unconstrained subtype of the type of S. This unconstrained subtype is
called the base subtype of the type.

S'Min S'Min denotes a function with the following specification:

function S'Min(Left, Right : S'Base)
return S'Base

The function returns the lesser of the values of the two parameters.

S'Max S'Max denotes a function with the following specification:
function S'Max (Left, Right : S'Base)
return S'Base

The function returns the greater of the values of the two parameters.

S'Suce S'Succ denotes a function with the following specification:

function S'Succ(d4rg : S'Base)
return S'Base
For an enumeration type, the function returns the value whose position number is one
more than that of the value of Arg; Constraint_Error is raised if there is no such value of
the type. For an integer type, the function returns the result of adding one to the value of
Arg. For a fixed point type, the function returns the result of adding small to the value of
Arg. For a floating point type, the function returns the machine number (as defined in
3.5.7) immediately above the value of Arg; Constraint_Error is raised if there is no such
machine number.

S'Pred S'Pred denotes a function with the following specification:

© ISO/IEC 2021 — All rights reserved 38

ISO/IEC 8652:DIS

function S'Pred(4rg : S'Base)
return S'Base
For an enumeration type, the function returns the value whose position number is one less
than that of the value of Arg; Constraint_Error is raised if there is no such value of the
type. For an integer type, the function returns the result of subtracting one from the value
of Arg. For a fixed point type, the function returns the result of subtracting small from the
value of Arg. For a floating point type, the function returns the machine number (as
defined in 3.5.7) immediately below the value of Arg; Constraint_Error is raised if there
is no such machine number.

S'Wide Wide Width

S'Wide Wide Width denotes the maximum length of a Wide Wide String returned by
S'Wide Wide Image over all values of the subtype S, assuming a default implementation
of S'Put Image. It denotes zero for a subtype that has a null range. Its type is
universal_integer.

S'Wide_Width

S'Width

S'Wide Width denotes the maximum length of a Wide String returned by S'Wide Image
over all values of the subtype S, assuming a default implementation of S'Put Image. It
denotes zero for a subtype that has a null range. Its type is universal_integer.

S'Width denotes the maximum length of a String returned by S'Image over all values of
the subtype S, assuming a default implementation of S'Put_Image. It denotes zero for a
subtype that has a null range. Its type is universal_integer.

S'Wide Wide Value

39

S'Wide Wide Value denotes a function with the following specification:
function S'Wide Wide Value(4rg : Wide Wide_ String)
return S'Base
This function returns a value given an image of the value as a Wide Wide String,
ignoring any leading or trailing spaces.

For the evaluation of a call on S'"Wide Wide Value for an enumeration subtype S, if the
sequence of characters of the parameter (ignoring leading and trailing spaces) has the
syntax of an enumeration literal and if it corresponds to a literal of the type of S (or
corresponds to the result of S'Wide Wide Image for a nongraphic character of the type),
the result is the corresponding enumeration value; otherwise, Constraint_Error is raised.

For the evaluation of a call on S'Wide Wide Value for an integer subtype S, if the
sequence of characters of the parameter (ignoring leading and trailing spaces) has the
syntax of an integer literal, with an optional leading sign character (plus or minus for a
signed type; only plus for a modular type), and the corresponding numeric value belongs
to the base range of the type of S, then that value is the result; otherwise, Constraint_Error
is raised.

For the evaluation of a call on S'"Wide Wide Value for a real subtype S, if the sequence
of characters of the parameter (ignoring leading and trailing spaces) has the syntax of one
of the following:

e numeric_literal

e numeral.[exponent]

e _.numeral[exponent]

e base#based_numeral.#[exponent]
e base#.based_numeral#[exponent]

with an optional leading sign character (plus or minus), and if the corresponding numeric
value belongs to the base range of the type of S, then that value is the result; otherwise,
Constraint_Error is raised. The sign of a zero value is preserved (positive if none has been
specified) if S'Signed Zeros is True.

© ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

S'Wide Value
S'Wide Value denotes a function with the following specification:
function S'Wide Value (4drg : Wide String)
return S'Base
This function returns a value given an image of the value as a Wide_String, ignoring any
leading or trailing spaces.

For the evaluation of a call on S'Wide Value for an enumeration subtype S, if the
sequence of characters of the parameter (ignoring leading and trailing spaces) has the
syntax of an enumeration literal and if it corresponds to a literal of the type of S (or
corresponds to the result of S'"Wide Image for a value of the type, assuming a default
implementation of S'Put Image), the result is the corresponding enumeration value;
otherwise, Constraint_Error is raised. For a numeric subtype S, the evaluation of a call on
S'Wide Value with Arg of type Wide String is equivalent to a call on
S'Wide Wide Value for a corresponding Arg of type Wide_ Wide_String.

S'Value S'Value denotes a function with the following specification:
function S'Value (4rg : String)
return S'Base
This function returns a value given an image of the value as a String, ignoring any leading
or trailing spaces.

For the evaluation of a call on S'Value for an enumeration subtype S, if the sequence of
characters of the parameter (ignoring leading and trailing spaces) has the syntax of an
enumeration literal and if it corresponds to a literal of the type of S (or corresponds to the
result of S'lmage for a value of the type, assuming a default implementation of
S'Put Image), the result is the corresponding enumeration value; otherwise,
Constraint_Error is raised. For a numeric subtype S, the evaluation of a call on S'Value
with Arg of type String is equivalent to a call on S'Wide Wide_ Value for a corresponding
Arg of type Wide_Wide_String.

Implementation Permissions

An implementation may extend the Wide Wide Value, Wide Value, Value, Wide Wide Image,
Wide Image, and Image attributes of a floating point type to support special values such as infinities
and NaNs.

An implementation may extend the Wide Wide Value, Wide Value, and Value attributes of a
character type to accept strings of the form “Hex hhhhhhhh” (ignoring case) for any character (not
just the ones for which Wide Wide Image would produce that form — see 3.5.2), as well as three-
character strings of the form “'X", where X is any character, including nongraphic characters.

Static Semantics

For a scalar type, the following language-defined representation aspect may be specified with an

aspect_specification (see 13.1.1):

Default Value
This aspect shall be specified by a static expression, and that expression shall be explicit,
even if the aspect has a boolean type. Default Value shall be specified only on a
full_type_declaration.

If a derived type inherits a boolean Default Value aspect, the aspect may be specified to have any
value for the derived type. If a derived type T does not inherit a Default Value aspect, it shall not
specify such an aspect if it inherits a primitive subprogram that has a parameter of type 7 of mode out.

Name Resolution Rules

The expected type for the expression specified for the Default Value aspect is the type defined by
the full_type_declaration on which it appears.

© ISO/IEC 2021 — All rights reserved 40

ISO/IEC 8652:DIS

NOTES
27 The evaluation of S'First or S'Last never raises an exception. If a scalar subtype S has a nonnull range, S'First and
S'Last belong to this range. These values can, for example, always be assigned to a variable of subtype S.

28 For a subtype of a scalar type, the result delivered by the attributes Succ, Pred, and Value might not belong to the
subtype; similarly, the actual parameters of the attributes Succ, Pred, and Image need not belong to the subtype.

29 For any value V (including any nongraphic character) of an enumeration subtype S without a specified Put_Image
(see 4.10), S'Value(S'Image(V)) equals V, as do S'Wide Value(S'Wide Image(V)) and
S'Wide Wide Value(S'Wide Wide Image(V)). None of these expressions ever raise Constraint Error.

Examples

Examples of ranges:

-10 .. 10

X .. X+ 1

0.0 .. 2.0*P1i

Red .. Green --see 3.5.1

1..0 - - a null range

Table'Range - - a range attribute reference (see 3.6)

Examples of range constraints:

range -999.0 .. +999.0
range S'First+l .. S'Last-1

3.5.1 Enumeration Types

An enumeration_type_definition defines an enumeration type.

Syntax

enumeration_type_definition ::=
(enumeration_literal_specification {, enumeration_literal_specification})

enumeration_literal_specification ::= defining_identifier | defining_character_literal

defining_character_literal ::= character _literal

Legality Rules

The defining_identifiers in upper case and the defining_character_literals listed in an
enumeration_type_definition shall be distinct.

Static Semantics

Each enumeration_literal_specification is the explicit declaration of the corresponding enumeration
literal: it declares a parameterless function, whose defining name is the defining_identifier or
defining_character_literal, and whose result subtype is the base subtype of the enumeration type.

Each enumeration literal corresponds to a distinct value of the enumeration type, and to a distinct
position number. The position number of the value of the first listed enumeration literal is zero; the
position number of the value of each subsequent enumeration literal is one more than that of its
predecessor in the list.

The predefined order relations between values of the enumeration type follow the order of
corresponding position numbers.

If the same defining_identifier or defining_character_literal is specified in more than one
enumeration_type_definition, the corresponding enumeration literals are said to be overloaded. At
any place where an overloaded enumeration literal occurs in the text of a program, the type of the
enumeration literal has to be determinable from the context (see 8.6).

Dynamic Semantics

The elaboration of an enumeration_type_definition creates the enumeration type and its first subtype,
which is constrained to the base range of the type.

41 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

When called, the parameterless function associated with an enumeration literal returns the
corresponding value of the enumeration type.
NOTES

30 If an enumeration literal occurs in a context that does not otherwise suffice to determine the type of the literal, then
qualification by the name of the enumeration type is one way to resolve the ambiguity (see 4.7).

Examples

Examples of enumeration types and subtypes:

type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Month Name is (January, February, March, April, May, June, July,
August, September, October, November, December) ;

type Suit is (Clubs, Diamonds, Hearts, Spades);

type Gender is (M, F);

type Level is (Low, Medium, Urgent) ;

type Color is (White, Red, Yellow, Green, Blue, Brown, Black);
type Light is (Red, Amber, Green); -- Redand Green are overloaded
type Hexa is ('a', 's', 'c', 'D', 'E', 'F');

type Mixed is ('a', 'B', '*', B, None, '?', '%');

subtype Weekday is Day range Mon .. Fri;

subtype Major is Suit range Hearts .. Spades;

subtype Rainbow is Color range Red .. Blue; -- the Color Red, not the Light

3.5.2 Character Types

Static Semantics

An enumeration type is said to be a character type if at least one of its enumeration literals is a
character_literal.

The predefined type Character is a character type whose values correspond to the 256 code points of
Row 00 (also known as Latin-1) of the ISO/IEC 10646:2017 Basic Multilingual Plane (BMP). Each
of the graphic characters of Row 00 of the BMP has a corresponding character_literal in Character.
Each of the nongraphic characters of Row 00 has a corresponding language-defined name, which is
not usable as an enumeration literal, but which is usable with the attributes Image, Wide Image,
Wide Wide Image, Value, Wide Value, and Wide Wide Value; these names are given in the
definition of type Character in A.1, “The Package Standard”, but are set in italics.

The predefined type Wide Character is a character type whose values correspond to the 65536 code
points of the ISO/IEC 10646:2017 Basic Multilingual Plane (BMP). Each of the graphic characters of
the BMP has a corresponding character_literal in Wide Character. The first 256 values of
Wide Character have the same character_literal or language-defined name as defined for Character.
Each of the graphic_characters has a corresponding character_literal.

The predefined type Wide Wide Character is a character type whose values correspond to the
2147483648 code points of the ISO/IEC 10646:2017 character set. Each of the graphic_characters
has a corresponding character_literal in Wide Wide Character. The first 65536 values of
Wide Wide Character have the same character_literal or language-defined name as defined for
Wide Character.

The characters whose code point is larger than 16#FF# and which are not graphic_characters have
language-defined names which are formed by appending to the string "Hex " the representation of
their code point in hexadecimal as eight extended digits. As with other language-defined names, these
names are usable only with the attributes (Wide)Wide Image and (Wide)Wide Value; they are not
usable as enumeration literals.

NOTES

31 The language-defined library package Characters.Latin_1 (see A.3.3) includes the declaration of constants denoting
control characters, lower case characters, and special characters of the predefined type Character.

32 A conventional character set such as EBCDIC can be declared as a character type; the internal codes of the
characters can be specified by an enumeration_representation_clause as explained in subclause 13.4.

© ISO/IEC 2021 — All rights reserved 42

ISO/IEC 8652:DIS

Examples

Example of a character type:
type Roman Digit is ('I', 'v', 'X', 'L', 'C', 'D', 'M');

3.5.3 Boolean Types

Static Semantics

There is a predefined enumeration type named Boolean, declared in the visible part of package
Standard. It has the two enumeration literals False and True ordered with the relation False < True.
Any descendant of the predefined type Boolean is called a boolean type.

3.5.4 Integer Types

An integer_type_definition defines an integer type; it defines either a signed integer type, or a
modular integer type. The base range of a signed integer type includes at least the values of the
specified range. A modular type is an integer type with all arithmetic modulo a specified positive
modulus; such a type corresponds to an unsigned type with wrap-around semantics.

Syntax
integer_type_definition ::= signed_integer_type_definition | modular_type_definition
signed_integer_type_definition ::= range static_simple_expression .. static_simple_expression

modular_type_definition ::= mod static_expression

Name Resolution Rules

Each simple_expression in a signed_integer_type_definition is expected to be of any integer type;
they need not be of the same type. The expression in a modular_type_definition is likewise expected
to be of any integer type.

Legality Rules

The simple_expressions of a signed_integer_type_definition shall be static, and their values shall be
in the range System.Min_Int .. System.Max_Int.

The expression of a modular_type_definition shall be static, and its value (the modulus) shall be
positive, and shall be no greater than System.Max_Binary Modulus if a power of 2, or no greater than
System.Max_Nonbinary Modulus if not.

Static Semantics

The set of values for a signed integer type is the (infinite) set of mathematical integers, though only
values of the base range of the type are fully supported for run-time operations. The set of values for a
modular integer type are the values from 0 to one less than the modulus, inclusive.

A signed_integer_type_definition defines an integer type whose base range includes at least the
values of the simple_expressions and is symmetric about zero, excepting possibly an extra negative
value. A signed_integer_type_definition also defines a constrained first subtype of the type, with a
range whose bounds are given by the values of the simple_expressions, converted to the type being
defined.

A modular_type_definition defines a modular type whose base range is from zero to one less than the
given modulus. A modular_type_definition also defines a constrained first subtype of the type with a
range that is the same as the base range of the type.

There is a predefined signed integer subtype named Integer, declared in the visible part of package
Standard. It is constrained to the base range of its type.

43 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

Integer has two predefined subtypes, declared in the visible part of package Standard:

subtype Natural is Integer range 0 .. Integer'Last;

subtype Positive is Integer range 1 .. Integer'Last;
A type defined by an integer_type_definition is implicitly derived from root_integer, an anonymous
predefined (specific) integer type, whose base range is System.Min_Int .. System.Max_Int. However,
the base range of the new type is not inherited from root_integer, but is instead determined by the
range or modulus specified by the integer_type definition. Integer literals are all of the type
universal_integer, the universal type (see 3.4.1) for the class rooted at root_integer, allowing their use
with the operations of any integer type.

The position number of an integer value is equal to the value.

For every modular subtype S, the following attributes are defined:

S'™Mod S'™od denotes a function with the following specification:
function S'Mod (4rg : universal_integer)
return S'Base

This function returns Arg mod S'Modulus, as a value of the type of S.
S'Modulus S'™™odulus yields the modulus of the type of S, as a value of the type universal_integer.

Dynamic Semantics
The elaboration of an integer_type_definition creates the integer type and its first subtype.

For a modular type, if the result of the execution of a predefined operator (see 4.5) is outside the base
range of the type, the result is reduced modulo the modulus of the type to a value that is within the
base range of the type.

For a signed integer type, the exception Constraint Error is raised by the execution of an operation
that cannot deliver the correct result because it is outside the base range of the type. For any integer
type, Constraint_Error is raised by the operators "/", "rem", and "mod" if the right operand is zero.

Implementation Requirements
In an implementation, the range of Integer shall include the range —2**15+1 .. +2**15-1.

If Long_Integer is predefined for an implementation, then its range shall include the range —2**31+1
. A2¥E3]-1.

System.Max Binary Modulus shall be at least 2**16.

Implementation Permissions

For the execution of a predefined operation of a signed integer type, the implementation need not raise
Constraint_Error if the result is outside the base range of the type, so long as the correct result is
produced.

An implementation may provide additional predefined signed integer types, declared in the visible
part of Standard, whose first subtypes have names of the form Short Integer, Long Integer,
Short Short Integer, Long Long Integer, etc. Different predefined integer types are allowed to have
the same base range. However, the range of Integer should be no wider than that of Long Integer.
Similarly, the range of Short Integer (if provided) should be no wider than Integer. Corresponding
recommendations apply to any other predefined integer types. There need not be a named integer type
corresponding to each distinct base range supported by an implementation. The range of each first
subtype should be the base range of its type.

An implementation may provide nonstandard integer types, descendants of root _integer that are
declared outside of the specification of package Standard, which need not have all the standard
characteristics of a type defined by an integer_type_definition. For example, a nonstandard integer
type might have an asymmetric base range or it might not be allowed as an array or loop index (a very

© ISO/IEC 2021 — All rights reserved 44

ISO/IEC 8652:DIS

long integer). Any type descended from a nonstandard integer type is also nonstandard. An
implementation may place arbitrary restrictions on the use of such types; it is implementation defined
whether operators that are predefined for “any integer type” are defined for a particular nonstandard
integer type. In any case, such types are not permitted as explicit_generic_actual_parameters for
formal scalar types — see 12.5.2.

For a one's complement machine, the high bound of the base range of a modular type whose modulus
is one less than a power of 2 may be equal to the modulus, rather than one less than the modulus. It is
implementation defined for which powers of 2, if any, this permission is exercised.

For a one's complement machine, implementations may support nonbinary modulus values greater
than System.Max_Nonbinary Modulus. It is implementation defined which specific values greater
than System.Max_Nonbinary Modulus, if any, are supported.

Implementation Advice

An implementation should support Long Integer in addition to Integer if the target machine supports
32-bit (or longer) arithmetic. No other named integer subtypes are recommended for package
Standard. Instead, appropriate named integer subtypes should be provided in the library package
Interfaces (see B.2).

An implementation for a two's complement machine should support modular types with a binary
modulus up to System.Max _Int*2+2. An implementation should support a nonbinary modulus up to
Integer'Last.

NOTES

33 Integer literals are of the anonymous predefined integer type universal _integer. Other integer types have no literals.
However, the overload resolution rules (see 8.6, “The Context of Overload Resolution”) allow expressions of the type
universal_integer whenever an integer type is expected.

34 The same arithmetic operators are predefined for all signed integer types defined by a
signed_integer_type_definition (see 4.5, “Operators and Expression Evaluation”). For modular types, these same
operators are predefined, plus bit-wise logical operators (and, or, xor, and not). In addition, for the unsigned types
declared in the language-defined package Interfaces (see B.2), functions are defined that provide bit-wise shifting and
rotating.

35 Modular types match a generic_formal_parameter_declaration of the form "type T is mod <>;"; signed integer
types match "type T is range <>;" (see 12.5.2).

Examples

Examples of integer types and subtypes:

type Page Num is range 1 .. 2 000;
type Line Size is range 1 .. Max_ Line Size;

subtype Small Int is Integer range -10 .. 10;
subtype Column Ptr is Line Size range 1 .. 10;
subtype Buffer Size is Integer range 0 .. Max;

type Byte is mod 256; -- anunsigned byte
type Hash Index is mod 97; -- modulus is prime

3.5.5 Operations of Discrete Types

Static Semantics

For every discrete subtype S, the following attributes are defined:
S'Pos S'Pos denotes a function with the following specification:

function S'Pos (4rg : S'Base)
return universal_integer

This function returns the position number of the value of Arg, as a value of type
universal_integer.

S'Val S'Val denotes a function with the following specification:

45 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

function S'Val (4rg : universal_integer)
return S'Base
This function returns a value of the type of S whose position number equals the value of
Arg. For the evaluation of a call on S'Val, if there is no value in the base range of its type
with the given position number, Constraint_Error is raised.

For every static discrete subtype S for which there exists at least one value belonging to S that
satisfies the predicates of S, the following attributes are defined:
S'First_Valid
S'First Valid denotes the smallest value that belongs to S and satisfies the predicates of S.
The value of this attribute is of the type of S.

S'Last Valid
S'Last_Valid denotes the largest value that belongs to S and satisfies the predicates of S.
The value of this attribute is of the type of S.

First Valid and Last Valid attribute_references are always static expressions. Any explicit predicate
of S can only have been specified by a Static_Predicate aspect.

Implementation Advice

For the evaluation of a call on S'Pos for an enumeration subtype, if the value of the operand does not
correspond to the internal code for any enumeration literal of its type (perhaps due to an uninitialized
variable), then the implementation should raise Program_ Error. This is particularly important for
enumeration types with noncontiguous internal codes specified by an enumeration_representation_-
clause.

NOTES
36 Indexing and loop iteration use values of discrete types.

37 The predefined operations of a discrete type include the assignment operation, qualification, the membership tests,
and the relational operators; for a boolean type they include the short-circuit control forms and the logical operators; for
an integer type they include type conversion to and from other numeric types, as well as the binary and unary adding
operators — and +, the multiplying operators, the unary operator abs, and the exponentiation operator. The assignment
operation is described in 5.2. The other predefined operations are described in Clause 4.

38 As for all types, objects of a discrete type have Size and Address attributes (see 13.3).

39 For a subtype of a discrete type, the result delivered by the attribute Val might not belong to the subtype; similarly,
the actual parameter of the attribute Pos need not belong to the subtype. The following relations are satisfied (in the
absence of an exception) by these attributes:

S'Val (S'Pos (X)) X
S'Pos(S'Val (N)) N

Examples

Examples of attributes of discrete subtypes:
-~ For the types and subtypes declared in subclause 3.5.1 the following hold:

-- Color'First = White, Color'Last = Black
-- Rainbow'First = Red, Rainbow'Last = Blue
-- Color'sSucc(Blue) = Rainbow'Succ (Blue) = Brown
-- Color'Pos(Blue) = Rainbow'Pos (Blue) = 4

-- Color'val(0) = Rainbow'Val (0) = White

3.5.6 Real Types

Real types provide approximations to the real numbers, with relative bounds on errors for floating
point types, and with absolute bounds for fixed point types.

Syntax

real_type_definition ::=
floating_point_definition | fixed_point_definition

© ISO/IEC 2021 — All rights reserved 46

ISO/IEC 8652:DIS

Static Semantics

A type defined by a real_type_definition is implicitly derived from root real, an anonymous
predefined (specific) real type. Hence, all real types, whether floating point or fixed point, are in the
derivation class rooted at root_real.

Real literals are all of the type universal real, the universal type (see 3.4.1) for the class rooted at
root_real, allowing their use with the operations of any real type. Certain multiplying operators have
a result type of universal fixed (see 4.5.5), the universal type for the class of fixed point types,
allowing the result of the multiplication or division to be used where any specific fixed point type is
expected.

Dynamic Semantics

The elaboration of a real_type_definition consists of the elaboration of the floating_point_definition
or the fixed_point_definition.

Implementation Requirements

An implementation shall perform the run-time evaluation of a use of a predefined operator of
root_real with an accuracy at least as great as that of any floating point type definable by a
floating_point_definition.

Implementation Permissions

For the execution of a predefined operation of a real type, the implementation need not raise
Constraint_Error if the result is outside the base range of the type, so long as the correct result is
produced, or the Machine Overflows attribute of the type is False (see G.2.1).

An implementation may provide nonstandard real types, descendants of root_real that are declared
outside of the specification of package Standard, which need not have all the standard characteristics
of a type defined by a real_type_definition. For example, a nonstandard real type might have an
asymmetric or unsigned base range, or its predefined operations might wrap around or “saturate”
rather than overflow (modular or saturating arithmetic), or it might not conform to the accuracy model
(see G.2.1). Any type descended from a nonstandard real type is also nonstandard. An implementation
may place arbitrary restrictions on the use of such types; it is implementation defined whether
operators that are predefined for “any real type” are defined for a particular nonstandard real type. In
any case, such types are not permitted as explicit_generic_actual_parameters for formal scalar types
—see 12.5.2.

NOTES

40 As stated, real literals are of the anonymous predefined real type universal real. Other real types have no literals.
However, the overload resolution rules (see 8.6) allow expressions of the type universal real whenever a real type is
expected.

3.5.7 Floating Point Types

For floating point types, the error bound is specified as a relative precision by giving the required
minimum number of significant decimal digits.

Syntax

floating_point_definition ::=
digits static_expression [real_range_specification]

real_range_specification ::=
range static_simple_expression .. static_simple_expression

47 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

Name Resolution Rules

The requested decimal precision, which is the minimum number of significant decimal digits required
for the floating point type, is specified by the value of the expression given after the reserved word
digits. This expression is expected to be of any integer type.

Each simple_expression of a real_range_specification is expected to be of any real type; the types
need not be the same.

Legality Rules

The requested decimal precision shall be specified by a static expression whose value is positive and
no greater than System.Max_ Base Digits. Each simple_expression of a real_range_specification
shall also be static. If the real_range_specification is omitted, the requested decimal precision shall
be no greater than System.Max_Digits.

A floating_point_definition is illegal if the implementation does not support a floating point type that
satisfies the requested decimal precision and range.

Static Semantics

The set of values for a floating point type is the (infinite) set of rational numbers. The machine
numbers of a floating point type are the values of the type that can be represented exactly in every
unconstrained variable of the type. The base range (see 3.5) of a floating point type is symmetric
around zero, except that it can include some extra negative values in some implementations.

The base decimal precision of a floating point type is the number of decimal digits of precision
representable in objects of the type. The safe range of a floating point type is that part of its base
range for which the accuracy corresponding to the base decimal precision is preserved by all
predefined operations.

A floating_point_definition defines a floating point type whose base decimal precision is no less than
the requested decimal precision. If a real_range_specification is given, the safe range of the floating
point type (and hence, also its base range) includes at least the values of the simple expressions given
in the real_range_specification. If a real_range_specification is not given, the safe (and base) range
of the type includes at least the values of the range —10.0**(4*D) .. +10.0**(4*D) where D is the
requested decimal precision. The safe range might include other values as well. The attributes
Safe First and Safe Last give the actual bounds of the safe range.

A floating_point_definition also defines a first subtype of the type. If a real_range_specification is
given, then the subtype is constrained to a range whose bounds are given by a conversion of the
values of the simple_expressions of the real_range_specification to the type being defined.
Otherwise, the subtype is unconstrained.

There is a predefined, unconstrained, floating point subtype named Float, declared in the visible part
of package Standard.

Dynamic Semantics
The elaboration of a floating_point_definition creates the floating point type and its first subtype.

Implementation Requirements

In an implementation that supports floating point types with 6 or more digits of precision, the
requested decimal precision for Float shall be at least 6.

If Long_Float is predefined for an implementation, then its requested decimal precision shall be at
least 11.

© ISO/IEC 2021 — All rights reserved 48

ISO/IEC 8652:DIS

Implementation Permissions

An implementation is allowed to provide additional predefined floating point types, declared in the
visible part of Standard, whose (unconstrained) first subtypes have names of the form Short Float,
Long_Float, Short_Short Float, Long Long_ Float, etc. Different predefined floating point types are
allowed to have the same base decimal precision. However, the precision of Float should be no greater
than that of Long Float. Similarly, the precision of Short Float (if provided) should be no greater
than Float. Corresponding recommendations apply to any other predefined floating point types. There
need not be a named floating point type corresponding to each distinct base decimal precision
supported by an implementation.

Implementation Advice

An implementation should support Long_Float in addition to Float if the target machine supports 11
or more digits of precision. No other named floating point subtypes are recommended for package
Standard. Instead, appropriate named floating point subtypes should be provided in the library
package Interfaces (see B.2).

NOTES

41 If a floating point subtype is unconstrained, then assignments to variables of the subtype involve only
Overflow_Checks, never Range_Checks.

Examples

Examples of floating point types and subtypes:
type Coefficient is digits 10 range -1.0 .. 1.0;

type Real is digits 8§;
type Mass is digits 7 range 0.0 .. 1.0E35;

subtype Probability is Real range 0.0 .. 1.0; -- a subtype with a smaller range

3.5.8 Operations of Floating Point Types

Static Semantics

The following attribute is defined for every floating point subtype S:

S'Digits S'Digits denotes the requested decimal precision for the subtype S. The value of this
attribute is of the type universal integer. The requested decimal precision of the base
subtype of a floating point type 7 is defined to be the largest value of d for which
ceiling(d * log(10) / log(T'Machine Radix)) + g <= T'Model Mantissa
where g is 0 if Machine Radix is a positive power of 10 and 1 otherwise.

NOTES

42 The predefined operations of a floating point type include the assignment operation, qualification, the membership
tests, and explicit conversion to and from other numeric types. They also include the relational operators and the
following predefined arithmetic operators: the binary and unary adding operators — and +, certain multiplying
operators, the unary operator abs, and the exponentiation operator.

43 As for all types, objects of a floating point type have Size and Address attributes (see 13.3). Other attributes of
floating point types are defined in A.5.3.

49 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

3.5.9 Fixed Point Types

A fixed point type is either an ordinary fixed point type, or a decimal fixed point type. The error
bound of a fixed point type is specified as an absolute value, called the delta of the fixed point type.

Syntax
fixed_point_definition ::= ordinary_fixed_point_definition | decimal_fixed_point_definition

ordinary_fixed_point_definition ::=
delta static_expression real_range_specification

decimal_fixed_point_definition ::=
delta static_expression digits static_expression [real_range_specification]

digits_constraint ::=
digits static_simple_expression [range_constraint]

Name Resolution Rules

For a type defined by a fixed_point_definition, the delta of the type is specified by the value of the
expression given after the reserved word delta; this expression is expected to be of any real type.
For a type defined by a decimal_fixed_point_definition (a decimal fixed point type), the number of
significant decimal digits for its first subtype (the digits of the first subtype) is specified by the
expression given after the reserved word digits; this expression is expected to be of any integer type.

The simple_expression of a digits_constraint is expected to be of any integer type.

Legality Rules

In a fixed_point_definition or digits_constraint, the expressions given after the reserved words delta
and digits shall be static; their values shall be positive.

The set of values of a fixed point type comprise the integral multiples of a number called the small of
the type. The machine numbers of a fixed point type are the values of the type that can be represented
exactly in every unconstrained variable of the type. For a type defined by an
ordinary_fixed_point_definition (an ordinary fixed point type), the small may be specified by an
attribute_definition_clause (see 13.3); if so specified, it shall be no greater than the delta of the type.
If not specified, the small of an ordinary fixed point type is an implementation-defined power of two
less than or equal to the delta.

For a decimal fixed point type, the small equals the delta; the delta shall be a power of 10. If a
real_range_specification is given, both bounds of the range shall be in the range —(10**digits—
D*delta .. +(10**digits—1)*delta.

A fixed_point_definition is illegal if the implementation does not support a fixed point type with the
given small and specified range or digits.

For a subtype_indication with a digits_constraint, the subtype mark shall denote a decimal fixed
point subtype.

Static Semantics

The base range (see 3.5) of a fixed point type is symmetric around zero, except possibly for an extra
negative value in some implementations.

An ordinary_fixed_point_definition defines an ordinary fixed point type whose base range includes at
least all multiples of small that are between the bounds specified in the real_range_specification. The
base range of the type does not necessarily include the specified bounds themselves. An ordinary_-
fixed_point_definition also defines a constrained first subtype of the type, with each bound of its
range given by the closer to zero of:

© ISO/IEC 2021 — All rights reserved 50

ISO/IEC 8652:DIS

o the value of the conversion to the fixed point type of the corresponding expression of the
real_range_specification;

e the corresponding bound of the base range.

A decimal_fixed_point_definition defines a decimal fixed point type whose base range includes at
least the range —(10**digits—1)*delta .. +(10**digits—1)*delta. A decimal_fixed_point_definition also
defines a constrained first subtype of the type. If a real_range_specification is given, the bounds of
the first subtype are given by a conversion of the values of the expressions of the
real_range_specification. Otherwise, the range of the first subtype is —(10**digits—1)*delta ..
+(10**digits—1)*delta.

Dynamic Semantics
The elaboration of a fixed_point_definition creates the fixed point type and its first subtype.

For a digits_constraint on a decimal fixed point subtype with a given delta, if it does not have a
range_constraint, then it specifies an implicit range —(10**D-1)*delta .. +(10**D—1)*delta, where D
is the value of the simple_expression. A digits_constraint is compatible with a decimal fixed point
subtype if the value of the simple_expression is no greater than the digits of the subtype, and if it
specifies (explicitly or implicitly) a range that is compatible with the subtype.

The elaboration of a digits_constraint consists of the elaboration of the range_constraint, if any. If a
range_constraint is given, a check is made that the bounds of the range are both in the range —
(10**D-1)*delta .. +(10**D-1)*delta, where D is the value of the (static) simple_expression given
after the reserved word digits. If this check fails, Constraint_Error is raised.

Implementation Requirements

The implementation shall support at least 24 bits of precision (including the sign bit) for fixed point
types.

Implementation Permissions

Implementations are permitted to support only smalls that are a power of two. In particular, all
decimal fixed point type declarations can be disallowed. Note however that conformance with the
Information Systems Annex requires support for decimal smalls, and decimal fixed point type
declarations with digits up to at least 18.

NOTES

44 The base range of an ordinary fixed point type need not include the specified bounds themselves so that the range
specification can be given in a natural way, such as:

type Fraction is delta 2.0**(-15) range -1.0 .. 1.0;

With 2's complement hardware, such a type could have a signed 16-bit representation, using 1 bit for the sign and 15
bits for fraction, resulting in a base range of —1.0 .. 1.0-2.0%*(-15).

Examples
Examples of fixed point types and subtypes:
type Volt is delta 0.125 range 0.0 .. 255.0;

- - A pure fraction which requires all the available
-- space in a word can be declared as the type Fraction:

type Fraction is delta System.Fine Delta range -1.0 .. 1.0;
-- Fraction'Last = 1.0 — System.Fine_Delta

type Money is delta 0.01 digits 15; -- decimal fixed point
subtype Salary is Money digits 10;
-- Money'Last = 10.0%*13 — 0.01, Salary'Last = 10.0%*8 — 0.01

51 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

3.5.10 Operations of Fixed Point Types

Static Semantics

The following attributes are defined for every fixed point subtype S:

S'Small

S'Delta

S'Fore

S'Aft

S'Small denotes the small of the type of S. The value of this attribute is of the type
universal_real. Small may be specified for nonderived ordinary fixed point types via an
attribute_definition_clause (see 13.3); the expression of such a clause shall be static and
positive.

S'Delta denotes the delta of the fixed point subtype S. The value of this attribute is of the
type universal real.

S'Fore yields the minimum number of characters needed before the decimal point for the
decimal representation of any value of the subtype S, assuming that the representation
does not include an exponent, but includes a one-character prefix that is either a minus
sign or a space. (This minimum number does not include superfluous zeros or underlines,
and is at least 2.) The value of this attribute is of the type universal integer.

S'Aft yields the number of decimal digits needed after the decimal point to accommodate
the delta of the subtype S, unless the delta of the subtype S is greater than 0.1, in which
case the attribute yields the value one. (S'Aft is the smallest positive integer N for which
(10**N)*S'Delta is greater than or equal to one.) The value of this attribute is of the type
universal_integer.

The following additional attributes are defined for every decimal fixed point subtype S:

S'Digits

S'Scale

S'Round

NOTES

S'Digits denotes the digits of the decimal fixed point subtype S, which corresponds to the
number of decimal digits that are representable in objects of the subtype. The value of this
attribute is of the type universal integer. Its value is determined as follows:

e For a first subtype or a subtype defined by a subtype_indication with a
digits_constraint, the digits is the value of the expression given after the reserved
word digits;

e For a subtype defined by a subtype_indication without a digits_constraint, the

digits of the subtype is the same as that of the subtype denoted by the
subtype _mark in the subtype_indication;

e The digits of a base subtype is the largest integer D such that the range —(10**D—
D)*delta .. +(10**D-1)*delta is included in the base range of the type.

S'Scale denotes the scale of the subtype S, defined as the value N such that S'Delta =
10.0**(—N). The scale indicates the position of the point relative to the rightmost
significant digits of values of subtype S. The value of this attribute is of the type
universal_integer.

S'"Round denotes a function with the following specification:

function S'Round (X : universal real)
return S'Base

The function returns the value obtained by rounding X (away from 0, if X is midway
between two values of the type of S).

45 All subtypes of a fixed point type will have the same value for the Delta attribute, in the absence of
delta_constraints (see J.3).

46 S'Scale is not always the same as S'Aft for a decimal subtype; for example, if S'Delta = 1.0 then S'Aft is 1 while
S'Scale is 0.

47 The predefined operations of a fixed point type include the assignment operation, qualification, the membership
tests, and explicit conversion to and from other numeric types. They also include the relational operators and the
following predefined arithmetic operators: the binary and unary adding operators — and +, multiplying operators, and
the unary operator abs.

© ISO/IEC 2021 — All rights reserved 52

ISO/IEC 8652:DIS

48 As for all types, objects of a fixed point type have Size and Address attributes (see 13.3). Other attributes of fixed
point types are defined in A.5.4.

3.6 Array Types

An array object is a composite object consisting of components which all have the same subtype. The
name for a component of an array uses one or more index values belonging to specified discrete types.
The value of an array object is a composite value consisting of the values of the components.

Syntax

array_type_definition ::=
unconstrained_array_definition | constrained_array_definition

unconstrained_array_definition ::=
array(index_subtype_definition {, index_subtype_definition}) of component_definition

index_subtype_definition ::= subtype_mark range <>

constrained_array_definition ::=
array (discrete_subtype_definition {, discrete_subtype_definition}) of component_definition

discrete_subtype_definition ::= discrete_subtype_indication | range

component_definition ::=
[aliased] subtype_indication
| [aliased] access_definition

Name Resolution Rules

For a discrete_subtype_definition that is a range, the range shall resolve to be of some specific
discrete type; which discrete type shall be determined without using any context other than the bounds
of the range itself (plus the preference for root_integer — see 8.6).

Legality Rules

Each index_subtype_definition or discrete_subtype definition in an array_type definition defines
an index subtype; its type (the index type) shall be discrete.

The subtype defined by the subtype_indication of a component_definition (the component subtype)
shall be a definite subtype.

Static Semantics

An array is characterized by the number of indices (the dimensionality of the array), the type and
position of each index, the lower and upper bounds for each index, and the subtype of the
components. The order of the indices is significant.

A one-dimensional array has a distinct component for each possible index value. A multidimensional
array has a distinct component for each possible sequence of index values that can be formed by
selecting one value for each index position (in the given order). The possible values for a given index
are all the values between the lower and upper bounds, inclusive; this range of values is called the
index range. The bounds of an array are the bounds of its index ranges. The length of a dimension of
an array is the number of values of the index range of the dimension (zero for a null range). The
length of a one-dimensional array is the length of its only dimension.

An array_type_definition defines an array type and its first subtype. For each object of this array type,
the number of indices, the type and position of each index, and the subtype of the components are as
in the type definition; the values of the lower and upper bounds for each index belong to the
corresponding index subtype of its type, except for null arrays (see 3.6.1).

53 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

An unconstrained_array_definition defines an array type with an unconstrained first subtype. Each
index_subtype_definition defines the corresponding index subtype to be the subtype denoted by the
subtype_mark. The compound delimiter <> (called a box) of an index_subtype_definition stands for
an undefined range (different objects of the type need not have the same bounds).

A constrained_array_definition defines an array type with a constrained first subtype. Each
discrete_subtype_definition defines the corresponding index subtype, as well as the corresponding
index range for the constrained first subtype. The constraint of the first subtype consists of the bounds
of the index ranges.

The discrete subtype defined by a discrete_subtype_definition is either that defined by the subtype_-
indication, or a subtype determined by the range as follows:
e If the type of the range resolves to root integer, then the discrete_subtype_definition

defines a subtype of the predefined type Integer with bounds given by a conversion to Integer
of the bounds of the range;

e Otherwise, the discrete_subtype_definition defines a subtype of the type of the range, with
the bounds given by the range.

The component_definition of an array_type definition defines the nominal subtype of the
components. If the reserved word aliased appears in the component_definition, then each component
of the array is aliased (see 3.10).

Dynamic Semantics

The elaboration of an array_type_definition creates the array type and its first subtype, and consists of
the elaboration of any discrete_subtype_definitions and the component_definition.

The elaboration of a discrete_subtype_definition that does not contain any per-object expressions
creates the discrete subtype, and consists of the elaboration of the subtype_indication or the
evaluation of the range. The elaboration of a discrete_subtype definition that contains one or more
per-object expressions is defined in 3.8. The elaboration of a component_definition in an array_-
type_definition consists of the elaboration of the subtype indication or access_definition. The
elaboration of any discrete_subtype_definitions and the elaboration of the component_definition are
performed in an arbitrary order.

Static Semantics

For an array type with a scalar component type, the following language-defined representation aspect

may be specified with an aspect_specification (see 13.1.1):

Default Component Value
This aspect shall be specified by a static expression, and that expression shall be explicit,
even if the aspect has a boolean type. Default Component Value shall be specified only
on a full_type_declaration.

If a derived type inherits a boolean Default Component Value aspect, the aspect may be specified to
have any value for the derived type.

Name Resolution Rules

The expected type for the expression specified for the Default Component Value aspect is the
component type of the array type defined by the full_type_declaration on which it appears.
NOTES

49 All components of an array have the same subtype. In particular, for an array of components that are one-
dimensional arrays, this means that all components have the same bounds and hence the same length.

50 Each elaboration of an array_type_definition creates a distinct array type. A consequence of this is that each object
whose object_declaration contains an array_type_definition is of its own unique type.

© ISO/IEC 2021 — All rights reserved 54

ISO/IEC 8652:DIS

Examples

Examples of type declarations with unconstrained array definitions:

type Vector is array(Integer range <>) of Real;

type Matrix is array(Integer range <>, Integer range <>) of Real;
type Bit Vector is array(Integer range <>) of Boolean;

type Roman is array(Positive range <>) of Roman Digit; --see3.5.2

Examples of type declarations with constrained array definitions:

type Table is array(l1 .. 10) of Integer;
type Schedule is array(Day) of Boolean;
type Line is array(l .. Max_Line Size) of Character;

Examples of object declarations with array type definitions:

Grid : array(l .. 80, 1 .. 100) of Boolean;
Mix : array (Color range Red .. Green) of Boolean;
Msg Table : constant array (Error Code) of access constant String :=
(Too_Big => new String' ("Result too big"), Too Small => ...);
Page : array(Positive range <>) of Line := -- anarray of arrays
(1 | 50 => Line'(l | Line'Last => '+', others => '-'), --see43.3
2 .. 49 => Line'(l1 | Line'lLast => '|', others => ' '));

- - Page is constrained by its initial value to (1..50)

3.6.1 Index Constraints and Discrete Ranges

An index_constraint determines the range of possible values for every index of an array subtype, and
thereby the corresponding array bounds.

Syntax
index_constraint ::= (discrete_range {, discrete_range})

discrete_range ::= discrete_subtype_indication | range
Name Resolution Rules

The type of a discrete_range is the type of the subtype defined by the subtype_indication, or the
type of the range. For an index_constraint, each discrete_range shall resolve to be of the type of the
corresponding index.

Legality Rules

An index_constraint shall appear only in a subtype_indication whose subtype_mark denotes either
an unconstrained array subtype, or an unconstrained access subtype whose designated subtype is an
unconstrained array subtype; in either case, the index_constraint shall provide a discrete_range for
each index of the array type.

Static Semantics

A discrete_range defines a range whose bounds are given by the range, or by the range of the
subtype defined by the subtype_indication.

Dynamic Semantics

An index_constraint is compatible with an unconstrained array subtype if and only if the index range
defined by each discrete_range is compatible (see 3.5) with the corresponding index subtype. If any
of the discrete_ranges defines a null range, any array thus constrained is a null array, having no
components. An array value satisfies an index_constraint if at each index position the array value and
the index_constraint have the same index bounds.

The elaboration of an index_constraint consists of the evaluation of the discrete_range(s), in an
arbitrary order. The evaluation of a discrete_range consists of the elaboration of the
subtype_indication or the evaluation of the range.

55 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

NOTES
51 The elaboration of a subtype_indication consisting of a subtype_mark followed by an index_constraint checks the
compatibility of the index_constraint with the subtype_mark (see 3.2.2).

52 Even if an array value does not satisfy the index constraint of an array subtype, Constraint Error is not raised on
conversion to the array subtype, so long as the length of each dimension of the array value and the array subtype match.
See 4.6.

Examples

Examples of array declarations including an index constraint:

Board : Matrix(1 .. 8, 1 .. 8); -- se36
Rectangle : Matrix(1 .. 20, 1 .. 30);

Inverse : Matrix(l1 .. N, 1 .. N); -- Nneednotbe static
Filter : Bit Vector (0 .. 31); -- see3.6

Example of array declaration with a constrained array subtype:
My Schedule : Schedule; -- all arrays of type Schedule have the same bounds

Example of record type with a component that is an array:

type Var Line(Length : Natural) is
record
Image : String(l .. Length);
end record;

Null Line : Var Line(0); -- Null Line.Image is a null array

3.6.2 Operations of Array Types

Legality Rules

The argument N used in the attribute_designators for the N-th dimension of an array shall be a static
expression of some integer type. The value of N shall be positive (nonzero) and no greater than the
dimensionality of the array.

Static Semantics

The following attributes are defined for a prefix A that is of an array type (after any implicit
dereference), or denotes a constrained array subtype:

A'First A'First denotes the lower bound of the first index range; its type is the corresponding
index type.

A'First(N)
A'First(N) denotes the lower bound of the N-th index range; its type is the corresponding
index type.

A'Last A'Last denotes the upper bound of the first index range; its type is the corresponding
index type.

A'Last(N) A'Last(N) denotes the upper bound of the N-th index range; its type is the corresponding
index type.

A'Range A'Range is equivalent to the range A'First .. A'Last, except that the prefix A is only
evaluated once.

A'Range(N)
A'Range(N) is equivalent to the range A'First(N) .. A'Last(N), except that the prefix A is
only evaluated once.

A'Length A'Length denotes the number of values of the first index range (zero for a null range); its
type is universal_integer.

A'Length(N)
A'Length(N) denotes the number of values of the N-th index range (zero for a null range);
its type is universal_integer.

© ISO/IEC 2021 — All rights reserved 56

ISO/IEC 8652:DIS

Implementation Advice

An implementation should normally represent multidimensional arrays in row-major order, consistent
with the notation used for multidimensional array aggregates (see 4.3.3). However, if convention
Fortran is specified for a multidimensional array type, then column-major order should be used
instead (see B.5, “Interfacing with Fortran”).

NOTES

53 The attribute_references A'First and A'First(l) denote the same value. A similar relation exists for the

attribute_references A'Last, A'Range, and A'Length. The following relation is satisfied (except for a null array) by the
above attributes if the index type is an integer type:

A'Length(N) = A'Last(N) - A'First(N) + 1
54 An array type is limited if its component type is limited (see 7.5).

55 The predefined operations of an array type include the membership tests, qualification, and explicit conversion. If
the array type is not limited, they also include assignment and the predefined equality operators. For a one-dimensional
array type, they include the predefined concatenation operators (if nonlimited) and, if the component type is discrete,
the predefined relational operators; if the component type is boolean, the predefined logical operators are also included.

56 A component of an array can be named with an indexed_component. A value of an array type can be specified
with an array_aggregate. For a one-dimensional array type, a slice of the array can be named; also, string literals are
defined if the component type is a character type.

Examples

Examples (using arrays declared in the examples of subclause 3.6.1):

-- Filter'First = 0 Filter'Last = 31 Filter'Length = 32
-- Rectangle'lLast (1) = 20 Rectangle'Last (2) = 30

3.6.3 String Types

Static Semantics
A one-dimensional array type whose component type is a character type is called a string type.

There are three predefined string types, String, Wide String, and Wide Wide String, each indexed by
values of the predefined subtype Positive; these are declared in the visible part of package Standard:
subtype Positive is Integer range 1 .. Integer'Last;

type String is array(Positive range <>) of Character;
type Wide String is array(Positive range <>) of Wide_ Character;
type Wide Wide String is array(Positive range <>) of Wide Wide Character;

NOTES

57 String literals (see 2.6 and 4.2) are defined for all string types. The concatenation operator & is predefined for string
types, as for all nonlimited one-dimensional array types. The ordering operators <, <=, >, and >= are predefined for
string types, as for all one-dimensional discrete array types; these ordering operators correspond to lexicographic order

(see 4.5.2).
Examples
Examples of string objects:

Stars : String (1l .. 120) := (1 .. 120 => '*');
Question : constant String := "How many characters?";

- - Question'First = 1, Question'Last = 20

- - Question'Length = 20 (the number of characters)
Ask Twice : String := Question & Question; - - constrained to (1..40)
Ninety Six : constant Roman = "XCVI"; --see3.5.2and3.6

3.7 Discriminants

A composite type (other than an array or interface type) can have discriminants, which parameterize
the type. A known_discriminant_part specifies the discriminants of a composite type. A discriminant
of an object is a component of the object, and is either of a discrete type or an access type. An

57 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

unknown_discriminant_part in the declaration of a view of a type specifies that the discriminants of
the type are unknown for the given view; all subtypes of such a view are indefinite subtypes.

Syntax
discriminant_part ::= unknown_discriminant_part | known_discriminant_part
unknown_discriminant_part ::= (<>)

known_discriminant_part ::=
(discriminant_specification {; discriminant_specification})

discriminant_specification ::=
defining_identifier_list : [null_exclusion] subtype mark [:= default_expression]
[aspect_specification]
| defining_identifier_list : access_definition [:= default_expression]
[aspect_specification]

default_expression ::= expression

Name Resolution Rules

The expected type for the default_expression of a discriminant_specification is that of the
corresponding discriminant.

Legality Rules

A discriminant_part is only permitted in a declaration for a composite type that is not an array or
interface type (this includes generic formal types). A type declared with a known_discriminant_part
is called a discriminated type, as is a type that inherits (known) discriminants.

The subtype of a discriminant may be defined by an optional null_exclusion and a subtype_mark, in
which case the subtype_mark shall denote a discrete or access subtype, or it may be defined by an
access_definition. A discriminant that is defined by an access_definition is called an access
discriminant and is of an anonymous access type.

Default_expressions shall be provided either for all or for none of the discriminants of a known_-
discriminant_part. No default_expressions are permitted in a known_discriminant_part in a
declaration of a nonlimited tagged type or a generic formal type.

A discriminant_specification for an access discriminant may have a default_expression only in the
declaration for an immutably limited type (see 7.5). In addition to the places where Legality Rules
normally apply (see 12.3), this rule applies also in the private part of an instance of a generic unit.

For a type defined by a derived_type definition, if a known_discriminant_part is provided in its
declaration, then:
e The parent subtype shall be constrained;

o If the parent type is not a tagged type, then each discriminant of the derived type shall be used
in the constraint defining the parent subtype;

e If a discriminant is used in the constraint defining the parent subtype, the subtype of the
discriminant shall be statically compatible (see 4.9.1) with the subtype of the corresponding
parent discriminant.

Static Semantics

A discriminant_specification declares a discriminant; the subtype _mark denotes its subtype unless it
is an access discriminant, in which case the discriminant's subtype is the anonymous access-to-
variable subtype defined by the access_definition.

For a type defined by a derived_type_definition, each discriminant of the parent type is either
inherited, constrained to equal some new discriminant of the derived type, or constrained to the value

© ISO/IEC 2021 — All rights reserved 58

ISO/IEC 8652:DIS

of an expression. When inherited or constrained to equal some new discriminant, the parent
discriminant and the discriminant of the derived type are said to correspond. Two discriminants also
correspond if there is some common discriminant to which they both correspond. A discriminant
corresponds to itself as well. If a discriminant of a parent type is constrained to a specific value by a
derived_type_definition, then that discriminant is said to be specified by that
derived_type_definition.

A constraint that appears within the definition of a discriminated type depends on a discriminant of
the type if it names the discriminant as a bound or discriminant value. A component_definition
depends on a discriminant if its constraint depends on the discriminant, or on a discriminant that
corresponds to it.

A component depends on a discriminant if:
e [ts component_definition depends on the discriminant; or
e [tis declared in a variant_part that is governed by the discriminant; or

e [t is a component inherited as part of a derived_type_definition, and the constraint of the
parent_subtype_indication depends on the discriminant; or

e [t is a subcomponent of a component that depends on the discriminant.

Each value of a discriminated type includes a value for each component of the type that does not
depend on a discriminant; this includes the discriminants themselves. The values of discriminants
determine which other component values are present in the value of the discriminated type.

A type declared with a known_discriminant_part is said to have known discriminants; its first
subtype is unconstrained. A type declared with an unknown_discriminant_part is said to have
unknown discriminants. A type declared without a discriminant_part has no discriminants, unless it is
a derived type; if derived, such a type has the same sort of discriminants (known, unknown, or none)
as its parent (or ancestor) type. A tagged class-wide type also has unknown discriminants. Any
subtype of a type with unknown discriminants is an unconstrained and indefinite subtype (see 3.2 and
3.3).

Dynamic Semantics

For an access discriminant, its access_definition is elaborated when the value of the access
discriminant is defined: by evaluation of its default_expression, by elaboration of a
discriminant_constraint, or by an assignment that initializes the enclosing object.

NOTES

58 If a discriminated type has default_expressions for its discriminants, then unconstrained variables of the type are
permitted, and the values of the discriminants can be changed by an assignment to such a variable. If defaults are not
provided for the discriminants, then all variables of the type are constrained, either by explicit constraint or by their
initial value; the values of the discriminants of such a variable cannot be changed after initialization.

59 The default_expression for a discriminant of a type is evaluated when an object of an unconstrained subtype of the
type is created.

60 Assignment to a discriminant of an object (after its initialization) is not allowed, since the name of a discriminant is
a constant; neither assignment_statements nor assignments inherent in passing as an in out or out parameter are
allowed. Note however that the value of a discriminant can be changed by assigning to the enclosing object, presuming
it is an unconstrained variable.

61 A discriminant that is of a named access type is not called an access discriminant; that term is used only for
discriminants defined by an access_definition.

Examples
Examples of discriminated types:
type Buffer(Size : Buffer Size := 100) is --see3.5.4
record
Pos : Buffer Size := 0;
Value : String(l .. Size);

end record;

59 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

type Matrix Rec (Rows, Columns : Integer) is
record
Mat : Matrix(l .. Rows, 1 .. Columns) ; -~ see 3.6
end record;

type Square(Side : Integer) is new
Matrix Rec(Rows => Side, Columns => Side) ;
type Double Square (Number : Integer) is
record
Left : Square (Number)

Right : Square (Number) ;
end record;

task type Worker (Prio : System.Priority; Buf : access Buffer)
with Priority => Prio is --seeD.I
- - discriminants used to parameterize the task type (see 9.1)
entry Fill;

entry Drain;
end Worker;

3.7.1 Discriminant Constraints

A discriminant_constraint specifies the values of the discriminants for a given discriminated type.

Syntax

discriminant_constraint ::=
(discriminant_association {, discriminant_association})

discriminant_association ::=
[discriminant_selector_name {'|' discriminant_selector_name} =>] expression

A discriminant_association is said to be wnamed if it has one or more
discriminant selector_names; it is otherwise said to be positional. In a discriminant_constraint,
any positional associations shall precede any named associations.

Name Resolution Rules

Each selector_name of a named discriminant_association shall resolve to denote a discriminant of
the subtype being constrained; the discriminants so named are the associated discriminants of the
named association. For a positional association, the associated discriminant is the one whose
discriminant_specification occurred in the corresponding position in the known_discriminant_part
that defined the discriminants of the subtype being constrained.

The expected type for the expression in a discriminant_association is that of the associated
discriminant(s).

Legality Rules

A discriminant_constraint is only allowed in a subtype_indication whose subtype mark denotes
either an unconstrained discriminated subtype, or an unconstrained access subtype whose designated
subtype is an unconstrained discriminated subtype. However, in the case of an access subtype, a
discriminant_constraint is legal only if any dereference of a value of the access type is known to be
constrained (see 3.3). In addition to the places where Legality Rules normally apply (see 12.3), these
rules apply also in the private part of an instance of a generic unit.

A named discriminant_association with more than one selector_name is allowed only if the named
discriminants are all of the same type. A discriminant_constraint shall provide exactly one value for
each discriminant of the subtype being constrained.

Dynamic Semantics

A discriminant_constraint is compatible with an unconstrained discriminated subtype if each
discriminant value belongs to the subtype of the corresponding discriminant.

© ISO/IEC 2021 — All rights reserved 60

ISO/IEC 8652:DIS

A composite value satisfies a discriminant constraint if and only if each discriminant of the composite
value has the value imposed by the discriminant constraint.

For the elaboration of a discriminant_constraint, the expressions in the discriminant_associations
are evaluated in an arbitrary order and converted to the type of the associated discriminant (which
might raise Constraint Error — see 4.6); the expression of a named association is evaluated (and
converted) once for each associated discriminant. The result of each evaluation and conversion is the
value imposed by the constraint for the associated discriminant.

NOTES

62 The rules of the language ensure that a discriminant of an object always has a value, either from explicit or implicit
initialization.

Examples

Examples (using types declared above in subclause 3.7):

Large : Buffer(200); -- constrained, always 200 characters
-- (explicit discriminant value)
Message : Buffer; - - unconstrained, initially 100 characters
-~ (default discriminant value)
Basis : Square (5) ; - - constrained, always 5 by 5
Illegal : Square; - - illegal, a Square has to be constrained

3.7.2 Operations of Discriminated Types

If a discriminated type has default_expressions for its discriminants, then unconstrained variables of
the type are permitted, and the discriminants of such a variable can be changed by assignment to the
variable. For a formal parameter of such a type, an attribute is provided to determine whether the
corresponding actual parameter is constrained or unconstrained.

Static Semantics

For a prefix A that is of a discriminated type (after any implicit dereference), the following attribute is
defined:

A'Constrained
Yields the value True if A denotes a constant, a value, a tagged object, or a constrained
variable, and False otherwise. The value of this attribute is of the predefined type
Boolean.

Erroneous Execution

The execution of a construct is erroneous if the construct has a constituent that is a name denoting a
subcomponent that depends on discriminants, and the value of any of these discriminants is changed
by this execution between evaluating the name and the last use (within this execution) of the
subcomponent denoted by the name.

3.8 Record Types

A record object is a composite object consisting of named components. The value of a record object is
a composite value consisting of the values of the components.

Syntax
record_type_definition ::= [[abstract] tagged] [limited] record_definition
record_definition ::=
record
component_list

end record [record_identifier]
| null record

61 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

component_list ::=
component_item {component_item}
| {component_item} variant_part
| null;

component_item ::= component_declaration | aspect_clause

component_declaration ::=
defining_identifier_list : component_definition [:= default_expression]
[aspect_specification];

If a record identifier appears at the end of the record_definition, it shall repeat the
defining_identifier of the enclosing full_type_declaration.

Name Resolution Rules

The expected type for the default_expression, if any, in a component_declaration is the type of the
component.

Legality Rules

Each component_declaration declares a component of the record type. Besides components declared
by component_declarations, the components of a record type include any components declared by
discriminant_specifications of the record type declaration. The identifiers of all components of a
record type shall be distinct.

Within a type_declaration, a name that denotes a component, protected subprogram, or entry of the
type is allowed only in the following cases:

e A name that denotes any component, protected subprogram, or entry is allowed within an
aspect_specification, an operational item, or a representation item that occurs within the
declaration of the composite type.

¢ A name that denotes a noninherited discriminant is allowed within the declaration of the type,
but not within the discriminant_part. If the discriminant is used to define the constraint of a
component, the bounds of an entry family, or the constraint of the parent subtype in a
derived_type_definition, then its name shall appear alone as a direct_name (not as part of a
larger expression or expanded name). A discriminant shall not be used to define the constraint
of a scalar component.

If the name of the current instance of a type (see 8.6) is used to define the constraint of a component,
then it shall appear as a direct_name that is the prefix of an attribute_reference whose result is of an
access type, and the attribute_reference shall appear alone.

Static Semantics

If a record_type_definition includes the reserved word limited, the type is called an explicitly limited
record type.

The component_definition of a component_declaration defines the (nominal) subtype of the
component. If the reserved word aliased appears in the component_definition, then the component is
aliased (see 3.10).

If the component_list of a record type is defined by the reserved word null and there are no
discriminants, then the record type has no components and all records of the type are null records. A
record_definition of null record is equivalent to record null; end record.

Dynamic Semantics

The elaboration of a record_type_definition creates the record type and its first subtype, and consists
of the claboration of the record_definition. The elaboration of a record_definition consists of the
elaboration of its component_list, if any.

© ISO/IEC 2021 — All rights reserved 62

ISO/IEC 8652:DIS

The elaboration of a component_list consists of the elaboration of the component items and
variant_part, if any, in the order in which they appear. The elaboration of a component_declaration
consists of the elaboration of the component_definition.

Within the definition of a composite type, if a component_definition or discrete_subtype_definition
(see 9.5.2) includes a name that denotes a discriminant of the type, or that is an attribute_reference
whose prefix denotes the current instance of the type, the expression containing the name is called a
per-object expression, and the constraint or range being defined is called a per-object constraint. For
the elaboration of a component_definition of a component_declaration or the discrete_subtype -
definition of an entry_declaration for an entry family (see 9.5.2), if the component subtype is defined
by an access_definition or if the constraint or range of the subtype indication or discrete -
subtype_definition is not a per-object constraint, then the access_definition, subtype_indication, or
discrete_subtype_definition is elaborated. On the other hand, if the constraint or range is a per-
object constraint, then the elaboration consists of the evaluation of any included expression that is not
part of a per-object expression. Each such expression is evaluated once unless it is part of a named
association in a discriminant constraint, in which case it is evaluated once for each associated
discriminant.

When a per-object constraint is elaborated (as part of creating an object), each per-object expression
of the constraint is evaluated. For other expressions, the values determined during the elaboration of
the component_definition or entry_declaration are used. Any checks associated with the enclosing
subtype_indication or discrete_subtype definition are performed, including the subtype
compatibility check (see 3.2.2), and the associated subtype is created.

NOTES

63 A component_declaration with several identifiers is equivalent to a sequence of single component_declarations,
as explained in 3.3.1.

64 The default_expression of a record component is only evaluated upon the creation of a default-initialized object of
the record type (presuming the object has the component, if it is in a variant_part — see 3.3.1).

65 The subtype defined by a component_definition (see 3.6) has to be a definite subtype.
66 If a record type does not have a variant_part, then the same components are present in all values of the type.

67 A record type is limited if it has the reserved word limited in its definition, or if any of its components are limited
(see 7.5).

68 The predefined operations of a record type include membership tests, qualification, and explicit conversion. If the
record type is nonlimited, they also include assignment and the predefined equality operators.

69 A component of a record can be named with a selected_component. A value of a record can be specified with a
record_aggregate.

Examples
Examples of record type declarations:
type Date is
record
Day : Integer range 1 .. 31;
Month : Month Name; -- see3.5.1
Year : Integer range 0 .. 4000;

end record;

type Complex is

record
Re : Real := 0.0;
Im : Real := 0.0;

end record Complex;

Examples of record variables:

Tomorrow, Yesterday : Date;
A, B, C : Complex;

- - both components of A, B, and C are implicitly initialized to zero

63 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

3.8.1 Variant Parts and Discrete Choices

A record type with a variant_part specifies alternative lists of components. Each variant defines the
components for the value or values of the discriminant covered by its discrete_choice_list.

Syntax

variant_part ::=
case discriminant_direct_name is
variant
{variant}
end case;
variant ::=
when discrete_choice_list =>
component_list
discrete_choice_list ::= discrete_choice {'|' discrete_choice}

discrete_choice ::= choice_expression | discrete_subtype_indication | range | others

Name Resolution Rules

The discriminant_direct_name shall resolve to denote a discriminant (called the discriminant of the
variant_part) specified in the known_discriminant_part of the full_type_declaration that contains the
variant_part. The expected type for each discrete_choice in a variant is the type of the discriminant
of the variant_part.

Legality Rules

The discriminant of the variant_part shall be of a discrete type.

The choice_expressions, subtype_indications, and ranges given as discrete_choices in a
variant_part shall be static. The discrete_choice others shall appear alone in a discrete_choice_list,
and such a discrete_choice_list, if it appears, shall be the last one in the enclosing construct.

A discrete_choice is defined to cover a value in the following cases:

o A discrete_choice that is a choice_expression covers a value if the value equals the value of
the choice_expression converted to the expected type.

e A discrete_choice that is a subtype_indication covers all values (possibly none) that belong
to the subtype and that satisfy the static predicates of the subtype (see 3.2.4).

e A discrete_choice that is a range covers all values (possibly none) that belong to the range.

e The discrete_choice others covers all values of its expected type that are not covered by
previous discrete_choice_lists of the same construct.

A discrete_choice_list covers a value if one of its discrete_choices covers the value.

The possible values of the discriminant of a variant_part shall be covered as follows:

o [f the discriminant is of a static constrained scalar subtype then, except within an instance of a
generic unit, each non-others discrete_choice shall cover only values in that subtype that
satisfy its predicates, and each value of that subtype that satisfies its predicates shall be
covered by some discrete_choice (either explicitly or by others);

e [f the type of the discriminant is a descendant of a generic formal scalar type, then the
variant_part shall have an others discrete_choice;

e Otherwise, each value of the base range of the type of the discriminant shall be covered
(either explicitly or by others).

Two distinct discrete_choices of a variant_part shall not cover the same value.

© ISO/IEC 2021 — All rights reserved 64

ISO/IEC 8652:DIS

Static Semantics
If the component_list of a variant is specified by null, the variant has no components.

The discriminant of a variant_part is said to govern the variant_part and its variants. In addition, the
discriminant of a derived type governs a variant_part and its variants if it corresponds (see 3.7) to the
discriminant of the variant_part.

Dynamic Semantics

A record value contains the values of the components of a particular variant only if the value of the
discriminant governing the variant is covered by the discrete_choice_list of the variant. This rule
applies in turn to any further variant that is, itself, included in the component_list of the given
variant.

When an object of a discriminated type 7 is initialized by default, Constraint Error is raised if no
discrete_choice_list of any variant of a variant_part of T covers the value of the discriminant that
governs the variant_part. When a variant_part appears in the component_list of another variant 7,
this test is only applied if the value of the discriminant governing V is covered by the
discrete_choice_list of V.

The elaboration of a variant_part consists of the elaboration of the component_list of each variant in
the order in which they appear.

Examples
Example of record type with a variant part:
type Device is (Printer, Disk, Drum) ;
type State 1is (Open, Closed) ;
type Peripheral (Unit : Device := Disk) is
record
Status : State;
case Unit is
when Printer =>
Line Count : Integer range 1 .. Page Size;
when others =>
Cylinder : Cylinder Index;
Track : Track Number;
end case;

end record;

Examples of record subtypes:

subtype Drum Unit is Peripheral (Drum)
subtype Disk Unit is Peripheral (Disk)

i
i
Examples of constrained record variables:

Writer : Peripheral (Unit => Printer);
Archive : Disk Unit;

3.9 Tagged Types and Type Extensions

Tagged types and type extensions support object-oriented programming, based on inheritance with
extension and run-time polymorphism via dispatching operations.

Static Semantics

A record type or private type that has the reserved word tagged in its declaration is called a tagged
type. In addition, an interface type is a tagged type, as is a task or protected type derived from an
interface (see 3.9.4). When deriving from a tagged type, as for any derived type, additional primitive
subprograms may be defined, and inherited primitive subprograms may be overridden. The derived
type is called an extension of its ancestor types, or simply a type extension.

65 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

Every type extension is also a tagged type, and is a record extension or a private extension of some
other tagged type, or a noninterface synchronized tagged type (see 3.9.4). A record extension is
defined by a derived_type_definition with a record_extension_part (see 3.9.1), which may include
the definition of additional components. A private extension, which is a partial view of a record
extension or of a synchronized tagged type, can be declared in the visible part of a package (see 7.3)
or in a generic formal part (see 12.5.1).

An object of a tagged type has an associated (run-time) fag that identifies the specific tagged type
used to create the object originally. The tag of an operand of a class-wide tagged type T"Class controls
which subprogram body is to be executed when a primitive subprogram of type 7 is applied to the
operand (see 3.9.2); using a tag to control which body to execute is called dispatching.

The tag of a specific tagged type identifies the full_type declaration of the type, and for a type
extension, is sufficient to uniquely identify the type among all descendants of the same ancestor. If a
declaration for a tagged type occurs within a generic_package_declaration, then the corresponding
type declarations in distinct instances of the generic package are associated with distinct tags. For a
tagged type that is local to a generic package body and with all of its ancestors (if any) also local to
the generic body, the language does not specify whether repeated instantiations of the generic body
result in distinct tags.

The following language-defined library package exists:

package Ada.Tags
with Preelaborate, Nonblocking, Global => in out synchronized is
type Tag is private
with Preelaborable Initialization;

No_Tag : comnstant Tag;

function Expanded Name (T : Tag) return String;

function Wide Expanded Name (T : Tag) return Wide String;

function Wide Wide Expanded Name (T : Tag) return Wide Wide String;
function External Tag(T : Tag) return String;

function Internal Tag(External : String) return Tag;

function Descendant Tag(External : String; Ancestor : Tag) return Tag;
function Is Descendant At Same Level (Descendant, Ancestor : Tag)
return Boolean;

function Parent Tag (T : Tag) return Tag;

type Tag Array is array (Positive range <>) of Tag;

function Interface Ancestor Tags (T : Tag) return Tag Array;
function Is Abstract (T : Tag) return Boolean;

Tag Error : exception;

private
. - - not specified by the language
end Ada.Tags;

No_Tag is the default initial value of type Tag.

The function Wide Wide Expanded Name returns the full expanded name of the first subtype of the
specific type identified by the tag, in upper case, starting with a root library unit. The result is
implementation defined if the type is declared within an unnamed block_statement.

The function Expanded Name (respectively, Wide Expanded Name) returns the same sequence of
graphic characters as that defined for Wide Wide Expanded Name, if all the graphic characters are
defined in Character (respectively, Wide Character); otherwise, the sequence of characters is
implementation defined, but no shorter than that returned by Wide Wide Expanded Name for the
same value of the argument.

The function External Tag returns a string to be used in an external representation for the given tag.
The call External Tag(S'Tag) is equivalent to the attribute_reference S'External Tag (see 13.3).

© ISO/IEC 2021 — All rights reserved 66

ISO/IEC 8652:DIS

The string returned by the functions Expanded Name, Wide Expanded Name, Wide Wide -
Expanded Name, and External Tag has lower bound 1.

The function Internal Tag returns a tag that corresponds to the given external tag, or raises Tag_Error
if the given string is not the external tag for any specific type of the partition. Tag_Error is also raised
if the specific type identified is a library-level type whose tag has not yet been created (see 13.14).

The function Descendant Tag returns the (internal) tag for the type that corresponds to the given
external tag and is both a descendant of the type identified by the Ancestor tag and has the same
accessibility level as the identified ancestor. Tag_Error is raised if External is not the external tag for
such a type. Tag_Error is also raised if the specific type identified is a library-level type whose tag has
not yet been created, or if the given external tag identifies more than one type that has the appropriate
Ancestor and accessibility level.

The function Is_Descendant At Same Level returns True if the Descendant tag identifies a type that
is both a descendant of the type identified by Ancestor and at the same accessibility level. If not, it
returns False.

For the purposes of the dynamic semantics of functions Descendant Tag and
Is Descendant At Same Level, a tagged type T2 is a descendant of a type T1 if it is the same as T1,
or if its parent type or one of its progenitor types is a descendant of type T1 by this rule, even if at the
point of the declaration of T2, one of the derivations in the chain is not visible.

The function Parent Tag returns the tag of the parent type of the type whose tag is T. If the type does
not have a parent type (that is, it was not defined by a derived_type_definition), then No Tag is
returned.

The function Interface Ancestor Tags returns an array containing the tag of each interface ancestor
type of the type whose tag is T, other than T itself. The lower bound of the returned array is 1, and the
order of the returned tags is unspecified. Each tag appears in the result exactly once. If the type whose
tag is T has no interface ancestors, a null array is returned.

The function Is_Abstract returns True if the type whose tag is T is abstract, and False otherwise.
For every subtype S of a tagged type T (specific or class-wide), the following attributes are defined:

S'Class S'Class denotes a subtype of the class-wide type (called 7T'Class in this International
Standard) for the class rooted at 7 (or if S already denotes a class-wide subtype, then
S'Class is the same as S).

S'Class is unconstrained. However, if S is constrained, then the values of S'Class are only
those that when converted to the type T belong to S.

S'Tag S'Tag denotes the tag of the type T (or if T is class-wide, the tag of the root type of the
corresponding class). The value of this attribute is of type Tag.

Given a prefix X that is of a class-wide tagged type (after any implicit dereference), the following
attribute is defined:

X'Tag X'Tag denotes the tag of X. The value of this attribute is of type Tag.

The following language-defined generic function exists:

generic
type T (<>) is abstract tagged limited private;
type Parameters (<>) is limited private;
with function Constructor (Params : not null access Parameters)
return T is abstract;
function Ada.Tags.Generic Dispatching Constructor
(The Tag : Tag;
Params : not null access Parameters) return T'Class
with Preelaborate, Convention => Intrinsic,
Nonblocking, Global => in out synchronized;

67 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

Tags.Generic_Dispatching Constructor provides a mechanism to create an object of an appropriate
type from just a tag value. The function Constructor is expected to create the object given a reference
to an object of type Parameters.

Dynamic Semantics

The tag associated with an object of a tagged type is determined as follows:

e The tag of a stand-alone object, a component, or an aggregate of a specific tagged type T
identifies 7.

e The tag of an object created by an allocator for an access type with a specific designated
tagged type T, identifies 7.

o The tag of an object of a class-wide tagged type is that of its initialization expression.

e The tag of the result returned by a function whose result type is a specific tagged type T
identifies 7.

e The tag of the result returned by a function with a class-wide result type is that of the return
object.

The tag is preserved by type conversion and by parameter passing. The tag of a value is the tag of the
associated object (see 6.2).

Tag Error is raised by a call of Descendant Tag, Expanded Name, External Tag, Interface -
Ancestor_Tags, Is_Abstract, s Descendant At Same Level, Parent Tag, Wide Expanded Name, or
Wide Wide Expanded Name if any tag passed is No_Tag.

An instance of Tags.Generic Dispatching Constructor raises Tag Error if The Tag does not
represent a concrete descendant of T or if the innermost master (see 7.6.1) of this descendant is not
also a master of the instance. Otherwise, it dispatches to the primitive function denoted by the formal
Constructor for the type identified by The Tag, passing Params, and returns the result. Any exception
raised by the function is propagated.

Erroneous Execution

If an internal tag provided to an instance of Tags.Generic_Dispatching Constructor or to any
subprogram declared in package Tags identifies either a type that is not library-level and whose tag
has not been created (see 13.14), or a type that does not exist in the partition at the time of the call,
then execution is erroneous.

Implementation Permissions

The implementation of Internal Tag and Descendant Tag may raise Tag_Error if no specific type
corresponding to the string External passed as a parameter exists in the partition at the time the
function is called, or if there is no such type whose innermost master is a master of the point of the
function call.

Implementation Advice

Internal Tag should return the tag of a type, if one exists, whose innermost master is a master of the
point of the function call.

NOTES
70 A type declared with the reserved word tagged should normally be declared in a package_specification, so that
new primitive subprograms can be declared for it.

71 Once an object has been created, its tag never changes.

72 Class-wide types are defined to have unknown discriminants (see 3.7). This means that objects of a class-wide type
have to be explicitly initialized (whether created by an object_declaration or an allocator), and that aggregates have to
be explicitly qualified with a specific type when their expected type is class-wide.

73 The capability provided by Tags.Generic_Dispatching_Constructor is sometimes known as a factory.

© ISO/IEC 2021 — All rights reserved 68

ISO/IEC 8652:DIS

Examples

Examples of tagged record types:

type Point is tagged
record
X, Y : Real := 0.0;
end record;

type Expression is tagged null record;
- - Components will be added by each extension

3.9.1 Type Extensions

Every type extension is a tagged type, and is a record extension or a private extension of some other
tagged type, or a noninterface synchronized tagged type.

Syntax

record_extension_part ::= with record_definition

Legality Rules

The parent type of a record extension shall not be a class-wide type nor shall it be a synchronized
tagged type (see 3.9.4). If the parent type or any progenitor is nonlimited, then each of the
components of the record_extension_part shall be nonlimited. In addition to the places where
Legality Rules normally apply (see 12.3), these rules apply also in the private part of an instance of a
generic unit.

Within the body of a generic unit, or the body of any of its descendant library units, a tagged type
shall not be declared as a descendant of a formal type declared within the formal part of the generic
unit.

Static Semantics

A record extension is a null extension if its declaration has no known_discriminant_part and its
record_extension_part includes no component_declarations.

In the case where the (compile-time) view of an object X is of a tagged type T1 or T1'Class and the
(run-time) tag of X is T2'Tag, only the components (if any) of X that are components of T1 (or that are
discriminants which correspond to a discriminant of T1) are said to be components of the nominal
type of X. Similarly, only parts (respectively, subcomponents) of T1 are parts (respectively,
subcomponents) of the nominal type of X.

Dynamic Semantics

The elaboration of a record_extension_part consists of the elaboration of the record_definition.

NOTES
74 The term “type extension” refers to a type as a whole. The term “extension part” refers to the piece of text that
defines the additional components (if any) the type extension has relative to its specified ancestor type.

75 When an extension is declared immediately within a body, primitive subprograms are inherited and are overridable,
but new primitive subprograms cannot be added.

76 A name that denotes a component (including a discriminant) of the parent type is not allowed within the
record_extension_part. Similarly, a name that denotes a component defined within the record_extension_part is not
allowed within the record_extension_part. It is permissible to use a name that denotes a discriminant of the record
extension, providing there is a new known_discriminant_part in the enclosing type declaration. (The full rule is given
in3.8)

77 Each visible component of a record extension has to have a unique name, whether the component is (visibly)
inherited from the parent type or declared in the record_extension_part (see 8.3).

69 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

Examples

Examples of record extensions (of types defined above in 3.9):

type Painted Point is new Point with
record
Paint : Color := White;
end record;
- - Components X and Y are inherited

Origin : comstant Painted Point := (X | Y => 0.0, Paint => Black);

type Literal is new Expression with
record - - aleafin an Expression tree
Value : Real;
end record;

type Expr Ptr is access all Expression'Class;
--see 3.9

type Binary Operation is new Expression with
record - - an internal node in an Expression tree
Left, Right : Expr_ Ptr;
end record;

type Addition is new Binary Operation with null record;
type Subtraction is new Binary Operation with null record;
- - No additional components needed for these extensions

Tree : Expr Ptr := - - A tree representation of “5.0 + (13.0-7.0)”
new Addition' (
Left => new Literal' (Value => 5.0),

Right => new Subtraction' (
Left => new Literal' (Value => 13.0),
Right => new Literal' (Value => 7.0)));

3.9.2 Dispatching Operations of Tagged Types

The primitive subprograms of a tagged type, the subprograms declared by formal_abstract -
subprogram_declarations, the Put Image attribute (see 4.10) of a specific tagged type, and the
stream attributes of a specific tagged type that are available (see 13.13.2) at the end of the declaration
list where the type is declared are called dispatching operations. A dispatching operation can be
called using a statically determined controlling tag, in which case the body to be executed is
determined at compile time. Alternatively, the controlling tag can be dynamically determined, in
which case the call dispatches to a body that is determined at run time; such a call is termed a
dispatching call. As explained below, the properties of the operands and the context of a particular
call on a dispatching operation determine how the controlling tag is determined, and hence whether or
not the call is a dispatching call. Run-time polymorphism is achieved when a dispatching operation is
called by a dispatching call.

Static Semantics

A call on a dispatching operation is a call whose name or prefix denotes the declaration of a
dispatching operation. A controlling operand in a call on a dispatching operation of a tagged type T is
one whose corresponding formal parameter is of type 7 or is of an anonymous access type with
designated type T the corresponding formal parameter is called a controlling formal parameter. 1f the
controlling formal parameter is an access parameter, the controlling operand is the object designated
by the actual parameter, rather than the actual parameter itself. If the call is to a (primitive) function
with result type T (a function with a controlling resulf), then the call has a controlling result — the
context of the call can control the dispatching. Similarly, if the call is to a function with an access
result type designating T (a function with a controlling access resulf), then the call has a controlling
access result, and the context can similarly control dispatching.

A name or expression of a tagged type is either statically tagged, dynamically tagged, or tag
indeterminate, according to whether, when used as a controlling operand, the tag that controls
dispatching is determined statically by the operand's (specific) type, dynamically by its tag at run
time, or from context. A qualified_expression or parenthesized expression is statically, dynamically,

© ISO/IEC 2021 — All rights reserved 70

ISO/IEC 8652:DIS

or indeterminately tagged according to its operand. A conditional_expression is statically,
dynamically, or indeterminately tagged according to rules given in 4.5.7. A declare_expression is
statically, dynamically, or indeterminately tagged according to its body expression. For other kinds
of names and expressions, this is determined as follows:

e The name or expression is statically tagged if it is of a specific tagged type and, if it is a call
with a controlling result or controlling access result, it has at least one statically tagged
controlling operand;

e The name or expression is dynamically tagged if it is of a class-wide type, or it is a call with
a controlling result or controlling access result and at least one dynamically tagged controlling
operand,;

e The name or expression is tag indeterminate if it is a call with a controlling result or
controlling access result, all of whose controlling operands (if any) are tag indeterminate.

A type_conversion is statically or dynamically tagged according to whether the type determined by
the subtype_mark is specific or class-wide, respectively. For an object that is designated by an
expression whose expected type is an anonymous access-to-specific tagged type, the object is
dynamically tagged if the expression, ignoring enclosing parentheses, is of the form X'Access, where
X is of a class-wide type, or is of the form new T'(...), where T denotes a class-wide subtype.
Otherwise, the object is statically or dynamically tagged according to whether the designated type of
the type of the expression is specific or class-wide, respectively.

Legality Rules

A call on a dispatching operation shall not have both dynamically tagged and statically tagged
controlling operands.

If the expected type for an expression or name is some specific tagged type, then the expression or
name shall not be dynamically tagged unless it is a controlling operand in a call on a dispatching
operation. Similarly, if the expected type for an expression is an anonymous access-to-specific tagged
type, then the object designated by the expression shall not be dynamically tagged unless it is a
controlling operand in a call on a dispatching operation.

In the declaration of a dispatching operation of a tagged type, everywhere a subtype of the tagged type
appears as a subtype of the profile (see 6.1), it shall statically match the first subtype of the tagged
type. If the dispatching operation overrides an inherited subprogram, it shall be subtype conformant
with the inherited subprogram. The convention of an inherited dispatching operation is the convention
of the corresponding primitive operation of the parent or progenitor type. The default convention of a
dispatching operation that overrides an inherited primitive operation is the convention of the inherited
operation; if the operation overrides multiple inherited operations, then they shall all have the same
convention. An explicitly declared dispatching operation shall not be of convention Intrinsic.

The default_expression for a controlling formal parameter of a dispatching operation shall be tag
indeterminate.

If a dispatching operation is defined by a subprogram_renaming_declaration or the instantiation of a
generic subprogram, any access parameter of the renamed subprogram or the generic subprogram that
corresponds to a controlling access parameter of the dispatching operation, shall have a subtype that
excludes null.

A given subprogram shall not be a dispatching operation of two or more distinct tagged types.

The explicit declaration of a primitive subprogram of a tagged type shall occur before the type is
frozen (see 13.14). For example, new dispatching operations cannot be added after objects or values
of the type exist, nor after deriving a record extension from it, nor after a body.

71 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

Dynamic Semantics

For the execution of a call on a dispatching operation of a type 7, the controlling tag value determines
which subprogram body is executed. The controlling tag value is defined as follows:

e If one or more controlling operands are statically tagged, then the controlling tag value is
statically determined to be the tag of T.

e If one or more controlling operands are dynamically tagged, then the controlling tag value is
not statically determined, but is rather determined by the tags of the controlling operands. If
there is more than one dynamically tagged controlling operand, a check is made that they all
have the same tag. If this check fails, Constraint Error is raised unless the call is a
function_call whose name denotes the declaration of an equality operator (predefined or user
defined) that returns Boolean, in which case the result of the call is defined to indicate
inequality, and no subprogram_body is executed. This check is performed prior to evaluating
any tag-indeterminate controlling operands.

e If all of the controlling operands (if any) are tag-indeterminate, then:

o If the call has a controlling result or controlling access result and is itself, or designates, a
(possibly parenthesized or qualified) controlling operand of an enclosing call on a
dispatching operation of a descendant of type 7, then its controlling tag value is
determined by the controlling tag value of this enclosing call;

o If the call has a controlling result or controlling access result and (possibly parenthesized,
qualified, or dereferenced) is the expression of an assignment_statement whose target is
of a class-wide type, then its controlling tag value is determined by the target;

» Otherwise, the controlling tag value is statically determined to be the tag of type T.

For the execution of a call on a dispatching operation, the action performed is determined by the
properties of the corresponding dispatching operation of the specific type identified by the controlling
tag value:

e if the corresponding operation is explicitly declared for this type, even if the declaration
occurs in a private part, then the action comprises an invocation of the explicit body for the
operation;

e if the corresponding operation is implicitly declared for this type and is implemented by an
entry or protected subprogram (see 9.1 and 9.4), then the action comprises a call on this entry
or protected subprogram, with the target object being given by the first actual parameter of
the call, and the actual parameters of the entry or protected subprogram being given by the
remaining actual parameters of the call, if any;

e if the corresponding operation is a predefined operator then the action comprises an
invocation of that operator;

e otherwise, the action is the same as the action for the corresponding operation of the parent
type or progenitor type from which the operation was inherited except that additional
invariant checks (see 7.3.2) and class-wide postcondition checks (see 6.1.1) may apply. If
there is more than one such corresponding operation, the action is that for the operation that is
not a null procedure, if any; otherwise, the action is that of an arbitrary one of the operations.
NOTES
78 The body to be executed for a call on a dispatching operation is determined by the tag; it does not matter whether

that tag is determined statically or dynamically, and it does not matter whether the subprogram's declaration is visible
at the place of the call.

79 This subclause covers calls on dispatching subprograms of a tagged type. Rules for tagged type membership tests
are described in 4.5.2. Controlling tag determination for an assignment_statement is described in 5.2.

80 A dispatching call can dispatch to a body whose declaration is not visible at the place of the call.

81 A call through an access-to-subprogram value is never a dispatching call, even if the access value designates a
dispatching operation. Similarly a call whose prefix denotes a subprogram_renaming_declaration cannot be a
dispatching call unless the renaming itself is the declaration of a primitive subprogram.

© ISO/IEC 2021 — All rights reserved 72

ISO/IEC 8652:DIS

3.9.3 Abstract Types and Subprograms

An abstract type is a tagged type intended for use as an ancestor of other types, but which is not
allowed to have objects of its own. An abstract subprogram is a subprogram that has no body, but is
intended to be overridden at some point when inherited. Because objects of an abstract type cannot be
created, a dispatching call to an abstract subprogram always dispatches to some overriding body.

Syntax

abstract_subprogram_declaration ::=
[overriding_indicator]
subprogram_specification is abstract
[aspect_specification];

Static Semantics

Interface types (see 3.9.4) are abstract types. In addition, a tagged type that has the reserved word
abstract in its declaration is an abstract type. The class-wide type (see 3.4.1) rooted at an abstract
type is not itself an abstract type.

Legality Rules
Only a tagged type shall have the reserved word abstract in its declaration.

A subprogram declared by an abstract subprogram_declaration or a formal_abstract -
subprogram_declaration (see 12.6) is an abstract subprogram. If it is a primitive subprogram of a
tagged type, then the tagged type shall be abstract.

If a type has an implicitly declared primitive subprogram that is inherited or is a predefined operator,
and the corresponding primitive subprogram of the parent or ancestor type is abstract or is a function
with a controlling access result, or if a type other than a nonabstract null extension inherits a function
with a controlling result, then:

o If the type is abstract or untagged, the implicitly declared subprogram is abstract.

e Otherwise, the subprogram shall be overridden with a nonabstract subprogram or, in the case
of a private extension inheriting a nonabstract function with a controlling result, have a full
type that is a null extension; for a type declared in the visible part of a package, the overriding
may be either in the visible or the private part. Such a subprogram is said to require
overriding. However, if the type is a generic formal type, the subprogram need not be
overridden for the formal type itself; a nonabstract version will necessarily be provided by the
actual type.

A call on an abstract subprogram shall be a dispatching call; nondispatching calls to an abstract
subprogram are not allowed. In addition to the places where Legality Rules normally apply (see 12.3),
these rules also apply in the private part of an instance of a generic unit.

If the name or prefix given in an iterator_procedure_call (see 5.5.3) denotes an abstract subprogram,
the subprogram shall be a dispatching subprogram.

The type of an aggregate, or of an object created by an object_declaration or an allocator, or a
generic formal object of mode in, shall not be abstract. The type of the target of an assignment
operation (see 5.2) shall not be abstract. The type of a component shall not be abstract. If the result
type of a function is abstract, then the function shall be abstract. If a function has an access result type
designating an abstract type, then the function shall be abstract. The type denoted by a
return_subtype_indication (see 6.5) shall not be abstract. A generic function shall not have an
abstract result type or an access result type designating an abstract type.

73 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

If a partial view is not abstract, the corresponding full view shall not be abstract. If a generic formal
type is abstract, then for each primitive subprogram of the formal that is not abstract, the
corresponding primitive subprogram of the actual shall not be abstract.

For an abstract type declared in a visible part, an abstract primitive subprogram shall not be declared
in the private part, unless it is overriding an abstract subprogram implicitly declared in the visible
part. For a tagged type declared in a visible part, a primitive function with a controlling result or a
controlling access result shall not be declared in the private part, unless it is overriding a function
implicitly declared in the visible part.

A generic actual subprogram shall not be an abstract subprogram unless the generic formal
subprogram is declared by a formal_abstract _subprogram_declaration. The prefix of an
attribute_reference for the Access, Unchecked Access, or Address attributes shall not denote an
abstract subprogram.

Dynamic Semantics
The elaboration of an abstract_subprogram_declaration has no effect.

NOTES
82 Abstractness is not inherited; to declare an abstract type, the reserved word abstract has to be used in the
declaration of the type extension.

83 A class-wide type is never abstract. Even if a class is rooted at an abstract type, the class-wide type for the class is
not abstract, and an object of the class-wide type can be created; the tag of such an object will identify some
nonabstract type in the class.

Examples

Example of an abstract type representing a set of natural numbers:

package Sets is
subtype Element Type is Natural;
type Set is abstract tagged null record;
function Empty return Set is abstract;
function Union(Left, Right : Set) return Set is abstract;
function Intersection(Left, Right : Set) return Set is abstract;
function Unit_ Set (Element : Element Type) return Set is abstract;
procedure Take (Element : out Element Type;
From : in out Set) is abstract;
end Sets;

NOTES

84 Notes on the example: Given the above abstract type, one could then derive various (nonabstract) extensions of the
type, representing alternative implementations of a set. One might use a bit vector, but impose an upper bound on the
largest element representable, while another might use a hash table, trading off space for flexibility.

3.9.4 Interface Types

An interface type is an abstract tagged type that provides a restricted form of multiple inheritance. A
tagged type, task type, or protected type may have one or more interface types as ancestors.

Syntax

interface_type_definition ::=
[limited | task | protected | synchronized] interface [and interface_list]

interface_list ::= interface_subtype_mark {and interface_subtype_mark}

Static Semantics

An interface type (also called an inferface) is a specific abstract tagged type that is defined by an
interface_type_definition.

An interface with the reserved word limited, task, protected, or synchronized in its definition is
termed, respectively, a limited interface, a task interface, a protected interface, or a synchronized

© ISO/IEC 2021 — All rights reserved 74

ISO/IEC 8652:DIS

interface. In addition, all task and protected interfaces are synchronized interfaces, and all
synchronized interfaces are limited interfaces.

A task or protected type derived from an interface is a tagged type. Such a tagged type is called a
synchronized tagged type, as are synchronized interfaces and private extensions whose declaration
includes the reserved word synchronized.

A task interface is an abstract task type. A protected interface is an abstract protected type.
An interface type has no components.

An interface_subtype_mark in an interface_list names a progenitor subtype; its type is the
progenitor type. An interface type inherits user-defined primitive subprograms from each progenitor
type in the same way that a derived type inherits user-defined primitive subprograms from its
progenitor types (see 3.4).

Legality Rules

All user-defined primitive subprograms of an interface type shall be abstract subprograms or null
procedures.

The type of a subtype named in an interface_list shall be an interface type.
A type derived from a nonlimited interface shall be nonlimited.

An interface derived from a task interface shall include the reserved word task in its definition; any
other type derived from a task interface shall be a private extension or a task type declared by a task
declaration (see 9.1).

An interface derived from a protected interface shall include the reserved word protected in its
definition; any other type derived from a protected interface shall be a private extension or a protected
type declared by a protected declaration (see 9.4).

An interface derived from a synchronized interface shall include one of the reserved words task,
protected, or synchronized in its definition; any other type derived from a synchronized interface
shall be a private extension, a task type declared by a task declaration, or a protected type declared by
a protected declaration.

No type shall be derived from both a task interface and a protected interface.

In addition to the places where Legality Rules normally apply (see 12.3), these rules apply also in the
private part of an instance of a generic unit.

Dynamic Semantics

The elaboration of an interface_type_definition creates the interface type and its first subtype.

NOTES

85 Nonlimited interface types have predefined nonabstract equality operators. These may be overridden with user-
defined abstract equality operators. Such operators will then require an explicit overriding for any nonabstract
descendant of the interface.

Examples

Example of a limited interface and a synchronized interface extending it:

type Queue is limited interface;
procedure Append(Q : in out Queue; Person : in Person Name) is abstract;
procedure Remove First (Q : in out Queue;

Person : out Person Name) is abstract;
function Cur Count (Q : in Queue) return Natural is abstract;
function Max Count (Q : in Queue) return Natural is abstract;
-- See 3.10.1 for Person_Name.

Queue Error : exception;
- - Append raises Queue_Error if Cur_Count(Q) = Max_Count(Q)
- - Remove_First raises Queue_Error if Cur_Count(Q) = 0

75 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

type Synchronized Queue is synchronized interface and Queue; --see9./]
procedure Append Wait (Q : in out Synchronized Queue;
Person : in Person Name) is abstract;
procedure Remove First Wait (Q : in out Synchronized Queue;
Person : out Person Name) is abstract;
procedure Transfer (From : in out Queue'Class;
To : in out Queue'Class;
Number : in Natural := 1) is
Person : Person Name;
begin

for I in 1..Number loop
Remove_First (From, Person) ;
Append (To, Person) ;
end loop;
end Transfer;
This defines a Queue interface defining a queue of people. (A similar design could be created to
define any kind of queue simply by replacing Person Name by an appropriate type.) The Queue
interface has four dispatching operations, Append, Remove First, Cur_Count, and Max_Count. The
body of a class-wide operation, Transfer is also shown. Every nonabstract extension of Queue must
provide implementations for at least its four dispatching operations, as they are abstract. Any object of
a type derived from Queue may be passed to Transfer as either the From or the To operand. The two
operands need not be of the same type in any given call.

The Synchronized Queue interface inherits the four dispatching operations from Queue and adds two
additional dispatching operations, which wait if necessary rather than raising the Queue Error
exception. This synchronized interface may only be implemented by a task or protected type, and as
such ensures safe concurrent access.

Example use of the interface:

type Fast Food Queue is new Queue with record ...;
procedure Append(Q : in out Fast Food Queue; Person : in Person Name) ;
procedure Remove First(Q : in out Fast Food Queue;
Person : out Person Name) ;
function Cur Count (Q : in Fast Food Queue) return Natural;
function Max Count (Q : in Fast Food Queue) return Natural;

Cashier, Counter : Fast Food Queue;

-- Add Casey (see 3.10.1) to the cashier's queue:

Append (Cashier, Casey);

- - After payment, move Casey to the sandwich counter queue:
Transfer (Cashier, Counter) ;

An interface such as Queue can be used directly as the parent of a new type (as shown here), or can be
used as a progenitor when a type is derived. In either case, the primitive operations of the interface are
inherited. For Queue, the implementation of the four inherited routines must be provided. Inside the
call of Transfer, calls will dispatch to the implementations of Append and Remove_ First for type
Fast Food Queue.

Example of a task interface:

type Serial Device is task interface; --see9./
procedure Read (Dev : in Serial Device; C : out Character) is abstract;
procedure Write(Dev : in Serial Device; C : in Character) is abstract;

The Serial Device interface has two dispatching operations which are intended to be implemented by
task entries (see 9.1).

© ISO/IEC 2021 — All rights reserved 76

ISO/IEC 8652:DIS

3.10 Access Types

A value of an access type (an access value) provides indirect access to the object or subprogram it
designates. Depending on its type, an access value can designate either subprograms, objects created
by allocators (see 4.8), or more generally aliased objects of an appropriate type.

Syntax

access_type_definition ::=
[null_exclusion] access_to_object_definition
| [null_exclusion] access_to_subprogram_definition

access_to_object_definition ::=
access [general_access_modifier] subtype_indication

general_access_modifier ::= all | constant

access_to_subprogram_definition ::=
access [protected] procedure parameter_profile
| access [protected] function parameter_and_result_profile

null_exclusion ::= not null

access_definition ::=
[null_exclusion] access [constant] subtype mark
| [null_exclusion] access [protected] procedure parameter_profile
| [null_exclusion] access [protected] function parameter_and_result_profile

Static Semantics

There are two kinds of access types, access-to-object types, whose values designate objects, and
access-to-subprogram types, whose values designate subprograms. Associated with an access-to-
object type is a storage pool; several access types may share the same storage pool. All descendants of
an access type share the same storage pool. A storage pool is an area of storage used to hold
dynamically allocated objects (called pool elements) created by allocators; storage pools are described
further in 13.11, “Storage Management”.

Access-to-object types are further subdivided into pool-specific access types, whose values can
designate only the elements of their associated storage pool, and general access types, whose values
can designate the elements of any storage pool, as well as aliased objects created by declarations
rather than allocators, and aliased subcomponents of other objects.

A view of an object is defined to be aliased if it is defined by an object_declaration, component_-
definition, parameter_specification, or extended_return_object_declaration with the reserved word
aliased, or by a renaming of an aliased view. In addition, the dereference of an access-to-object value
denotes an aliased view, as does a view conversion (see 4.6) of an aliased view. A
qualified_expression denotes an aliased view when the operand denotes an aliased view. The current
instance of an immutably limited type (see 7.5) is defined to be aliased. Finally, a formal parameter or
generic formal object of a tagged type is defined to be aliased. Aliased views are the ones that can be
designated by an access value.

An access_to_object_definition defines an access-to-object type and its first subtype; the subtype -
indication defines the designated subtype of the access type. If a general_access_modifier appears,
then the access type is a general access type. If the modifier is the reserved word constant, then the
type is an access-to-constant type; a designated object cannot be updated through a value of such a
type. If the modifier is the reserved word all, then the type is an access-fo-variable type; a designated
object can be both read and updated through a value of such a type. If no general_access_modifier
appears in the access_to_object_definition, the access type is a pool-specific access-to-variable type.

77 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

An access_to_subprogram_definition defines an access-to-subprogram type and its first subtype; the
parameter_profile or parameter_and_result_profile defines the designated profile of the access type.
There is a calling convention associated with the designated profile; only subprograms with this
calling convention can be designated by values of the access type. By default, the calling convention
is “protected” if the reserved word protected appears, and “Ada” otherwise. See Annex B for how to
override this default.

An access_definition defines an anonymous general access type or an anonymous access-to-
subprogram type. For a general access type, the subtype _mark denotes its designated subtype; if the
general_access_modifier constant appears, the type is an access-to-constant type; otherwise, it is an
access-to-variable type. For an access-to-subprogram type, the parameter profile or parameter -
and_result_profile denotes its designated profile.

For each access type, there is a null access value designating no entity at all, which can be obtained by
(implicitly) converting the literal null to the access type. The null value of an access type is the
default initial value of the type. Nonnull values of an access-to-object type are obtained by evaluating
an allocator, which returns an access value designating a newly created object (see 3.10.2), or in the
case of a general access-to-object type, evaluating an attribute_reference for the Access or
Unchecked Access attribute of an aliased view of an object. Nonnull values of an access-to-
subprogram type are obtained by evaluating an attribute_reference for the Access attribute of a
nonintrinsic subprogram.

A null_exclusion in a construct specifies that the null value does not belong to the access subtype
defined by the construct, that is, the access subtype excludes null. In addition, the anonymous access
subtype defined by the access_definition for a controlling access parameter (see 3.9.2) excludes null.
Finally, for a subtype_indication without a null_exclusion, the subtype denoted by the
subtype_indication excludes null if and only if the subtype denoted by the subtype_mark in the
subtype_indication excludes null.

All subtypes of an access-to-subprogram type are constrained. The first subtype of a type defined by
an access_definition or an access_to_object_definition is unconstrained if the designated subtype is
an unconstrained array or discriminated subtype; otherwise, it is constrained.

Legality Rules

If a subtype_indication, discriminant_specification, parameter_specification, parameter_and_-
result_profile, object_renaming_declaration, or formal_object_declaration has a null_exclusion, the
subtype_mark in that construct shall denote an access subtype that does not exclude null.

Dynamic Semantics

A composite_constraint is compatible with an unconstrained access subtype if it is compatible with
the designated subtype. A null_exclusion is compatible with any access subtype that does not exclude
null. An access value satisfies a composite_constraint of an access subtype if it equals the null value
of its type or if it designates an object whose value satisfies the constraint. An access value satisfies an
exclusion of the null value if it does not equal the null value of its type.

The elaboration of an access_type_definition creates the access type and its first subtype. For an
access-to-object type, this elaboration includes the elaboration of the subtype_indication, which
creates the designated subtype.

The elaboration of an access_definition creates an anonymous access type.

NOTES
86 Access values are called “pointers” or “references” in some other languages.

87 Each access-to-object type has an associated storage pool; several access types can share the same pool. An object
can be created in the storage pool of an access type by an allocator (see 4.8) for the access type. A storage pool
(roughly) corresponds to what some other languages call a “heap”. See 13.11 for a discussion of pools.

88 Only index_constraints and discriminant_constraints can be applied to access types (see 3.6.1 and 3.7.1).

© ISO/IEC 2021 — All rights reserved 78

ISO/IEC 8652:DIS

Examples
Examples of access-to-object types:
type Frame is access Matrix; -- see 3.6
type Peripheral Ref is not null access Peripheral; -- see3.8.]

type Binop Ptr is access all Binary Operation'Class;
- - general access-to-class-wide, see 3.9.1

Example of an access subtype:
subtype Drum Ref is Peripheral Ref (Drum); -- see3.8.1

Example of an access-to-subprogram type:

type Message Procedure is access procedure (M : in String := "Error!");
procedure Default Message Procedure(M : in String) ;
Give Message : Message Procedure := Default Message Procedure'Access;

procedure Other Procedure(M : in String);

Give_Message := Other_Procedure'Access;
Give Message ("File not found."); -- call with parameter (.all is optional)
Give Message.all; - - call with no parameters

3.10.1 Incomplete Type Declarations

There are no particular limitations on the designated type of an access type. In particular, the type of a
component of the designated type can be another access type, or even the same access type. This
permits mutually dependent and recursive access types. An incomplete_type_declaration can be used
to introduce a type to be used as a designated type, while deferring its full definition to a subsequent
full_type_declaration.

Syntax

incomplete_type_declaration ::= type defining_identifier [discriminant_part] [is tagged];

Static Semantics

An incomplete_type_declaration declares an incomplete view of a type and its first subtype; the first
subtype is unconstrained if a discriminant_part appears. If the incomplete_type declaration includes
the reserved word tagged, it declares a fagged incomplete view. If T denotes a tagged incomplete
view, then T'Class denotes a tagged incomplete view. An incomplete view of a type is a limited view
of the type (see 7.5).

Given an access type 4 whose designated type 7T is an incomplete view, a dereference of a value of
type A4 also has this incomplete view except when:

e it occurs within the immediate scope of the completion of 7, or

e it occurs within the scope of a nonlimited_with_clause that mentions a library package in
whose visible part the completion of 7 is declared, or

e it occurs within the scope of the completion of 7 and 7 is an incomplete view declared by an
incomplete_type declaration.

In these cases, the dereference has the view of 7 visible at the point of the dereference.

Similarly, if a subtype_mark denotes a subtype_declaration defining a subtype of an incomplete
view T, the subtype_mark denotes an incomplete view except under the same three circumstances
given above, in which case it denotes the view of 7 visible at the point of the subtype _mark.

Legality Rules

An incomplete_type declaration requires a completion, which shall be a type_declaration other than
an incomplete_type_declaration. If the incomplete_type declaration occurs immediately within

79 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

either the visible part of a package_specification or a declarative_part, then the type declaration
shall occur later and immediately within this visible part or declarative_part. If the incomplete_-
type_declaration occurs immediately within the private part of a given package_specification, then
the type_declaration shall occur later and immediately within either the private part itself, or the
declarative_part of the corresponding package_body.

If an incomplete_type_declaration includes the reserved word tagged, then a type_declaration that
completes it shall declare a tagged type. If an incomplete_type_ declaration has a known_-
discriminant_part, then a type_declaration that completes it shall have a fully conforming (explicit)
known_discriminant_part (see 6.3.1). If an incomplete_type_declaration has no discriminant_part
(or an unknown_discriminant_part), then a corresponding type declaration is nevertheless allowed
to have discriminants, either explicitly, or inherited via derivation.

A name that denotes an incomplete view of a type may be used as follows:

e as the subtype_mark in the subtype_indication of an access_to_object_definition; the only
form of constraint allowed in this subtype_indication is a discriminant_constraint (a
null_exclusion is not allowed);

e as the subtype mark in the subtype_indication of a subtype_declaration; the subtype -
indication shall not have a null_exclusion or a constraint;

e as the subtype_mark in an access_definition for an access-to-object type;

e as the subtype_mark defining the subtype of a parameter or result in a profile occurring
within a basic_declaration;

e as a generic actual parameter whose corresponding generic formal parameter is a formal
incomplete type (see 12.5.1).

If such a name denotes a tagged incomplete view, it may also be used:

e as the subtype_mark defining the subtype of a parameter in the profile for a
subprogram_body, entry_body, or accept_statement;

e as the prefix of an attribute_reference whose attribute_designator is Class; such an
attribute_reference is restricted to the uses allowed here; it denotes a tagged incomplete
view.

If any of the above uses occurs as part of the declaration of a primitive subprogram of the incomplete
view, and the declaration occurs immediately within the private part of a package, then the completion
of the incomplete view shall also occur immediately within the private part; it shall not be deferred to
the package body.

No other uses of a name that denotes an incomplete view of a type are allowed.

A prefix that denotes an object shall not be of an incomplete view. An actual parameter in a call shall
not be of an untagged incomplete view. The result object of a function call shall not be of an
incomplete view. A prefix shall not denote a subprogram having a formal parameter of an untagged
incomplete view, nor a return type that is an incomplete view.

The controlling operand or controlling result of a dispatching call shall not be of an incomplete view
if the operand or result is dynamically tagged.

Dynamic Semantics
The elaboration of an incomplete_type declaration has no effect.

NOTES

89 Within a declarative_part, an incomplete_type_declaration and a corresponding full_type_declaration cannot be
separated by an intervening body. This is because a type has to be completely defined before it is frozen, and a body
freezes all types declared prior to it in the same declarative_part (see 13.14).

90 A name that denotes an object of an incomplete view is defined to be of a limited type. Hence, the target of an
assignment statement cannot be of an incomplete view.

© ISO/IEC 2021 — All rights reserved 80

ISO/IEC 8652:DIS

Examples

Example of a recursive type:

type Cell; -- incomplete type declaration
type Link is access Cell;

type Cell is

record
Value : Integer;
Succ : Link;
Pred : Link;

end record;

Head : Link
Next : Link

new Cell' (0, null, null);
Head.Succ;

Examples of mutually dependent access types:

type Person(<>); - - incomplete type declaration
type Car is tagged; - - incomplete type declaration
type Person Name is access Person;
type Car_ Name is access all Car'Class;
type Car is tagged
record
Number : Integer;
Owner : Person Name;

end record;

type Person(Sex : Gender) is

record

Name : String(l .. 20);

Birth : Date;

Age : Integer range 0 .. 130;

Vehicle : Car_ Name;

case Sex is
when M => Wife : Person Name (Sex => F);
when F => Husband : Person_ Name (Sex => M) ;

end case;

end record;

My Car, Your Car, Next Car : Car Name := new Car; --see4.8
Casey : Person Name := new Person (M) ;
Casey.Vehicle := Your Car;

3.10.2 Operations of Access Types

The attribute Access is used to create access values designating aliased objects and nonintrinsic
subprograms. The “accessibility” rules prevent dangling references (in the absence of uses of certain
unchecked features — see Clause 13).

Name Resolution Rules

For an attribute_reference with attribute_designator Access (or Unchecked Access — see 13.10),
the expected type shall be a single access type A such that:

e A is an access-to-object type with designated type D and the type of the prefix is D'Class or is
covered by D, or

e A is an access-to-subprogram type whose designated profile is type conformant with that of
the prefix.

The prefix of such an attribute reference is never interpreted as an implicit_dereference or a
parameterless function_call (see 4.1.4). The designated type or profile of the expected type of the
attribute_reference is the expected type or profile for the prefix.

Static Semantics

The accessibility rules, which prevent dangling references, are written in terms of accessibility levels,
which reflect the run-time nesting of masters. As explained in 7.6.1, a master is the execution of a

81 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

certain construct (called a master construct), such as a subprogram_body. An accessibility level is
deeper than another if it is more deeply nested at run time. For example, an object declared local to a
called subprogram has a deeper accessibility level than an object declared local to the calling
subprogram. The accessibility rules for access types require that the accessibility level of an object
designated by an access value be no deeper than that of the access type. This ensures that the object
will live at least as long as the access type, which in turn ensures that the access value cannot later
designate an object that no longer exists. The Unchecked Access attribute may be used to circumvent
the accessibility rules.

A given accessibility level is said to be statically deeper than another if the given level is known at
compile time (as defined below) to be deeper than the other for all possible executions. In most cases,
accessibility is enforced at compile time by Legality Rules. Run-time accessibility checks are also
used, since the Legality Rules do not cover certain cases involving access parameters and generic
packages.

Each master, and each entity and view created by it, has an accessibility level, when two levels are
defined to be the same, the accessibility levels of the two associated entities are said to be tied to each
other. Accessibility levels are defined as follows:

e The accessibility level of a given master is deeper than that of each dynamically enclosing
master, and deeper than that of each master upon which the task executing the given master
directly depends (see 9.3).

e An entity or view defined by a declaration and created as part of its elaboration has the same
accessibility level as the innermost master of the declaration except in the cases of renaming
and derived access types described below. A formal parameter of a callable entity has the
same accessibility level as the master representing the invocation of the entity.

e The accessibility level of a view of an object or subprogram defined by a
renaming_declaration is the same as that of the renamed view, unless the renaming is of a
formal subprogram, in which case the accessibility level is that of the instance.

e The accessibility level of a view conversion, qualified_expression, or parenthesized
expression, is the same as that of the operand.

e The accessibility level of a conditional_expression (see 4.5.7) is the accessibility level of the
evaluated dependent _expression.

e The accessibility level of a declare_expression (see 4.5.9) is the accessibility level of the
body _expression.

e The accessibility level of an aggregate that is used (in its entirety) to directly initialize part of
an object is that of the object being initialized. In other contexts, the accessibility level of an
aggregate is that of the innermost master that evaluates the aggregate. Corresponding rules
apply to a value conversion (see 4.6).

e The accessibility level of the result of a function call is that of the master of the function call,
which is determined by the point of call as follows:

o If the result type at the point of the function (or access-to-function type) declaration is a
composite type, and the result is used (in its entirety) to directly initialize part of an
object, the master is that of the object being initialized. In the case where the initialized
object is a coextension (see below) that becomes a coextension of another object, the
master is that of the eventual object to which the coextension will be transferred.

o If the result is of an anonymous access type and is converted to a (named or anonymous)
access type, the master is determined following the rules given below for determining the
master of an object created by an allocator (even if the access result is of an access-to-
subprogram type);

o If the call itself defines the result of a function F, or has an accessibility level that is tied
to the result of such a function F, then the master of the call is that of the master of the
call invoking F;

© ISO/IEC 2021 — All rights reserved 82

ISO/IEC 8652:DIS

o In other cases, the master of the call is that of the innermost master that evaluates the
function call.

In the case of a call to a function whose result type is an anonymous access type, the
accessibility level of the type of the result of the function call is also determined by the point
of call as described above.

Within a return statement, the accessibility level of the return object is that of the execution of
the return statement. If the return statement completes normally by returning from the
function, then prior to leaving the function, the accessibility level of the return object changes
to be a level determined by the point of call, as does the level of any coextensions (see below)
of the return object.

The accessibility level of a derived access type is the same as that of its ultimate ancestor.

The accessibility level of the anonymous access type defined by an access_definition of an
object_renaming_declaration is the same as that of the renamed view.

The accessibility level of the anonymous access type defined by an access_definition of a
loop_parameter_subtype_indication is that of the loop parameter.

The accessibility level of the anonymous access type of an access discriminant in the
subtype_indication or qualified_expression of an allocator, or in the expression or return_-
subtype_indication of a return statement is determined as follows:

o If the value of the access discriminant is determined by a discriminant_association in a
subtype_indication, the accessibility level of the object or subprogram designated by the
associated value (or library level if the value is null);

o If the value of the access discriminant is determined by a default_expression in the
declaration of the discriminant, the level of the object or subprogram designated by the
associated value (or library level if null);

o If the wvalue of the access discriminant is determined by a
record_component_association in an aggregate, the accessibility level of the object or
subprogram designated by the associated value (or library level if the value is null);

o In other cases, where the value of the access discriminant is determined by an object with
an unconstrained nominal subtype, the accessibility level of the object.

The accessibility level of the anonymous access type of an access discriminant in any other
context is that of the enclosing object.

The accessibility level of the anonymous access type of an access parameter specifying an
access-to-object type is the same as that of the view designated by the actual (or library-level
if the actual is null).

The accessibility level of the anonymous access type of an access parameter specifying an
access-to-subprogram type is deeper than that of any master; all such anonymous access types
have this same level.

The accessibility level of the anonymous access subtype defined by a
return_subtype_indication that is an access_definition (see 6.5) is that of the result subtype
of the enclosing function.

The accessibility level of the type of a stand-alone object of an anonymous access-to-object
type is the same as the accessibility level of the type of the access value most recently
assigned to the object; accessibility checks ensure that this is never deeper than that of the
declaration of the stand-alone object.

The accessibility level of an object created by an allocator is the same as that of the access
type, except for an allocator of an anonymous access type (an anonymous allocator) in
certain contexts, as follows: For an anonymous allocator that defines the result of a function
with an access result, the accessibility level is determined as though the allocator were in
place of the call of the function; in the special case of a call that is the operand of a type
conversion, the level is that of the target access type of the conversion. For an anonymous

© ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

allocator defining the value of an access parameter, the accessibility level is that of the
innermost master of the call. For an anonymous allocator whose type is that of a stand-alone
object of an anonymous access-to-object type, the accessibility level is that of the declaration
of the stand-alone object. For one defining an access discriminant, the accessibility level is
determined as follows:

« for an allocator used to define the discriminant of an object, the level of the object;

» for an allocator used to define the constraint in a subtype_indication in any other context,
the level of the master that elaborates the subtype_indication.

In the first case, the allocated object is said to be a coextension of the object whose
discriminant designates it, as well as of any object of which the discriminated object is itself a
coextension or subcomponent. If the allocated object is a coextension of an anonymous object
representing the result of an aggregate or function call that is used (in its entirety) to directly
initialize a part of an object, after the result is assigned, the coextension becomes a
coextension of the object being initialized and is no longer considered a coextension of the
anonymous object. All coextensions of an object (which have not thus been transfered by
such an initialization) are finalized when the object is finalized (see 7.6.1).

e Within a return statement, the accessibility level of the anonymous access type of an access
result is that of the master of the call.

e The accessibility level of a view of an object or subprogram designated by an access value is
the same as that of the access type.

e The accessibility level of a component, protected subprogram, or entry of (a view of) a
composite object is the same as that of (the view of) the composite object.

In the above rules, the operative constituents of a name or expression (see 4.4) are considered to be
used in a given context if the enclosing name or expression is used in that context.

One accessibility level is defined to be statically deeper than another in the following cases:

e For a master construct that is statically nested within another master construct, the
accessibility level of the inner master construct is statically deeper than that of the outer
master construct.

e The accessibility level of the anonymous access type of an access parameter specifying an
access-to-subprogram type is statically deeper than that of any master; all such anonymous
access types have this same level.

e The statically deeper relationship does not apply to the accessibility level of the following:
¢ the anonymous type of an access parameter specifying an access-to-object type;
o the type of a stand-alone object of an anonymous access-to-object type;
e araise_expression;
e adescendant of a generic formal type;
e a descendant of a type declared in a generic formal package.

e When the statically deeper relationship does not apply, the accessibility level is not
considered to be statically deeper, nor statically shallower, than any other.

e When within a function body or the return expression of an expression function, the
accessibility level of the master representing an execution of the function is statically deeper
than that of the master of the function call invoking that execution, independent of how the
master of the function call is determined (see above).

e For determining whether one level is statically deeper than another when within a generic
package body, the generic package is presumed to be instantiated at the same level as where it
was declared; runtime checks are needed in the case of more deeply nested instantiations.

© ISO/IEC 2021 — All rights reserved 84

ISO/IEC 8652:DIS

e For determining whether one level is statically deeper than another when within the
declarative region of a type_declaration, the current instance of the type is presumed to be an
object created at a deeper level than that of the type.

Notwithstanding other rules given above, the accessibility level of an entity that is tied to that of an
explicitly aliased formal parameter of an enclosing function is considered (both statically and
dynamically) to be the same as that of an entity whose accessibility level is tied to that of the return
object of that function.

The accessibility level of all library units is called the library level; a library-level declaration or
entity is one whose accessibility level is the library level.

The following attribute is defined for a prefix X that denotes an aliased view of an object:

X'Access X'Access yields an access value that designates the object denoted by X. The type of
X'Access is an access-to-object type, as determined by the expected type. The expected
type shall be a general access type. X shall denote an aliased view of an object, including
possibly the current instance (see 8.6) of a limited type within its definition, or a formal
parameter or generic formal object of a tagged type. The view denoted by the prefix X
shall satisfy the following additional requirements, presuming the expected type for
X'Access is the general access type A4 with designated type D:

e If 4 is an access-to-variable type, then the view shall be a variable; on the other
hand, if 4 is an access-to-constant type, the view may be either a constant or a
variable.

e The view shall not be a subcomponent that depends on discriminants of an object
unless the object is known to be constrained.

e If A4 is a named access type and D is a tagged type, then the type of the view shall
be covered by D; if 4 is anonymous and D is tagged, then the type of the view
shall be either D'Class or a type covered by D; if D is untagged, then the type of
the view shall be D, and either:

o the designated subtype of A shall statically match the nominal subtype of the
view; or

e D shall be discriminated in its full view and unconstrained in any partial
view, and the designated subtype of 4 shall be unconstrained.

e The accessibility level of the view shall not be statically deeper than that of the
access type A4.

In addition to the places where Legality Rules normally apply (see 12.3), these
requirements apply also in the private part of an instance of a generic unit.

A check is made that the accessibility level of X is not deeper than that of the access type
A. If this check fails, Program_Error is raised.

If the nominal subtype of X does not statically match the designated subtype of 4, a view
conversion of X to the designated subtype is evaluated (which might raise
Constraint_Error — see 4.6) and the value of X'Access designates that view.

The following attribute is defined for a prefix P that denotes a subprogram:

P'Access P'Access yields an access value that designates the subprogram denoted by P. The type of
P'Access is an access-to-subprogram type (S), as determined by the expected type. The
accessibility level of P shall not be statically deeper than that of S. If S is nonblocking, P
shall be nonblocking. In addition to the places where Legality Rules normally apply (see
12.3), these rules apply also in the private part of an instance of a generic unit. The profile
of P shall be subtype conformant with the designated profile of S, and shall not be
Intrinsic. If the subprogram denoted by P is declared within a generic unit, and the
expression P'Access occurs within the body of that generic unit or within the body of a
generic unit declared within the declarative region of the generic unit, then the ultimate

85 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

ancestor of S shall be either a nonformal type declared within the generic unit or an
anonymous access type of an access parameter.

Legality Rules
An expression is said to have distributed accessibility if it is
e a conditional_expression (see 4.5.7); or
e adeclare_expression (see 4.5.9) whose body_ expression has distributed accessibility; or

e a view conversion, qualified_expression, or parenthesized expression whose operand has
distributed accessibility.

The statically deeper relationship does not apply to the accessibility level of an expression having
distributed accessibility; that is, such an accessibility level is not considered to be statically deeper,
nor statically shallower, than any other.

Any static accessibility requirement that is imposed on an expression that has distributed accessibility
(or on its type) is instead imposed on the dependent expressions of the underlying
conditional_expression. This rule is applied recursively if a dependent expression also has
distributed accessibility.

NOTES

91 The Unchecked Access attribute yields the same result as the Access attribute for objects, but has fewer restrictions
(see 13.10). There are other predefined operations that yield access values: an allocator can be used to create an object,
and return an access value that designates it (see 4.8); evaluating the literal null yields a null access value that
designates no entity at all (see 4.2).

92 The predefined operations of an access type also include the assignment operation, qualification, and membership
tests. Explicit conversion is allowed between general access types with matching designated subtypes; explicit
conversion is allowed between access-to-subprogram types with subtype conformant profiles (see 4.6). Named access
types have predefined equality operators; anonymous access types do not, but they can use the predefined equality
operators for universal_access (see 4.5.2).

93 The object or subprogram designated by an access value can be named with a dereference, either an explicit_-
dereference or an implicit_dereference. See 4.1.

94 A call through the dereference of an access-to-subprogram value is never a dispatching call.

95 The Access attribute for subprograms and parameters of an anonymous access-to-subprogram type may together be
used to implement “downward closures” — that is, to pass a more-nested subprogram as a parameter to a less-nested
subprogram, as might be appropriate for an iterator abstraction or numerical integration. Downward closures can also
be implemented using generic formal subprograms (see 12.6). Note that Unchecked Access is not allowed for
subprograms.

96 Note that using an access-to-class-wide tagged type with a dispatching operation is a potentially more structured
alternative to using an access-to-subprogram type.

97 An implementation may consider two access-to-subprogram values to be unequal, even though they designate the
same subprogram. This might be because one points directly to the subprogram, while the other points to a special
prologue that performs an Elaboration_Check and then jumps to the subprogram. See 4.5.2.

Examples

Example of use of the Access attribute:

Becky : Person Name := new Person(F); -- see 3.10.1
Cars : array (1..2) of aliased Car;

Becky.Vehicle
Casey.Vehicle

Cars (1) 'Access;
Cars (2) 'Access;

© ISO/IEC 2021 — All rights reserved 86

ISO/IEC 8652:DIS

3.11 Declarative Parts

A declarative_part contains declarative_items (possibly none).

Syntax
declarative_part ::= {declarative_item}

declarative_item ::=
basic_declarative_item | body

basic_declarative_item ::=
basic_declaration | aspect_clause | use_clause

body ::= proper_body | body_stub

proper_body ::=
subprogram_body | package body | task_body | protected body

Static Semantics

The list of declarative_items of a declarative_part is called the declaration list of the
declarative_part.

Dynamic Semantics

The elaboration of a declarative_part consists of the elaboration of the declarative_items, if any, in
the order in which they are given in the declarative_part.

An elaborable construct is in the elaborated state after the normal completion of its elaboration. Prior
to that, it is not yet elaborated.

For a construct that attempts to use a body, a check (Elaboration_Check) is performed, as follows:

e For a call to a (non-protected) subprogram that has an explicit body, a check is made that the
body is already elaborated. This check and the evaluations of any actual parameters of the call
are done in an arbitrary order.

e For a call to a protected operation of a protected type (that has a body — no check is
performed if the protected type is imported — see B.l), a check is made that the
protected_body is already elaborated. This check and the evaluations of any actual
parameters of the call are done in an arbitrary order.

e For the activation of a task, a check is made by the activator that the task_body is already
elaborated. If two or more tasks are being activated together (see 9.2), as the result of the
elaboration of a declarative_part or the initialization for the object created by an allocator,
this check is done for all of them before activating any of them.

e For the instantiation of a generic unit that has a body, a check is made that this body is
already elaborated. This check and the evaluation of any explicit_generic_actual _parameters
of the instantiation are done in an arbitrary order.

The exception Program_Error is raised if any of these checks fails.

3.11.1 Completions of Declarations

Declarations sometimes come in two parts. A declaration that requires a second part is said to require
completion. The second part is called the completion of the declaration (and of the entity declared),
and is either another declaration, a body, or a pragma. A body is a body, an entry_body, a
null_procedure_declaration or an expression_function_declaration that completes another
declaration, or a renaming-as-body (see 8.5.4).

87 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

Name Resolution Rules

A construct that can be a completion is interpreted as the completion of a prior declaration only if:
e The declaration and the completion occur immediately within the same declarative region;

e The defining name or defining_program_unit_name in the completion is the same as in the
declaration, or in the case of a pragma, the pragma applies to the declaration;

o [f the declaration is overloadable, then the completion either has a type-conformant profile, or
is a pragma.

Legality Rules

An implicit declaration shall not have a completion. For any explicit declaration that is specified to
require completion, there shall be a corresponding explicit completion, unless the declared entity is
imported (see B.1).

At most one completion is allowed for a given declaration. Additional requirements on completions
appear where each kind of completion is defined.

A type is completely defined at a place that is after its full type definition (if it has one) and after all of
its subcomponent types are completely defined. A type shall be completely defined before it is frozen
(see 13.14 and 7.3).

NOTES

98 Completions are in principle allowed for any kind of explicit declaration. However, for some kinds of declaration,
the only allowed completion is an implementation-defined pragma, and implementations are not required to have any
such pragmas.

99 There are rules that prevent premature uses of declarations that have a corresponding completion. The
Elaboration Checks of 3.11 prevent such uses at run time for subprograms, protected operations, tasks, and generic
units. The rules of 13.14, “Freezing Rules” prevent, at compile time, premature uses of other entities such as private
types and deferred constants.

© ISO/IEC 2021 — All rights reserved 88

ISO/IEC 8652:DIS

4 Names and Expressions

The rules applicable to the different forms of name and expression, and to their evaluation, are given
in this clause.

4.1 Names

Names can denote declared entities, whether declared explicitly or implicitly (see 3.1). Names can
also denote objects or subprograms designated by access values; the results of type_conversions or
function_calls; subcomponents and slices of objects and values; protected subprograms, single entries,
entry families, and entries in families of entries. Finally, names can denote attributes of any of the
foregoing.

Syntax

name ::=
direct_name | explicit_dereference

| indexed_component | slice
| selected_component | attribute_reference
| type_conversion | function_call
| character_literal | qualified_expression
| generalized_reference | generalized_indexing
| target_name

direct_name ::= identifier | operator_symbol

prefix ::= name | implicit_dereference

explicit_dereference ::= name.all

implicit_dereference ::= name

Certain forms of name (indexed _components, selected components, slices, and
attribute_references) include a prefix that is either itself a name that denotes some related entity, or
an implicit_dereference of an access value that designates some related entity.

Name Resolution Rules

The name in a dereference (either an implicit_dereference or an explicit_dereference) is expected to
be of any access type.

Static Semantics

If the type of the name in a dereference is some access-to-object type 7, then the dereference denotes
a view of an object, the nominal subtype of the view being the designated subtype of 7. If the
designated subtype has unconstrained discriminants, the (actual) subtype of the view is constrained by
the values of the discriminants of the designated object, except when there is a partial view of the type
of the designated subtype that does not have discriminants, in which case the dereference is not
constrained by its discriminant values.

If the type of the name in a dereference is some access-to-subprogram type S, then the dereference
denotes a view of a subprogram, the profile of the view being the designated profile of S.

Dynamic Semantics

The evaluation of a name determines the entity denoted by the name. This evaluation has no other
effect for a name that is a direct_name or a character_literal.

89 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

The evaluation of a name that has a prefix includes the evaluation of the prefix. The evaluation of a
prefix consists of the evaluation of the name or the implicit_dereference. The prefix denotes the
entity denoted by the name or the implicit_dereference.

The evaluation of a dereference consists of the evaluation of the name and the determination of the
object or subprogram that is designated by the value of the name. A check is made that the value of
the name is not the null access value. Constraint_Error is raised if this check fails. The dereference
denotes the object or subprogram designated by the value of the name.

Examples

Examples of direct names:

Pi -- the direct name of a number (see 3.3.2)

Limit -- the direct name of a constant (see 3.3.1)

Count -- the direct name of a scalar variable (see 3.3.1)

Board -- the direct name of an array variable (see 3.6.1)

Matrix -- the direct name of a type (see 3.6)

Random -- the direct name of a function (see 6.1)

Error -- the direct name of an exception (see 11.1)
Examples of dereferences:

Next Car.all - - explicit dereference denoting the object designated by

-~ the access variable Next Car (see 3.10.1)
Next Car.Owner -- selected component with implicit dereference;

- - same as Next_Car.all. Owner

4.1.1 Indexed Components

An indexed_component denotes either a component of an array or an entry in a family of entries.

Syntax

indexed_component ::= prefix(expression {, expression})

Name Resolution Rules

The prefix of an indexed_component with a given number of expressions shall resolve to denote an
array (after any implicit dereference) with the corresponding number of index positions, or shall
resolve to denote an entry family of a task or protected object (in which case there shall be only one
expression).

The expected type for each expression is the corresponding index type.

Static Semantics

When the prefix denotes an array, the indexed_component denotes the component of the array with
the specified index value(s). The nominal subtype of the indexed_component is the component
subtype of the array type.

When the prefix denotes an entry family, the indexed_component denotes the individual entry of the
entry family with the specified index value.

Dynamic Semantics

For the evaluation of an indexed component, the prefix and the expressions are evaluated in an
arbitrary order. The value of each expression is converted to the corresponding index type. A check
is made that each index value belongs to the corresponding index range of the array or entry family
denoted by the prefix. Constraint Error is raised if this check fails.

© ISO/IEC 2021 — All rights reserved 90

ISO/IEC 8652:DIS

Examples
Examples of indexed components:
My Schedule (Sat) - - a component of a one-dimensional array (see 3.6.1)
Page (10) -- a component of a one-dimensional array (see 3.6)
Board(M, J + 1) - - a component of a two-dimensional array (see 3.6.1)
Page (10) (20) - - a component of a component (see 3.6)
Request (Medium) -~ an entry in a family of entries (see 9.1)
Next Frame (L) (M, N) -- acomponentof a function call (see 6.1)

NOTES

1 Notes on the examples: Distinct notations are used for components of multidimensional arrays (such as Board) and
arrays of arrays (such as Page). The components of an array of arrays are arrays and can therefore be indexed. Thus
Page(10)(20) denotes the 20th component of Page(10). In the last example Next Frame(L) is a function call returning
an access value that designates a two-dimensional array.

4.1.2 Slices

A slice denotes a one-dimensional array formed by a sequence of consecutive components of a one-
dimensional array. A slice of a variable is a variable; a slice of a constant is a constant; a slice of a
value is a value.

Syntax

slice ::= prefix(discrete_range)

Name Resolution Rules
The prefix of a slice shall resolve to denote a one-dimensional array (after any implicit dereference).

The expected type for the discrete_range of a slice is the index type of the array type.

Static Semantics

A slice denotes a one-dimensional array formed by the sequence of consecutive components of the
array denoted by the prefix, corresponding to the range of values of the index given by the
discrete_range.

The type of the slice is that of the prefix. Its bounds are those defined by the discrete_range.

Dynamic Semantics

For the evaluation of a slice, the prefix and the discrete_range are evaluated in an arbitrary order. If
the slice is not a null slice (a slice where the discrete_range is a null range), then a check is made
that the bounds of the discrete_range belong to the index range of the array denoted by the prefix.
Constraint_Error is raised if this check fails.

NOTES

2 A slice is not permitted as the prefix of an Access attribute_reference, even if the components or the array as a
whole are aliased. See 3.10.2.

3 For a one-dimensional array A, the slice A(N .. N) denotes an array that has only one component; its type is the type
of A. On the other hand, A(N) denotes a component of the array A and has the corresponding component type.

Examples
Examples of slices:

Stars (1l .. 15) -~ aslice of 15 characters (see 3.6.3)

Page (10 .. 10 + Size) -- asliceof] + Size components (see 3.6)

Page (L) (A .. B) -- aslice of the array Page(L) (see 3.6)

Stars(1 .. 0) -- anull slice (see 3.6.3)

My Schedule (Weekday) -- bounds given by subtype (see 3.6.1 and 3.5.1)
Stars(5 .. 15) (K) -- same as Stars(K) (see 3.6.3)

-- provided that Kisin 5 .. 15

91 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

4.1.3 Selected Components

Selected_components are used to denote components (including discriminants), entries, entry
families, and protected subprograms; they are also used as expanded names as described below.

Syntax
selected_component ::= prefix . selector_name

selector_name ::= identifier | character_literal | operator_symbol

Name Resolution Rules

A selected_component is called an expanded name if, according to the visibility rules, at least one
possible interpretation of its prefix denotes a package or an enclosing named construct (directly, not
through a subprogram_renaming_declaration or generic_renaming_declaration).

A selected_component that is not an expanded name shall resolve to denote one of the following:
e A component (including a discriminant):

The prefix shall resolve to denote an object or value of some non-array composite type (after
any implicit dereference). The selector name shall resolve to denote a
discriminant_specification of the type, or, unless the type is a protected type, a
component_declaration of the type. The selected_component denotes the corresponding
component of the object or value.

e A single entry, an entry family, or a protected subprogram:

The prefix shall resolve to denote an object or value of some task or protected type (after any
implicit dereference). The selector_name shall resolve to denote an entry_declaration or
subprogram_declaration occurring (implicitly or explicitly) within the visible part of that
type. The selected_component denotes the corresponding entry, entry family, or protected
subprogram.

e A view of a subprogram whose first formal parameter is of a tagged type or is an access
parameter whose designated type is tagged:

The prefix (after any implicit dereference) shall resolve to denote an object or value of a
specific tagged type T or class-wide type T'Class. The selector_name shall resolve to denote
a view of a subprogram declared immediately within the declarative region in which an
ancestor of the type T is declared. The first formal parameter of the subprogram shall be of
type 7, or a class-wide type that covers T, or an access parameter designating one of these
types. The designator of the subprogram shall not be the same as that of a component of the
tagged type visible at the point of the selected_component. The subprogram shall not be an
implicitly declared primitive operation of type T that overrides an inherited subprogram
implemented by an entry or protected subprogram visible at the point of the
selected_component. The selected_component denotes a view of this subprogram that
omits the first formal parameter. This view is called a prefixed view of the subprogram, and
the prefix of the selected _component (after any implicit dereference) is called the prefix of
the prefixed view.

An expanded name shall resolve to denote a declaration that occurs immediately within a named
declarative region, as follows:

e The prefix shall resolve to denote either a package (including the current instance of a generic
package, or a rename of a package), or an enclosing named construct.

e The selector _name shall resolve to denote a declaration that occurs immediately within the
declarative region of the package or enclosing construct (the declaration shall be visible at the
place of the expanded name — see 8.3). The expanded name denotes that declaration.

o [f the prefix does not denote a package, then it shall be a direct_name or an expanded name,
and it shall resolve to denote a program unit (other than a package), the current instance of a

© ISO/IEC 2021 — All rights reserved 92

ISO/IEC 8652:DIS

type, a block statement, a loop_statement, or an accept_statement (in the case of an
accept_statement or entry_body, no family index is allowed); the expanded name shall
occur within the declarative region of this construct. Further, if this construct is a callable
construct and the prefix denotes more than one such enclosing callable construct, then the
expanded name is ambiguous, independently of the selector_name.

Legality Rules

For a prefixed view of a subprogram whose first formal parameter is an access parameter, the prefix
shall be legal as the prefix of an attribute_reference with attribute_designator Access appearing as

the first actual parameter in a call on the unprefixed view of the subprogram.

For a subprogram whose first parameter is of mode in out or out, or of an anonymous access-to-
variable type, the prefix of any prefixed view shall denote a variable.

The evaluation of a selected_component includes the evaluation of the prefix.

Dynamic Semantics

For a selected_component that denotes a component of a variant, a check is made that the values of
the discriminants are such that the value or object denoted by the prefix has this component. The
exception Constraint_Error is raised if this check fails.

Examples of selected components:

Tomorrow.Month --
Next_ Car.Owner --
Next Car.Owner.Age --

Writer.Unit --
Min Cell (H) .Value --

Cashier.Append --
Control.Seize --
Pool (K) .Write --

Examples of expanded names:

Key Manager."<"
Dot Product.Sum
Buffer.Pool
Buffer.Read
Swap . Temp
Standard.Boolean

4.1.4 Attributes

Examples
a record component (see 3.8)
a record component (see 3.10.1)
a record component (see 3.10.1)

the previous two lines involve implicit dereferences
a record component (a discriminant) (see 3.8.1)

a record component of the result (see 6.1)
of the function call Min_Cell(H)

a prefixed view of a procedure (see 3.9.4)
an entry of a protected object (see 9.4)
an entry of the task Pool(K) (see 9.1)

- an operator of the visible part of a package (see 7.3.1)

- avariable declared in a function body (see 6.1)
- avariable declared in a protected unit (see 9.11)
- an entry of a protected unit (see 9.11)
- avariable declared in a block statement (see 5.6)
- the name of a predefined type (see A.1)

An attribute is a characteristic of an entity that can be queried via an attribute_reference or a range_-

attribute_reference.

attribute_reference ::=

Syntax

prefix'attribute_designator
| reduction_attribute_reference

attribute_designator ::=

identifier[(static_expression)]
| Access | Delta | Digits | Mod

range_attribute_reference :

.= prefix'range_attribute_designator

range_attribute_designator ::= Range[(static_expression)]

93

© ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

Name Resolution Rules

In an attribute_reference that is not a reduction_attribute_reference, if the attribute_designator is
for an attribute defined for (at least some) objects of an access type, then the prefix is never
interpreted as an implicit_dereference; otherwise (and for all range_attribute references and
reduction_attribute_references), if there is a prefix and the type of the name within the prefix is of
an access type, the prefix is interpreted as an implicit_dereference. Similarly, if the
attribute_designator is for an attribute defined for (at least some) functions, then the prefix is never
interpreted as a parameterless function_call; otherwise (and for all range_attribute_references and
reduction_attribute_references), if there is a prefix and the prefix consists of a name that denotes a
function, it is interpreted as a parameterless function_call.

The expression, if any, in an attribute_designator or range_attribute_designator is expected to be
of any integer type.

Legality Rules

The expression, if any, in an attribute_designator or range_attribute _designator shall be static.

Static Semantics

An attribute_reference denotes a value, an object, a subprogram, or some other kind of program
entity. Unless explicitly specified otherwise, for an attribute_reference that denotes a value or an
object, if its type is scalar, then its nominal subtype is the base subtype of the type; if its type is
tagged, its nominal subtype is the first subtype of the type; otherwise, its nominal subtype is a subtype
of the type without any constraint, null_exclusion, or predicate. Similarly, unless explicitly specified
otherwise, for an attribute_reference that denotes a function, when its result type is scalar, its result
subtype is the base subtype of the type, when its result type is tagged, the result subtype is the first
subtype of the type, and when the result type is some other type, the result subtype is a subtype of the
type without any constraint, null_exclusion, or predicate.

A range_attribute_reference X'Range(N) is equivalent to the range X'First(N) .. X'Last(N), except
that the prefix is only evaluated once. Similarly, X'Range is equivalent to X'First .. X'Last, except that
the prefix is only evaluated once.

Dynamic Semantics

The evaluation of a range_attribute reference or an attribute reference that is not a
reduction_attribute _reference consists of the evaluation of the prefix. The evaluation of a
reduction_attribute reference is defined in 4.5.10.

Implementation Permissions

An implementation may provide implementation-defined attributes; the identifier for such an
implementation-defined attribute shall differ from those of the language-defined attributes.

An implementation may extend the definition of a language-defined attribute by accepting uses of that
attribute that would otherwise be illegal in the following cases:

¢ in order to support compatibility with a previous edition of of this International Standard; or

e in the case of a language-defined attribute whose prefix is required by this International
Standard to be a floating point subtype, an implementation may accept an attribute_reference
whose prefix is a fixed point subtype; the semantics of such an attribute_reference are
implementation defined.

NOTES
4 Attributes are defined throughout this International Standard, and are summarized in K.2.

5 In general, the name in a prefix of an attribute_reference (or a range_attribute_reference) has to be resolved
without using any context. However, in the case of the Access attribute, the expected type for the attribute_reference
has to be a single access type, and the resolution of the name can use the fact that the type of the object or the profile of
the callable entity denoted by the prefix has to match the designated type or be type conformant with the designated
profile of the access type.

© ISO/IEC 2021 — All rights reserved 94

ISO/IEC 8652:DIS

Examples
Examples of attributes:
Color'First - - minimum value of the enumeration type Color (see 3.5.1)
Rainbow'Base'First -- same as Color'First (see 3.5.1)
Real'Digits - - precision of the type Real (see 3.5.7)
Board'Last (2) - - upper bound of the second dimension of Board (see 3.6.1)
Board'Range (1) - - index range of the first dimension of Board (see 3.6.1)
Pool (K) 'Terminated -- True if task Pool(K) is terminated (see 9.1)
Date'Size - - number of bits for records of type Date (see 3.8)
Message'Address - - address of the record variable Message (see 3.7.1)

4.1.5 User-Defined References

Static Semantics

Given a discriminated type 7, the following type-related operational aspect may be specified:

Implicit Dereference
This aspect is specified by a name that denotes an access discriminant declared for the
type T.

A (view of a) type with a specified Implicit Dereference aspect is a reference type. A reference object
is an object of a reference type. The discriminant named by the Implicit Dereference aspect is the
reference discriminant of the reference type or reference object. A generalized_reference is a name
that identifies a reference object, and denotes the object or subprogram designated by the reference
discriminant of the reference object.

Syntax

generalized_reference ::= reference object name

Name Resolution Rules

The expected type for the reference _object_name in a generalized_reference is any reference type.

Static Semantics
The Implicit_Dereference aspect is nonoverridable (see 13.1.1).

A generalized_reference denotes a view equivalent to that of a dereference of the reference
discriminant of the reference object.

Given a reference type T, the Implicit Dereference aspect is inherited by descendants of type T if not
overridden (which is only permitted if confirming). If a descendant type constrains the value of the
reference discriminant of 7 by a new discriminant, that new discriminant is the reference discriminant
of the descendant. If the descendant type constrains the value of the reference discriminant of 7 by an
expression other than the name of a new discriminant, a generalized_reference that identifies an
object of the descendant type denotes the object or subprogram designated by the value of this
constraining expression.

Dynamic Semantics

The evaluation of a generalized_reference consists of the evaluation of the reference object name
and a determination of the object or subprogram designated by the reference discriminant of the
named reference object. A check is made that the value of the reference discriminant is not the null
access value. Constraint Error is raised if this check fails. The generalized_reference denotes the
object or subprogram designated by the value of the reference discriminant of the named reference
object.

Examples

Examples of the specification and use of generalized references:

95 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

type Barrel is tagged ... -- holds objects of type Element

type Ref Element (Data : access Element) is limited private
with Implicit Dereference => Data;
-~ This Ref Element type is a "reference" type.
- "Data" is its reference discriminant.

function Find (B : aliased in out Barrel; Key : String) return Ref Element;
- - Returns a reference to an element of a barrel.

B: aliased Barrel;

Find (B, "grape") := Element'(...); -- Assign through a reference.

-~ This is equivalent to:
Find (B, "grape") .Data.all := Element'(...);

4.1.6 User-Defined Indexing

Static Semantics

Given a tagged type T, the following type-related, operational aspects may be specified:

Constant_Indexing
This aspect shall be specified by a name that denotes one or more functions declared
immediately within the same declaration list in which 7, or the declaration completed by
T, is declared. All such functions shall have at least two parameters, the first of which is
of type T or T'Class, or is an access-to-constant parameter with designated type T or
T'Class.

Variable Indexing
This aspect shall be specified by a name that denotes one or more functions declared
immediately within the same declaration list in which 7, or the declaration completed by
T, is declared. All such functions shall have at least two parameters, the first of which is
of type T or T'Class, or is an access parameter with designated type T or T'Class. All such
functions shall have a return type that is a reference type (see 4.1.5), whose reference
discriminant is of an access-to-variable type.

These aspects are inherited by descendants of T (including the class-wide type T'Class).

An indexable container type is (a view of) a tagged type with at least one of the aspects
Constant_Indexing or Variable Indexing specified. An indexable container object is an object of an
indexable container type. A generalized_indexing is a name that denotes the result of calling a
function named by a Constant_Indexing or Variable Indexing aspect.

The Constant_Indexing and Variable Indexing aspects are nonoverridable (see 13.1.1).

Legality Rules

If an ancestor of a type T is an indexable container type, then any explicit specification of the
Constant_Indexing or Variable Indexing aspects shall be confirming; that is, the specified name shall
match the inherited aspect (see 13.1.1).

In addition to the places where Legality Rules normally apply (see 12.3), this rule applies also in the
private part of an instance of a generic unit.

A generalized_indexing is illegal if the equivalent prefixed view (see below) is illegal.

Syntax

generalized_indexing ::= indexable container_object_prefix actual_parameter_part

Name Resolution Rules

The expected type for the indexable container object prefix of a generalized_indexing is any
indexable container type.

© ISO/IEC 2021 — All rights reserved 96

ISO/IEC 8652:DIS

If the Constant_Indexing aspect is specified for the type of the indexable container object prefix of a
generalized_indexing, then the generalized_indexing is interpreted as a constant indexing under the
following circumstances:

e when the Variable Indexing aspect is not specified for the type of the
indexable container_object_prefix;

e when the indexable container _object_prefix denotes a constant;

e when the generalized_indexing is used within a primary where a name denoting a constant
is permitted.

Otherwise, the generalized_indexing is interpreted as a variable indexing.

When a generalized_indexing is interpreted as a constant (or variable) indexing, it is equivalent to a
call on a prefixed view of one of the functions named by the Constant Indexing (or
Variable Indexing) aspect of the type of the indexable container object prefix with the given
actual_parameter_part, and with the indexable_container object prefix as the prefix of the prefixed
view.

NOTES

6 The Constant_Indexing and Variable Indexing aspects cannot be redefined when inherited for a derived type, but the
functions that they denote can be modified by overriding or overloading.

Examples

Examples of the specification and use of generalized indexing:

type Indexed Barrel is tagged ...
with Variable Indexing => Find;
-- Indexed Barrel is an indexable container type,
-- Find is the generalized indexing operation.

function Find (B : aliased in out Indexed Barrel; Key : String) return
Ref Element;
-~ Return a reference to an element of a barrel (see 4.1.5).

IB: aliased Indexed Barrel;

- - All of the following calls are then equivalent:

Find (IB,"pear").Data.all := Element'(...); -- Traditional call

IB.Find ("pear") .Data.all := Element' (...); -- Call of prefixed view

IB.Find ("pear") = Element' (...); -- Implicitdereference (see 4.1.5)
IB ("pear™") = Element' (...); -- Implicitindexing and dereference
IB ("pear") .Data.all := Element' (...); -- Implicitindexing only

4.2 Literals

A literal represents a value literally, that is, by means of notation suited to its kind. A literal is either a
numeric_literal, a character_literal, the literal null, or a string_literal.

Name Resolution Rules

For a name that consists of a character_literal, either its expected type shall be a single character
type, in which case it is interpreted as a parameterless function_call that yields the corresponding
value of the character type, or its expected profile shall correspond to a parameterless function with a
character result type, in which case it is interpreted as the name of the corresponding parameterless
function declared as part of the character type's definition (see 3.5.1). In either case, the
character_literal denotes the enumeration_literal_specification.

The expected type for a primary that is a string_literal shall be a single string type or a type with a
specified String Literal aspect (see 4.2.1). In either case, the string_literal is interpreted to be of its
expected type. If the expected type of an integer literal is a type with a specified Integer Literal aspect
(see 4.2.1), the literal is interpreted to be of its expected type; otherwise it is interpreted to be of type
universal_integer. If the expected type of a real literal is a type with a specified Real Literal aspect

97 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

(see 4.2.1), it is interpreted to be of its expected type; otherwise, it is interpreted to be of type
universal_real.

Legality Rules

A character_literal that is a name shall correspond to a defining_character_literal of the expected
type, or of the result type of the expected profile.

If the expected type for a string literal is a string type, then for each character of the string_literal
there shall be a corresponding defining_character_literal of the component type of the expected string

type.
Static Semantics

The literal null is of type universal access.

Dynamic Semantics

If its expected type is a numeric type, the evaluation of a numeric literal yields the represented value.
In other cases, the effect of evaluating a numeric literal is determined by the Integer Literal or
Real_Literal aspect that applies (see 4.2.1).

The evaluation of the literal null yields the null value of the expected type.

The evaluation of a string_literal that is a primary and has an expected type that is a string type, yields
an array value containing the value of each character of the sequence of characters of the
string_literal, as defined in 2.6. The bounds of this array value are determined according to the rules
for positional_array_aggregates (see 4.3.3), except that for a null string literal, the upper bound is
the predecessor of the lower bound. In other cases, the effect of evaluating a string_literal is
determined by the String_Literal aspect that applies (see 4.2.1).

For the evaluation of a string_literal of a string type 7, a check is made that the value of each
character of the string_literal belongs to the component subtype of 7. For the evaluation of a null
string literal of a string type, a check is made that its lower bound is greater than the lower bound of
the base range of the index type. The exception Constraint Error is raised if either of these checks
fails.

NOTES

7 Enumeration literals that are identifiers rather than character_literals follow the normal rules for identifiers when

used in a name (see 4.1 and 4.1.3). Character_literals used as selector_names follow the normal rules for expanded
names (see 4.1.3).

Examples

Examples of literals:

3.14159 26536 -- areal literal
1 345 - - an integer literal
‘A" - - a character literal
"Some Text" -- astring literal

4.2.1 User-Defined Literals

Using one or more of the aspects defined below, a type may be specified to allow the use of one or
more kinds of literals as values of the type.

Static Semantics

The following type-related operational aspects (collectively known as user-defined literal aspects)
may be specified for a type T:

Integer Literal
This aspect is specified by a function_name that statically denotes a function with a result
type of T and one in parameter that is of type String and is not explictly aliased.

© ISO/IEC 2021 — All rights reserved 98

ISO/IEC 8652:DIS

Real Literal
This aspect is specified by a function _name that statically denotes a function with a result
type of T and one in parameter that is of type String and is not explictly aliased, and
optionally a second function (overloading the first) with a result type of 7 and two in
parameters of type String that are not explicitly aliased.

String_Literal
This aspect is specified by a function_name that statically denotes a function with a result
type of T and one in parameter that is of type Wide Wide String and is not explictly
aliased.

User-defined literal aspects are nonoverridable (see 13.1.1).

When a numeric literal is interpreted as a value of a non-numeric type 7T or a string_literal is
interpreted a value of a type T that is not a string type (see 4.2), it is equivalent to a call to the
subprogram denoted by the corresponding aspect of 7: the Integer Literal aspect for an integer literal,
the Real Literal aspect for a real literal, and the String_ Literal aspect for a string_literal. The actual
parameter of this notional call is a string_literal representing a sequence of characters that is the same
as the sequence of characters in the original numeric literal, or the sequence represented by the
original string literal.

Such a literal is said to be a user-defined literal.

When a named number that denotes a value of type universal integer is interpreted as a value of a
non-numeric type 7, it is equivalent to a call to the function denoted by the Integer Literal aspect of
T. The actual parameter of this notional call is a String having a textual representation of a decimal
integer literal optionally preceded by a minus sign, representing the same value as the named number.

When a named number that denotes a value of type universal real is interpreted as a value of a non-
numeric type 7, it is equivalent to a call to the two-parameter function denoted by the Real Literal
aspect of 7, if any. The actual parameters of this notional call are each a String with the textual
representation of a decimal integer literal, with the first optionally preceded by a minus sign, where
the first String represents the same value as the numerator, and the second the same value as the
denominator, of the named number when represented as a rational number in lowest terms, with a
positive denominator.

Legality Rules

The Integer Literal or Real Literal aspect shall not be specified for a type 7 if the full view of T'is a
numeric type. The String Literal aspect shall not be specified for a type T if the full view of T is a
string type.

For a nonabstract type, the function directly specified for a user-defined literal aspect shall not be
abstract.

For a tagged type with a partial view, a user-defined literal aspect shall not be directly specified on the
full type.

If a nonabstract tagged type inherits any user-defined literal aspect, then each inherited aspect shall be
directly specified as a nonabstract function for the type unless the inherited aspect denotes a
nonabstract function, or functions, and the type is a null extension.

If a named number that denotes a value of type universal_integer is interpreted as a value of a non-
numeric type 7, T shall have an Integer Literal aspect. If a named number that denotes a value of type
universal_real is interpreted as a value of a non-numeric type 7, T shall have a Real Literal aspect,
and the aspect shall denote a function that has two in parameters, both of type String, with result of
type T.

In addition to the places where Legality Rules normally apply (see 12.3), these rules also apply in the
private part of an instance of a generic unit.

99 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

Bounded (Run-Time) Errors

It is a bounded error if the evaluation of a literal or named number that has an expected type with a
specified user-defined literal aspect propagates an exception. Either Program_Error or the exception
propagated by the evaluation is raised at the point of use of the value of the literal or named number.
If it is recognized prior to run time that evaluation of such a literal or named number will inevitably (if
executed) result in such a bounded error, then this may be reported as an error prior to run time.

Examples

Examples of the specification and use of user-defined literals:

subtype Roman Character is Wide Wide Character
with Static_Predicate =>

Roman_Character in 'I' | 'V' | 'X' | 'L' | 'C' | 'D' | 'M';
Max_Roman Number : comstant := 3_999; -- MMMCMXCIX
type Roman Number is range 1 .. Max_Roman_Number

with String Literal => To Roman Number;

function To Roman Number (S : Wide Wide String) return Roman Number
with Pre => S'Length > 0 and then
(for all Char of S => Char in Roman_ Character) ;

function To Roman Number (S : Wide Wide String) return Roman Number is
(declare
R : constant array (Integer range <>) of Roman Number :=
(for D in S'Range => Roman_Digit'Enum_ Rep
(Roman_Digit'Wide Wide Value (''' & S(D) & ''')));
--See3.5.2and 13.4
begin
[for I in R'Range =>
(if T < R'Last and then R(I) < R(I + 1) then -1 else 1) * R(I)]

'Reduce ("+", 0)
)
X : Roman Number := "III" * "IV" * "XII"; -- 144 (that is, CXLIV)
4.3 Aggregates

An aggregate combines component values into a composite value of an array type, record type, or
record extension.

Syntax

aggregate ::=
record_aggregate | extension_aggregate | array_aggregate
| delta_aggregate | container_aggregate

Name Resolution Rules
The expected type for an aggregate shall be a single array type, a single type with the Aggregate
aspect specified, or a single descendant of a record type or of a record extension.
Legality Rules

A record_aggregate or extension_aggregate shall not be of a class-wide type.

Dynamic Semantics

For the evaluation of an aggregate, an anonymous object is created and values for the components or
ancestor part are obtained (as described in the subsequent subclause for each kind of the aggregate)
and assigned into the corresponding components or ancestor part of the anonymous object. Obtaining
the values and the assignments occur in an arbitrary order. The value of the aggregate is the value of
this object.

© ISO/IEC 2021 — All rights reserved 100

ISO/IEC 8652:DIS

If an aggregate is of a tagged type, a check is made that its value belongs to the first subtype of the
type. Constraint_Error is raised if this check fails.

4.3.1 Record Aggregates

In a record_aggregate, a value is specified for each component of the record or record extension
value, using either a named or a positional association.

Syntax
record_aggregate ::= (record_component_association_list)

record_component_association_list ::=
record_component_association {, record_component_association}
| null record

record_component_association ::=
[component_choice_list =>] expression
| component_choice_list => <>

component_choice_list ::=
component_selector_name {'|' component_selector_name}
| others

A record_component_association is a named component association if it has a
component_choice_list; otherwise, it is a positional component association. Any positional
component associations shall precede any named component associations. If there is a named
association with a component_choice_list of others, it shall come last.

In the record_component_association_list for a record_aggregate, if there is only one
association, it shall be a named association.

Name Resolution Rules
The expected type for a record_aggregate shall be a single record type or record extension.

For the record_component_association_list of a record_aggregate, all components of the
composite value defined by the aggregate are needed; for the association list of an
extension_aggregate, only those components not determined by the ancestor expression or subtype
are needed (see 4.3.2). Each component selector name in a record_component_association of a
record_aggregate or extension_aggregate shall denote a needed component (including possibly a
discriminant). Each component selector name in a record_component _association of a
record_delta_aggregate (see 4.3.4) shall denote a nondiscriminant component of the type of the
aggregate.

The expected type for the expression of a record_component_association is the type of the
associated component(s); the associated component(s) are as follows:

e For a positional association, the component (including possibly a discriminant) in the
corresponding relative position (in the declarative region of the type), counting only the
needed components;

e For a named association with one or more component selector_names, the named
component(s);

e For a named association with the reserved word others, all needed components that are not
associated with some previous association.

Legality Rules

If the type of a record_aggregate is a record extension, then it shall be a descendant of a record type,
through one or more record extensions (and no private extensions).

101 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

A record_component_association_list shall be null record only if the list occurs in a
record_aggregate or extension_aggregate, and there are no components needed for that list.

For a record_aggregate or extension_aggregate, each record_component_association other than
an others choice with a <> shall have at least one associated component, and each needed component
shall be associated with exactly one record_component_association. For a record_delta_aggregate,
each component selector_ name of each component choice list shall denote a distinct
nondiscriminant component of the type of the aggregate.

If a record_component_association with an expression has two or more associated components, all
of them shall be of the same type, or all of them shall be of anonymous access types whose subtypes
statically match. In addition, Legality Rules are enforced separately for each associated component.

For a record_aggregate or extension_aggregate, if a variant_part P is nested within a variant J that
is not selected by the discriminant value governing the variant_part enclosing ¥, then there is no
restriction on the discriminant governing P. Otherwise, the value of the discriminant that governs P
shall be given by a static expression, or by a nonstatic expression having a constrained static nominal
subtype. In this latter case of a nonstatic expression, there shall be exactly one discrete_choice_list of
P that covers each value that belongs to the nominal subtype and satisfies the predicates of the
subtype, and there shall be at least one such value.

A record_component_association for a discriminant without a default_expression shall have an
expression rather than <>,

A record_component_association of the record_component association list of a
record_delta_aggregate shall not:

e use the box compound delimiter <> rather than an expression;
¢ have an expression of a limited type;

e omit the component_choice_list; or

e have a component_choice_list that is an others choice.

For a record_delta_aggregate, no two component selector_names shall denote components
declared within different variants of the same variant_part.

Dynamic Semantics

The evaluation of a record_aggregate consists of the evaluation of the record component -
association_list.

For the evaluation of a record_component_association_list, any per-object constraints (see 3.8) for
components specified in the association list are elaborated and any expressions are evaluated and
converted to the subtype of the associated component. Any constraint elaborations and expression
evaluations (and conversions) occur in an arbitrary order, except that the expression for a
discriminant is evaluated (and converted) prior to the elaboration of any per-object constraint that
depends on it, which in turn occurs prior to the evaluation and conversion of the expression for the
component with the per-object constraint. If the value of a discriminant that governs a selected
variant_part P is given by a nonstatic expression, and the evaluation of that expression yields a
value that does not belong to the nominal subtype of the expression, then Constraint_Error is raised.

For a record_component_association with an expression, the expression defines the value for the
associated component(s). For a record_component_association with <>, if the
component_declaration has a default_expression, that default_expression defines the value for the
associated component(s); otherwise, the associated component(s) are initialized by default as for a
stand-alone object of the component subtype (see 3.3.1).

The expression of a record_component_association is evaluated (and converted) once for each
associated component.

© ISO/IEC 2021 — All rights reserved 102

ISO/IEC 8652:DIS

NOTES

8 For a record_aggregate with positional associations, expressions specifying discriminant values appear first since
the known_discriminant_part is given first in the declaration of the type; they have to be in the same order as in the
known_discriminant_part.

Examples

Example of a record aggregate with positional associations:
(4, July, 1776) -- see 3.8

Examples of record aggregates with named associations:

(Day => 4, Month => July, Year => 1776)
(Month => July, Day => 4, Year => 1776)
(
(

Disk, Closed, Track => 5, Cylinder => 12) -- see 3.8.1
Unit => Disk, Status => Closed, Cylinder => 9, Track => 1)

Examples of component associations with several choices:
(Value => 0, Succ|Pred => new Cell' (0, null, null)) -- see 3.10.1
-~ The allocator is evaluated twice: Succ and Pred designate different cells
(Value => 0, Succ|Pred => <>) -- see 3.10.1

- - Succ and Pred will be set to null

Examples of record aggregates for tagged types (see 3.9 and 3.9.1):

Expression' (null record)
Literal' (Value => 0.0)
Painted Point' (0.0, Pi/2.0, Paint => Red)

4.3.2 Extension Aggregates

An extension_aggregate specifies a value for a type that is a record extension by specifying a value
or subtype for an ancestor of the type, followed by associations for any components not determined
by the ancestor_part.

Syntax

extension_aggregate ::=
(ancestor_part with record_component_association_list)

ancestor_part ::= expression | subtype_mark

Name Resolution Rules

The expected type for an extension_aggregate shall be a single type that is a record extension. If the
ancestor_part is an expression, it is expected to be of any tagged type.

Legality Rules

If the ancestor part is a subtype mark, it shall denote a specific tagged subtype. If the
ancestor_part is an expression, it shall not be dynamically tagged. The type of the
extension_aggregate shall be a descendant of the type of the ancestor part (the ancestor type),
through one or more record extensions (and no private extensions). If the ancestor_part is a
subtype_mark, the view of the ancestor type from which the type is descended (see 7.3.1) shall not
have unknown discriminants.

If the type of the ancestor_part is limited and at least one component is needed in the
record_component_association_list, then the ancestor_part shall not have an operative constituent
expression (see 4.4) that is a call to a function with an unconstrained result subtype.

103 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

Static Semantics

For the record_component_association_list of an extension_aggregate, the only components
needed are those of the composite value defined by the aggregate that are not inherited from the type
of the ancestor_part, plus any inherited discriminants if the ancestor_part is a subtype mark that
denotes an unconstrained subtype.

Dynamic Semantics

For the evaluation of an extension_aggregate, the record_component_association_list is evaluated.
If the ancestor_part is an expression, it is also evaluated; if the ancestor_part is a subtype _mark,
the components of the value of the aggregate not given by the record_component_association_list
are initialized by default as for an object of the ancestor type. Any implicit initializations or
evaluations are performed in an arbitrary order, except that the expression for a discriminant is
evaluated prior to any other evaluation or initialization that depends on it.

If the type of the ancestor_part has discriminants and the ancestor_part is not a subtype_mark that
denotes an unconstrained subtype, then a check is made that each discriminant determined by the
ancestor_part has the value specified for a corresponding discriminant, if any, either in the record_-
component_association_list, or in the derived_type_definition for some ancestor of the type of the
extension_aggregate. Constraint Error is raised if this check fails.

NOTES

9 If all components of the value of the extension_aggregate are determined by the ancestor_part, then the record_-
component_association_list is required to be simply null record.

10 If the ancestor_part is a subtype_mark, then its type can be abstract. If its type is controlled, then as the last step of
evaluating the aggregate, the Initialize procedure of the ancestor type is called, unless the Initialize procedure is
abstract (see 7.6).

Examples

Examples of extension aggregates (for types defined in 3.9.1):

Painted Point' (Point with Red)
(Point' (P) with Paint => Black)

(Expression with Left => new Literal' (Value => 1.2),
Right => new Literal' (Value => 3.4))
Addition' (Binop with null record)
- - presuming Binop is of type Binary Operation

4.3.3 Array Aggregates

In an array_aggregate, a value is specified for each component of an array, either positionally or by
its index. For a positional_array_aggregate, the components are given in increasing-index order,
with a final others, if any, representing any remaining components. For a named_array_aggregate,
the components are identified by the values covered by the discrete_choices.

Syntax

array_aggregate ::=
positional_array_aggregate | null_array_aggregate | named_array aggregate

positional_array_aggregate ::=
(expression, expression {, expression})
| (expression {, expression}, others => expression)
| (expression {, expression}, others => <>)
| '[' expression {, expression}[, others => expression]']'
| '[' expression {, expression}, others => <> "'

null_array_aggregate ::="T""]'

named_array_aggregate ::=
(array_component_association_list)

© ISO/IEC 2021 — All rights reserved 104

ISO/IEC 8652:DIS

| '[' array_component_association_list ']'

array_component_association_list ::=
array_component_association {, array_component_association}

array_component_association ::=
discrete_choice_list => expression
| discrete_choice_list => <>
| iterated_component_association

iterated_component_association ::=
for defining_identifier in discrete_choice_list => expression
| for iterator_specification => expression

An n-dimensional array_aggregate is one that is written as n levels of nested array_aggregates (or
at the bottom level, equivalent string_literals). For the multidimensional case (n >= 2) the
array_aggregates (or equivalent string_literals) at the n—1 lower levels are called subaggregates of
the enclosing n-dimensional array_aggregate. The expressions of the bottom level subaggregates (or
of the array_aggregate itself if one-dimensional) are called the array component expressions of the
enclosing n-dimensional array_aggregate.

The defining_identifier of an iterated_component_association declares an index parameter, an
object of the corresponding index type.

Name Resolution Rules

The expected type for an array_aggregate (that is not a subaggregate) shall be a single array type.
The component type of this array type is the expected type for each array component expression of
the array_aggregate.

The expected type for each discrete choice in any discrete_choice list of a
named_array_aggregate is the type of the corresponding index; the corresponding index for an
array_aggregate that is not a subaggregate is the first index of its type; for an (n—m)-dimensional
subaggregate within an array_aggregate of an n-dimensional type, the corresponding index is the
index in position m+1.

Legality Rules

An array_aggregate of an n-dimensional array type shall be written as an n-dimensional
array_aggregate, or as a null_array_aggregate.

An others choice is allowed for an array_aggregate only if an applicable index constraint applies to
the array_aggregate. An applicable index constraint is a constraint provided by certain contexts that
can be used to determine the bounds of the array value specified by an array_aggregate. Each of the
following contexts (and none other) defines an applicable index constraint:

e For an explicit_actual_parameter, an explicit_generic_actual_parameter, the expression of
a return statement, the return expression of an expression function, the initialization
expression in an object_declaration, or a default_expression (for a parameter or a
component), when the nominal subtype of the corresponding formal parameter, generic
formal parameter, function return object, expression function return object, object, or
component is a constrained array subtype, the applicable index constraint is the constraint of
the subtype;

e For the expression of an assignment_statement where the name denotes an array variable,
the applicable index constraint is the constraint of the array variable;

e For the operand of a qualified_expression whose subtype mark denotes a constrained array
subtype, the applicable index constraint is the constraint of the subtype;

e For a component expression in an aggregate, if the component's nominal subtype is a
constrained array subtype, the applicable index constraint is the constraint of the subtype;

105 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

e For the base expression of a delta_aggregate, if the nominal subtype of the
delta_aggregate is a constrained array subtype, the applicable index constraint is the
constraint of the subtype;

e For a parenthesized expression, the applicable index constraint is that, if any, defined for the
expression;

e For a conditional_expression (see 4.5.7), the applicable index constraint for each
dependent_expression is that, if any, defined for the conditional_expression;

e For a declare_expression (see 4.5.9), the applicable index constraint for the
body expression is that, if any, defined for the declare_expression.

The applicable index constraint applies to an array_aggregate that appears in such a context, as well
as to any subaggregates thereof. In the case of an explicit_actual_parameter (or default_expression)
for a call on a generic formal subprogram, no applicable index constraint is defined.

The discrete_choice_list of an array_component_association (including an
iterated_component_association) is allowed to have a discrete_choice that is a nonstatic
choice_expression or that is a subtype_indication or range that defines a nonstatic or null range,
only if it is the single discrete_choice of its discrete_choice_list, and either there is only one
array_component_association in the enclosing array_component_association_list or the enclosing
aggregate is an array_delta_aggregate, not an array_aggregate.

Either all or none of the array_component_associations of an array_component_association_list
shall be iterated_component_associations with an iterator_specification.

In a named_array_aggregate where all discrete_choices are static, no two discrete_choices are
allowed to cover the same value (see 3.8.1); if there is no others choice, the discrete_choices taken
together shall exactly cover a contiguous sequence of values of the corresponding index type.

A bottom level subaggregate of a multidimensional array_aggregate of a given array type is allowed
to be a string_literal only if the component type of the array type is a character type; each character of
such a string_literal shall correspond to a defining_character_literal of the component type.

Static Semantics

A subaggregate that is a string_literal is equivalent to one that is a positional_array_aggregate of the
same length, with each expression being the character_literal for the corresponding character of the
string_literal.

The subtype (and nominal subtype) of an index parameter is the corresponding index subtype.

Dynamic Semantics

For an array_aggregate that contains only array_component_associations that are
iterated_component_associations with iterator_specifications, evaluation proceeds in two steps:

1. Each iterator_specification is elaborated (in an arbitrary order) and an iteration is performed
solely to determine a maximum count for the number of values produced by the iteration; all
of these counts are combined to determine the overall length of the array, and ultimately the
limits on the bounds of the array (defined below);

2. A second iteration is performed for each of the iterator_specifications, in the order given in
the aggregate, and for each value conditionally produced by the iteration (see 5.5 and 5.5.2),
the associated expression is evaluated, its value is converted to the component subtype of the
array type, and used to define the value of the next component of the array starting at the low
bound and proceeding sequentially toward the high bound. A check is made that the second
iteration results in an array length no greater than the maximum determined by the first
iteration; Constraint_Error is raised if this check fails.

© ISO/IEC 2021 — All rights reserved 106

ISO/IEC 8652:DIS

The evaluation of any other array_aggregate of a given array type proceeds in two steps:

1. Any discrete_choices of this aggregate and of its subaggregates are evaluated in an arbitrary
order, and converted to the corresponding index type;

2. The array component expressions of the aggregate are evaluated in an arbitrary order and
their values are converted to the component subtype of the array type; an array component
expression is evaluated once for each associated component.

Each expression in an array_component_association defines the value for the associated
component(s). For an array_component_association with <>, the associated component(s) are
initialized to the Default Component Value of the array type if this aspect has been specified for the
array type; otherwise, they are initialized by default as for a stand-alone object of the component
subtype (see 3.3.1).

During an evaluation of the expression of an iterated _component_association with a
discrete_choice_list, the value of the corresponding index parameter is that of the corresponding
index of the corresponding array component. During an evaluation of the expression of an
iterated_component_association with an iterator_specification, the value of the loop parameter of
the iterator_specification is the value produced by the iteration (as described in 5.5.2).

The bounds of the index range of an array_aggregate (including a subaggregate) are determined as
follows:

e For an array_aggregate with an others choice, the bounds are those of the corresponding
index range from the applicable index constraint;

e For a positional_array_aggregate (or equivalent string_literal) without an others choice, the
lower bound is that of the corresponding index range in the applicable index constraint, if
defined, or that of the corresponding index subtype, if not; in either case, the upper bound is
determined from the lower bound and the number of expressions (or the length of the
string_literal);

e For a null_array_aggregate, bounds for each dimension are determined as for a
positional_array_aggregate without an others choice that has no expressions for each
dimension;

e For a named_array_aggregate containing only iterated_component_associations with an
iterator_specification, the lower bound is determined as for a positional_array_aggregate
without an others choice, and the upper bound is determined from the lower bound and the
total number of values produced by the second set of iterations;

e For any other named_array_aggregate without an others choice, the bounds are determined
by the smallest and largest index values covered by any discrete_choice_list.

For an array_aggregate, a check is made that the index range defined by its bounds is compatible
with the corresponding index subtype.

For an array_aggregate with an others choice, a check is made that no expression or <> is specified
for an index value outside the bounds determined by the applicable index constraint.

For a multidimensional array_aggregate, a check is made that all subaggregates that correspond to
the same index have the same bounds.

The exception Constraint_Error is raised if any of the above checks fail.

Implementation Permissions

When evaluating iterated_component_associations for an array_aggregate that contains only
iterated_component_associations with iterator_specifications, the first step of evaluating an
iterated_component_association can be omitted if the implementation can determine the maximum
number of values by some other means.

107 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

NOTES

11 In an array_aggregate delimited by parentheses, positional notation may only be used with two or more
expressions; a single expression in parentheses is interpreted as a parenthesized expression. An array_aggregate
delimited by square brackets may be used to specify an array with a single component.

12 An index parameter is a constant object (see 3.3).
Examples

Examples of array aggregates with positional associations:

(7, 9, 5, 1, 3, 2, 4, 8, 6, 0)
Table' (5, 8, 4, 1, others => 0) -- see3.6

Examples of array aggregates with named associations:

(1 .. 5=> (1L .. 8 =>0.0)) - - two-dimensional

[1 .. N => new Cell] -- N new cells, in particular for N = 0
Table'(2 | 4 | 10 => 1, others => 0)

Schedule' (Mon .. Fri => True, others => False) -- see3.6

Schedule' [Wed | Sun => False, others => True]

Vector' (1 => 2.5) - - single-component vector

Examples of two-dimensional array aggregates:
- - Three aggregates for the same value of subtype Matrix(1..2,1..3) (see 3.6):

1.1, 1.2, 1.3), (2.1, 2.2, 2.3))
, 1.2, 1.31, 2 => [2.1, 2.2, 2.3])
>1.1, 2 =>1.2, 3 =>1.3), 2 => (1 =>2.1, 2 =>2.2, 3 => 2.3)]

Examples of aggregates as initial values:

A : Table := (7, 9, 5, 1, 3, 2, 4, 8, 6, 0); --A(1)=7, A(10)=0
B : Table := (2 | 4 | 10 => 1, others => 0); -- B(1)=0, B(10)=1
C : constant Matrix := (1 .. 5 => (1 .. 8 => 0.0)); -- C'Last(l)=5, C'Last(2)=8
D : Bit Vector(M .. N) := (M .. N => True); --see 3.6
E : Bit Vector(M .. N) := (others => True);
F : String(l1 .. 1) := (1 => 'F'); -- aonecomponentaggregate: same as "F"
G : constant Matrix :=

(for I in 1 .. 4 =>

(for J in 1 .. 4 =>
(if I=J then 1.0 else 0.0))); -- Identity matrix

Empty Matrix : constant Matrix := []; -- 4 matrix without elements

Example of an array aggregate with defaulted others choice and with an applicable index constraint
provided by an enclosing record aggregate:

Buffer' (Size => 50, Pos => 1, Value => ('x', others => <>)) --see3.7

4.3.4 Delta Aggregates

Evaluating a (record or array) delta aggregate yields a composite value that starts with a copy of
another value of the same type and then assigns to some (but typically not all) components of the

copy.
Syntax
delta_aggregate ::= record_delta_aggregate | array_delta_aggregate

record_delta_aggregate ::=
(base_expression with delta record_component_association_list)

array_delta_aggregate ::=
(base_expression with delta array_component_association_list)
| '[' base_expression with delta array_component_association_list ']’

© ISO/IEC 2021 — All rights reserved 108

ISO/IEC 8652:DIS

Name Resolution Rules

The expected type for a record_delta_aggregate shall be a single descendant of a record type or
record extension.

The expected type for an array_delta_aggregate shall be a single array type.

The expected type for the base_expression of any delta_aggregate is the type of the enclosing
delta_aggregate.

The Name Resolution Rules and Legality Rules for each record_component_association of a
record_delta_aggregate are as defined in 4.3.1.

For an array delta_aggregate, the expected type for each discrete _choice in an
array_component_association is the index type of the type of the delta_aggregate.

The expected type of the expression in an array_component_association is defined as for an
array_component_association occurring within an array_aggregate of the type of the
delta_aggregate.

Legality Rules

For an array_delta_aggregate, the array_component_association shall not use the box symbol <>,
and the discrete_choice shall not be others.

For an array_delta_aggregate, the dimensionality of the type of the delta_aggregate shall be 1.

For an array_delta_aggregate, the base expression and each expression in every
array_component_association shall be of a nonlimited type.

Dynamic Semantics

The evaluation of a delta_aggregate begins with the evaluation of the base expression of the
delta_aggregate; then that value is used to create and initialize the anonymous object of the
aggregate. The bounds of the anonymous object of an array_delta_aggregate and the discriminants
(if any) of the anonymous object of a record_delta_aggregate are those of the base expression. If a
record_delta_aggregate is of a specific tagged type, its tag is that of the specific type; if it is of a
class-wide type, its tag is that of the base expression.

For a record_delta_aggregate, for each component associated with each
record_component_association (in an unspecified order):
e if the associated component belongs to a variant, a check is made that the values of the

discriminants are such that the anonymous object has this component. The exception
Constraint_Error is raised if this check fails.

o the expression of the record_component_association is evaluated, converted to the nominal
subtype of the associated component, and assigned to the component of the anonymous
object.

For an array_delta_aggregate, for each discrete_choice of each array_component_association (in
the order given in the enclosing discrete_choice list and array_component association_list,
respectively) the discrete_choice is evaluated; for each represented index value (in ascending order,
if the discrete_choice represents a range):

o the index value is converted to the index type of the array type.

e a check is made that the index value belongs to the index range of the anonymous object of
the aggregate; Constraint Error is raised if this check fails.

e the component expression is evaluated, converted to the array component subtype, and
assigned to the component of the anonymous object identified by the index value.

109 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

Examples

Examples of use of delta aggregates in a postcondition:

procedure Twelfth (D : in out Date) -- see 3.8 for type Date
with Post => D = (D'Old with delta Day => 12);
procedure The Answer (V : in out Vector;
A, B : in Integer) -- see 3.6 for type Vector
with Post => V = (V'0ld with delta A .. B => 42.0, V'First => 0.0);

Examples where the base expression is nontrivial:

New_Cell : Cell := (Min_Cell (Head) with delta Value => 42);
--see 3.10.1 for Cell and Head; 6.1 for Min_Cell
Al : Vector := ((0 => 1.0, 1 => 2.0, 2 => 3.0)

with delta Integer (Random * 2.0) => 14.2);
- - see 3.6 for declaration of type Vector
- - see 6.1 for declaration of Random

Tomorrow := ((Yesterday with delta Day => 12)
with delta Month => April); --see3.8
Example where the base expression is class-wide:

function Translate (P : Point'Class; X, Y : Real) return Point'Class is
(P with delta X => P.X + X,
Y => P.Y + Y); --see3.9 fordeclaration of type Point

4.3.5 Container Aggregates

In a container_aggregate, values are specified for elements of a container, for a
positional_container_aggregate, the elements are given sequentially; for a
named_container_aggregate, the elements are specified by a sequence of key/value pairs, or using
an iterator. The Aggregate aspect of the type of the aggregate determines how the elements are
combined to form the container.

For a type other than an array type, the following type-related operational aspect may be specified:
Aggregate This aspect is an aggregate of the form:

(Empty => name,

Add Named => procedure _name][,

Add_Unnamed => procedure_name][,

New_Indexed => function_name,

Assign_Indexed => procedure_name])

The type for which this aspect is specified is known as the container type of the
Aggregate aspect. A procedure _name shall be specified for at least one of Add Named,
Add_Unnamed, or Assign_Indexed. If Add Named is specified, neither Add Unnamed
nor Assign Indexed shall be specified. Either both or neither of New Indexed and
Assign_Indexed shall be specified.

Name Resolution Rules

The name specified for Empty for an Aggregate aspect shall denote a constant of the container type,
or denote exactly one function with a result type of the container type that has no parameters, or that
has one in parameter of a signed integer type.

The procedure_name specified for Add Unnamed for an Aggregate aspect shall denote a procedure
that has two parameters, the first an in out parameter of the container type, and the second an in
parameter of some nonlimited type, called the element type of the container type.

The function_name specified for New Indexed for an Aggregate aspect shall denote a function with a
result type of the container type, and two parameters of the same discrete type, with that type being
the key type of the container type.

© ISO/IEC 2021 — All rights reserved 110

ISO/IEC 8652:DIS

The procedure name specified for Add Named or Assign Indexed for an Aggregate aspect shall
denote a procedure that has three parameters, the first an in out parameter of the container type, the
second an in parameter of a nonlimited type (the key type of the container type), and the third, an in
parameter of a nonlimited type that is called the element type of the container type.

Legality Rules

If the container type of an Aggregate aspect is a private type, the full type of the container type shall
not be an array type. If the container type is limited, the name specified for Empty shall denote a
function rather than a constant object.

For an Aggregate aspect, the key type of Assign Indexed shall be the same type as that of the
parameters of New_Indexed. Additionally, if both Add Unnamed and Assign Indexed are specified,
the final parameters shall be of the same type — the element type of the container type.

Static Semantics

The Aggregate aspect is nonoverridable (see 13.1.1).

Syntax

container_aggregate ::=
null_container_aggregate
| positional_container_aggregate
| named_container_aggregate

null_container_aggregate ::="['"]'
positional_container_aggregate ::='[' expression{, expression} 'T'
named_container_aggregate ::='[' container_element_association_list ''

container_element_association_list ::=
container_element_association {, container_element_association}

container_element_association ::=
key_choice_list => expression
| key_choice_list => <>
| iterated_element_association

key_choice_list ::= key_choice {'|' key_choice}
key_choice ::= key_expression | discrete_range

iterated_element_association ::=
for loop_parameter_specification[use key_expression] => expression
| for iterator_specification[use key _expression] => expression

Name Resolution Rules

The expected type for a container_aggregate shall be a type for which the Aggregate aspect has been
specified. The expected type for each expression of a container_aggregate is the element type of the
expected type.

The expected type for a key_expression, or a discrete_range of a key_choice, is the key type of the
expected type of the aggregate.
Legality Rules

The expected type for a positional_container_aggregate shall have an Aggregate aspect that includes
a specification for an Add Unnamed procedure or an Assign Indexed procedure. The expected type
for a named_container_aggregate that contains one or more iterated_element_associations with a
key expression shall have an Aggregate aspect that includes a specification for the Add Named

111 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

procedure. The expected type for a named_container aggregate that contains one or more
key_choice_lists shall have an Aggregate aspect that includes a specification for the Add Named or
Assign_Indexed procedure. A null_container_aggregate can be of any type with an Aggregate
aspect.

A non-null container aggregate is called an indexed aggregate if the expected type T of the aggregate
specifies an Assign Indexed procedure in its Aggregate aspect, and either there is no Add_Unnamed
procedure specified for the type, or the aggregate is a named_container_aggregate with a
container_element_association that contains a key _choice_list or a loop_parameter_specification.
The key type of an indexed aggregate is also called the index type of the aggregate.

A container_element_association with a <> rather than an expression, or with a key_choice that is
a discrete_range, is permitted only in an indexed aggregate.

For an iterated_element_association without a key expression, if the aggregate is an indexed
aggregate or the expected type of the aggregate specifies an Add Named procedure in its Aggregate
aspect, then the type of the loop parameter of the iterated_element_association shall be the same as
the key type of the aggregate.

For a named_container_aggregate that is an indexed aggregate, all
container_element_associations shall contain either a key_choice_list, or a
loop_parameter_specification without a key expression or iterator_filter. Furthermore, for such an
aggregate, either:

e all key_choices shall be static expressions or static ranges, and every
loop_parameter_specification shall have a discrete_subtype_definition that defines a non-
null static range, and the set of values of the index type covered by the key_choices and the
discrete_subtype_definitions shall form a contiguous range of values with no duplications; or

o there shall be exactly one container_element_association, and if it has a key_choice_list,
the list shall have exactly one key_choice.

Dynamic Semantics

The evaluation of a container_aggregate starts by creating an anonymous object 4 of the expected
type 7, initialized as follows:

o if the aggregate is an indexed aggregate, from the result of a call on the New Indexed
function; the actual parameters in this call represent the lower and upper bound of the
aggregate, and are determined as follows:

o if the aggregate is a positional_container_aggregate, the lower bound is the low bound
of the subtype of the key parameter of the Add Indexed procedure, and the upper bound
has a position number that is the sum of the position number of the lower bound and one
less than the number of expressions in the aggregate;

o if the aggregate is a named_container_aggregate, the lower bound is the lowest value
covered by a key_choice list or is the low bound of a range defined by a
discrete_subtype_definition of a loop_parameter_specification; the upper bound is the
highest value covered by a key_choice_list or is the high bound of a range defined by a
discrete_subtype_definition of a loop_parameter_specification.

o if the aggregate is not an indexed aggregate, by assignment from the Empty constant, or from
a call on the Empty function specified in the Aggregate aspect. In the case of an Empty
function with a formal parameter, the actual parameter has the following value:

e for a null_container_aggregate, the value zero;
e for a positional_container_aggregate, the number of expressions;

e for a named_container_aggregate without an iterated _element_association, the
number of key_expressions;

© ISO/IEC 2021 — All rights reserved 112

ISO/IEC 8652:DIS

e for a named_container_aggregate where every iterated_element_association contains
a loop_parameter_specification, the total number of elements specified by all of the
container_element_associations;

e otherwise, to an implementation-defined value.

The evaluation then proceeds as follows:
e for a null_container_aggregate, the anonymous object 4 is the result;

e for a positional_container_aggregate of a type with a specified Add Unnamed procedure,
each expression is evaluated in an arbitrary order, and the Add Unnamed procedure is
invoked in sequence with the anonymous object 4 as the first parameter and the result of
evaluating each expression as the second parameter, in the order of the expressions;

e for a positional_container_aggregate that is an indexed aggregate, each expression is
evaluated in an arbitrary order, and the Assign Indexed procedure is invoked in sequence
with the anonymous object 4 as the first parameter, the key value as the second parameter,
computed by starting with the low bound of the subtype of the key formal parameter of the
Assign Indexed procedure and taking the successor of this value for each successive
expression, and the result of evaluating each expression as the third parameter;

e for a named_container_aggregate for a type with an Add Named procedure in its
Aggregate aspect, the container_element_associations are evaluated in an arbitrary order:

o for a container_element_association with a key choice_list, for each key_choice of the
list in an arbitrary order, the key_ choice is evaluated as is the expression of the
container_element_association (in an arbitrary order), and the Add Named procedure is
invoked once for each value covered by the key_choice, with the anonymous object A4 as
the first parameter, the value from the key_choice as the second parameter, and the result
of evaluating the expression as the third parameter;

o for a container_element_association with an iterated _element_association, first the
iterated_element_association is elaborated, then an iteration is performed, and for each
value conditionally produced by the iteration (see 5.5 and 5.5.2) the Add Named
procedure is invoked with the anonymous object 4 as the first parameter, the result of
evaluating the expression as the third parameter, and:

e if there is a key expression, the result of evaluating the key expression as the
second parameter;

e otherwise, with the loop parameter as the second parameter;

e for a named_container_aggregate that is an indexed aggregate, the evaluation proceeds as
above for the case of Add Named, but with the Assign Indexed procedure being invoked
instead of Add Named; in the case of a container_element_association with a <> rather
than an expression, the corresponding call on Assign Indexed is not performed, leaving the
component as it was upon return from the New_Indexed function;

e for any other named_container_aggregate, the container_element_associations (which are
necessarily iterated_element_associations) are evaluated in the order given; each such
evaluation comprises two steps:

1. the iterated_element_association is elaborated;
2. an iteration is performed, and for each value conditionally produced by the iteration (see

5.5 and 5.5.2) the Add_Unnamed procedure is invoked, with the anonymous object 4 as
the first parameter and the result of evaluating the expression as the second parameter.

Examples

Examples of specifying the Aggregate aspect for a Set_Type, a Map _Type, and a Vector _Type:

-- Set_Type is a set-like container type.
type Set Type is private
with Aggregate => (Empty => Empty Set,
Add_Unnamed => Include) ;
function Empty Set return Set Type;

113 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

subtype Small Int is Integer range -1000..1000;

procedure Include (S

-- Map Type is a map-like container type.
type Map Type is private

with Aggregate => (Empty
Add_Named
procedure Add To Map (M : in
Key : in
Value : in

Empty Map constant Map Type;

in out Set Type; N

in Small Int);

=> Empty Map,
=> Add_To Map) ;
out Map Type;

Integer;
String) ;

-- Vector_Type is an extensible array-like container type.

type Vector Type is private
with Aggregate => (Empty

Add_Unnamed
New_Indexed

=> Empty Vector,
=> Append_One,
=> New Vector,

Assign Indexed => Assign Element) ;

function Empty Vector (Capacity

procedure Append One (V in out

procedure Assign Element (V
Index
Item

Integer := 0) return Vector Type;
Vector Type; New Item

in out Vector_ Type;
in Positive;
in String) ;

in String) ;

function New Vector (First, Last Positive) return Vector Type
with Pre => First = Positive'First;
-- Vectors are always indexed starting at the
-- lower bound of their index subtype.

- - Private part not shown.

Examples of container aggregates for Set_Type, Map Type, and Vector Type:

-- Example aggregates using Set Type.
S : Set_ Type;

-- Assign the empty set to S:

s := [];

-- Is equivalent to:

S := Empty Set;

-- A positional set aggregate:
s := [1, 2];

-- Isequivalent to:
S := Empty Set;
Include (S, 1);
Include (S, 2);

-- A set aggregate with an iterated_element_association:
S := [for Item in 1 5 => Item * 2];

-- Is equivalent to:
S := Empty Set;

for Item in 1 5 loop
Include (S, Item * 2);
end loop;
-- A set aggregate consisting of two iterated_element_associations:
S := [for Item in 1 5 => Item,
for Item in 1 .. 5 => -Item];

-- Is equivalent (assuming set semantics) to:

S := Empty Set;

for Item in 1 5 loop
Include (S, Item);

end loop;

for Item in -5 -1 loop
Include (S, Item);

end loop;

-- Example aggregates using Map _Type.
M : Map_ Type;

-- A simple named map aggregate:
M := [12 => "house", 14 => "beige"];

© ISO/IEC 2021 — All rights reserved 114

ISO/IEC 8652:DIS

-- Is equivalent to:
M := Empty Map;
Add _To Map (M, 12, "house");
Add _To Map (M, 14, "beige");

-- Define a table of pairs:
type Pair is record

Key : Integer;

Value : access constant String;
end record;

Table : constant array(Positive range <>) of Pair :=
[(Key => 33, Value => new String' ("a nice string")),
(Key => 44, Value => new String' ("an even better string"))];

-- A map aggregate using an iterated_element_association
-- and a key_expression, built from from a table of key/value pairs:
M := [for P of Table use P.Key => P.Value.all];

-- Is equivalent to:
M := Empty Map;
for P of Table loop
Add_To Map (M, P.Key, P.Value.all);
end loop;

-~ Create an image table for an array of integers:
Keys : constant array(Positive range <>) of Integer := [2, 3, 5, 7, 11];

-- A map aggregate where the values produced by the

-- iterated_element_association are of the same type as the key
-- (eliminating the need for a separate key expression):

M := [for Key of Keys => Integer'Image (Key)];

-- Is equivalent to:
M := Empty Map;
for Key of Keys loop
Add_To Map (M, Key, Integer'Image (Key)) ;
end loop;

-- Example aggregates using Vector_Type.
V : Vector Type;

-- A positional vector aggregate:

V := ["abc", "def"];

-- Is equivalent to:

V := Empty Vector (2);
Append One (V, "abc");
Append One (V, "def");

-- An indexed vector aggregate:
V := [1 => "this", 2 => "ig", 3 => "a", 4 => "test"];

-- Is equivalent to:

V := New Vector (1, 4);
Assign Element (V, 1, "this");
Assign Element (V, 2, "is");
Assign Element (V, 3, "a");
Assign Element (V, 4, "test");

4.4 Expressions

An expression is a formula that defines the computation or retrieval of a value. In this International
Standard, the term “expression” refers to a construct of the syntactic category expression or of any of
the following categories: choice_expression, choice_relation, relation, simple_expression, term,
factor, primary, conditional_expression, quantified_expression.

Syntax
expression ::=
relation {and relation} |relation {and then relation}
| relation {or relation} | relation {or else relation}

| relation {xor relation}

choice_expression ::=

115 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

choice_relation {and choice_relation}
| choice_relation {or choice_relation}
| choice_relation {xor choice_relation}
| choice_relation {and then choice_relation}
| choice_relation {or else choice_relation}

choice_relation ::=
simple_expression [relational_operator simple_expression]

relation ::=
simple_expression [relational_operator simple_expression]
| tested_simple_expression [not] in membership_choice_list
| raise_expression

membership_choice_list ::= membership_choice {'| membership_choice}
membership_choice ::= choice_simple_expression | range | subtype_mark
simple_expression ::= [unary_adding_operator] term {binary_adding_operator term}
term ::= factor {multiplying_operator factor}

factor ::= primary [** primary] | abs primary | not primary

primary ::=
numeric_literal | null | string_literal | aggregate
| name | allocator | (expression)
| (conditional_expression) | (quantified_expression)
| (declare_expression)

Name Resolution Rules

A name used as a primary shall resolve to denote an object or a value.

Static Semantics
Each expression has a type; it specifies the computation or retrieval of a value of that type.
A primary that is an expression surrounded by (and) is known as a parenthesized expression.

Every name or expression consists of one or more operative constituent names or expressions, only
one of which is evaluated as part of evaluating the name or expression (the evaluated operative
constituent). The operative constituents are determined as follows, according to the form of the
expression (or name):

e if the expression is a conditional_expression, the operative constituents of its
dependent_expressions;

o if the expression (or name) is a parenthesized expression, a qualified_expression, or a view
conversion, the operative constituent(s) of its operand;

e if the expression is a declare_expression, the operative constituent(s) of its
body expression;

e otherwise, the expression (or name) itself.

In certain contexts, we specify that an operative constituent shall (or shall not) be newly constructed.
This means the operative constituent shall (or shall not) be an aggregate or a function_call; in either
case, a raise_expression is permitted.

Dynamic Semantics

The value of a primary that is a name denoting an object is the value of the object.

© ISO/IEC 2021 — All rights reserved 116

ISO/IEC 8652:DIS

An expression of a numeric universal type is evaluated as if it has type root integer (for
universal_integer) or root_real (otherwise) unless the context identifies a specific type (in which case
that type is used).

Implementation Permissions

For the evaluation of a primary that is a name denoting an object of an unconstrained numeric
subtype, if the value of the object is outside the base range of its type, the implementation may either
raise Constraint_Error or return the value of the object.

Examples

Examples of primaries:

4.0 -~ real literal

Pi - - named number

(L .. 10 => 0) - - array aggregate

Sum - - variable

Integer'Last - - attribute

Sine (X) - - function call

Color' (Blue) - - qualified expression

Real (M*N) - - conversion

(Line Count + 10) -- parenthesized expression
Examples of expressions:

Volume - - primary

not Destroyed - - factor

2*Line_ Count -~ term

-4.0 - - simple expression

-4.0 + A - - simple expression

B**2 - 4.0*A*C - - simple expression

R*Sin (6) *Cos (o) - - simple expression

Password(l .. 3) = "Bwv" - - relation

Count in Small Int - - relation

Count not in Small Int - - relation

Index = 0 or Item Hit - - expression

(Cold and Sunny) or Warm - - expression (parentheses are required)

A** (B**(C) - - expression (parentheses are required)

4.5 Operators and Expression Evaluation

The language defines the following six categories of operators (given in order of increasing
precedence). The corresponding operator_symbols, and only those, can be used as designators in
declarations of functions for user-defined operators. See 6.6, “Overloading of Operators”.

Syntax
logical_operator ::= and | or | xor
relational_operator ::= = |/=|< |<=|>|>=
binary_adding_operator ::= + |- | &
unary_adding_operator ::= + |-

*

multiplying_operator ::= |/ | mod | rem

highest_precedence_operator ::= ** | abs | not

Static Semantics

For a sequence of operators of the same precedence level, the operators are associated with their
operands in textual order from left to right. Parentheses can be used to impose specific associations.

For each form of type definition, certain of the above operators are predefined; that is, they are
implicitly declared immediately after the type definition. For each such implicit operator declaration,
the parameters are called Left and Right for binary operators; the single parameter is called Right for

117 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

unary operators. An expression of the form X op Y, where op is a binary operator, is equivalent to a
function_call of the form "op"(X, Y). An expression of the form op Y, where op is a unary operator,
is equivalent to a function_call of the form "op"(Y). The predefined operators and their effects are
described in subclauses 4.5.1 through 4.5.6.

Dynamic Semantics

The predefined operations on integer types either yield the mathematically correct result or raise the
exception Constraint Error. For implementations that support the Numerics Annex, the predefined
operations on real types yield results whose accuracy is defined in Annex G, or raise the exception
Constraint_Error.

Implementation Requirements

The implementation of a predefined operator that delivers a result of an integer or fixed point type
may raise Constraint_Error only if the result is outside the base range of the result type.

The implementation of a predefined operator that delivers a result of a floating point type may raise
Constraint_Error only if the result is outside the safe range of the result type.

Implementation Permissions

For a sequence of predefined operators of the same precedence level (and in the absence of
parentheses imposing a specific association), an implementation may impose any association of the
operators with operands so long as the result produced is an allowed result for the left-to-right
association, but ignoring the potential for failure of language-defined checks in either the left-to-right
or chosen order of association.

NOTES

13 The two operands of an expression of the form X op Y, where op is a binary operator, are evaluated in an arbitrary
order, as for any function_call (see 6.4).

Examples
Examples of precedence:
not Sunny or Warm - - same as (not Sunny) or Warm
X >4.0and Y > 0.0 -- sameas (X>4.0)and (Y > 0.0)
-4 . 0*A**2 - - same as —(4.0 * (4**2))
abs (1 + A) + B -- same as (abs (1 + 4)) + B
Y** (-3) - - parentheses are necessary
A/ B *C -- same as (A/B)*C
A+ (B + Q) - - evaluate B + C before adding it to A

4.5.1 Logical Operators and Short-circuit Control Forms

Name Resolution Rules

An expression consisting of two relations connected by and then or or else (a short-circuit control
form) shall resolve to be of some boolean type; the expected type for both relations is that same
boolean type.

Static Semantics

The following logical operators are predefined for every boolean type T, for every modular type 7,
and for every one-dimensional array type 7 whose component type is a boolean type:

function "and" (Left, Right : 7) return T
function "or" (Left, Right : 7) return T
function "xor" (Left, Right : 7) return T

For boolean types, the predefined logical operators and, or, and xor perform the conventional
operations of conjunction, inclusive disjunction, and exclusive disjunction, respectively.

© ISO/IEC 2021 — All rights reserved 118

ISO/IEC 8652:DIS

For modular types, the predefined logical operators are defined on a bit-by-bit basis, using the binary
representation of the value of the operands to yield a binary representation for the result, where zero
represents False and one represents True. If this result is outside the base range of the type, a final
subtraction by the modulus is performed to bring the result into the base range of the type.

The logical operators on arrays are performed on a component-by-component basis on matching
components (as for equality — see 4.5.2), using the predefined logical operator for the component
type. The bounds of the resulting array are those of the left operand.

Dynamic Semantics

The short-circuit control forms and then and or else deliver the same result as the corresponding
predefined and and or operators for boolean types, except that the left operand is always evaluated
first, and the right operand is not evaluated if the value of the left operand determines the result.

For the logical operators on arrays, a check is made that for each component of the left operand there
is a matching component of the right operand, and vice versa. Also, a check is made that each
component of the result belongs to the component subtype. The exception Constraint Error is raised if
either of the above checks fails.

NOTES
14 The conventional meaning of the logical operators is given by the following truth table:
A B (A and B) (AorB) (A xor B)
True True True True False
True False False True True
False True False True True
False False False False False
Examples

Examples of logical operators:

Sunny or Warm
Filter (1l .. 10) and Filter (15 .. 24) -- see3.6.1

Examples of short-circuit control forms:

Next Car.Owner /= null and then Next Car.Owner.Age > 25 -- see3.10.1
N = 0 or else A(N) = Hit Value

4.5.2 Relational Operators and Membership Tests

The equality operators = (equals) and /= (not equals) are predefined for nonlimited types. The other
relational_operators are the ordering operators < (less than), <= (less than or equal), > (greater than),
and >= (greater than or equal). The ordering operators are predefined for scalar types, and for discrete
array types, that is, one-dimensional array types whose components are of a discrete type.

A membership test, using in or not in, determines whether or not a value belongs to any given
subtype or range, is equal to any given value, has a tag that identifies a type that is covered by a given
type, or is convertible to and has an accessibility level appropriate for a given access type.
Membership tests are allowed for all types.

Name Resolution Rules

The tested type of a membership test is determined by the membership_choices of the
membership_choice_list. Either all membership_choices of the membership_choice_list shall
resolve to the same type, which is the tested type; or each membership_choice shall be of an
elementary type, and the tested type shall be covered by each of these elementary types.

If the tested type is tagged, then the fested simple_expression shall resolve to be of a type that is
convertible (see 4.6) to the tested type; if wuntagged, the expected type of the
tested_simple_expression is the tested type. The expected type of a choice _simple_expression in a

119 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

membership_choice, and of a simple_expression of a range in a membership_choice, is the tested
type of the membership operation.

Legality Rules

For a membership test, if the tested_simple_expression is of a tagged class-wide type, then the tested
type shall be (visibly) tagged.

If a membership test includes one or more choice_simple_expressions and the tested type of the
membership test is limited, then the tested type of the membership test shall have a visible primitive
equality operator; if the tested type of the membership test is nonlimited with a user-defined primitive
equality operator that is defined at a point where the type is limited, the tested type shall be a record
type or record extension.

Static Semantics
The result type of a membership test is the predefined type Boolean.

The equality operators are predefined for every specific type 7 that is not limited, and not an
anonymous access type, with the following specifications:

function "=" (Left, Right : 7) return Boolean

function "/="(Left, Right : T) return Boolean
The following additional equality operators for the universal access type are declared in package
Standard for use with anonymous access types:

function "=" (Left, Right : universal access) return Boolean

function "/="(Left, Right : universal access) return Boolean
The ordering operators are predefined for every specific scalar type 7, and for every discrete array
type T, with the following specifications:

function "<" (Left, Right : 7) return Boolean
function "<="(Left, Right : 7) return Boolean
function ">" (Left, Right : 7) return Boolean
function ">="(Left, Right : 7) return Boolean

Name Resolution Rules

At least one of the operands of an equality operator for universal access shall be of a specific
anonymous access type. Unless the predefined equality operator is identified using an expanded name
with prefix denoting the package Standard, neither operand shall be of an access-to-object type whose
designated type is D or D'Class, where D has a user-defined primitive equality operator such that:

e its result type is Boolean;

e it is declared immediately within the same declaration list as D or any partial or incomplete
view of D; and

e at least one of its operands is an access parameter with designated type D.

Legality Rules

At least one of the operands of the equality operators for universal access shall be of type
universal_access, or both shall be of access-to-object types, or both shall be of access-to-subprogram
types. Further:

e When both are of access-to-object types, the designated types shall be the same or one shall
cover the other, and if the designated types are elementary or array types, then the designated
subtypes shall statically match;

e When both are of access-to-subprogram types, the designated profiles shall be subtype
conformant.

If the profile of an explicitly declared primitive equality operator of an untagged record type is type
conformant with that of the corresponding predefined equality operator, the declaration shall occur
before the type is frozen. In addition, no type shall have been derived from the untagged record type

© ISO/IEC 2021 — All rights reserved 120

ISO/IEC 8652:DIS

before the declaration of the primitive equality operator. In addition to the places where Legality
Rules normally apply (see 12.3), this rule applies also in the private part of an instance of a generic
unit.

Dynamic Semantics

For discrete types, the predefined relational operators are defined in terms of corresponding
mathematical operations on the position numbers of the values of the operands.

For real types, the predefined relational operators are defined in terms of the corresponding
mathematical operations on the values of the operands, subject to the accuracy of the type.

Two access-to-object values are equal if they designate the same object, or if both are equal to the null
value of the access type.

Two access-to-subprogram values are equal if they are the result of the same evaluation of an Access
attribute_reference, or if both are equal to the null value of the access type. Two access-to-
subprogram values are unequal if they designate different subprograms. It is unspecified whether two
access values that designate the same subprogram but are the result of distinct evaluations of Access
attribute_references are equal or unequal.

For a type extension, predefined equality is defined in terms of the primitive (possibly user-defined)
equals operator for the parent type and for any components that have a record type in the extension
part, and predefined equality for any other components not inherited from the parent type.

For a private type, if its full type is a record type or a record extension, predefined equality is defined
in terms of the primitive equals operator of the full type; otherwise, predefined equality for the private
type is that of its full type.

For other composite types, the predefined equality operators (and certain other predefined operations
on composite types — see 4.5.1 and 4.6) are defined in terms of the corresponding operation on
matching components, defined as follows:

e For two composite objects or values of the same non-array type, matching components are
those that correspond to the same component_declaration or discriminant_specification;

e For two one-dimensional arrays of the same type, matching components are those (if any)
whose index values match in the following sense: the lower bounds of the index ranges are
defined to match, and the successors of matching indices are defined to match;

e For two multidimensional arrays of the same type, matching components are those whose
index values match in successive index positions.

The analogous definitions apply if the types of the two objects or values are convertible, rather than
being the same.

Given the above definition of matching components, the result of the predefined equals operator for
composite types (other than for those composite types covered earlier) is defined as follows:

o [f there are no components, the result is defined to be True;

e If there are unmatched components, the result is defined to be False;

e Otherwise, the result is defined in terms of the primitive equals operator for any matching
components that are records, and the predefined equals for any other matching components.

If the primitive equals operator for an untagged record type is abstract, then Program_Error is raised
at the point of any call to that abstract subprogram, implicitly as part of an equality operation on an
enclosing composite object, or in an instance of a generic with a formal private type where the actual
type is a record type with an abstract "=".

For any composite type, the order in which "=" is called for components is unspecified. Furthermore,
if the result can be determined before calling "=" on some components, it is unspecified whether "="
is called on those components.

121 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

The predefined "/=" operator gives the complementary result to the predefined "=" operator.

For a discrete array type, the predefined ordering operators correspond to lexicographic order using
the predefined order relation of the component type: A null array is lexicographically less than any
array having at least one component. In the case of nonnull arrays, the left operand is
lexicographically less than the right operand if the first component of the left operand is less than that
of the right; otherwise, the left operand is lexicographically less than the right operand only if their
first components are equal and the tail of the left operand is lexicographically less than that of the
right (the fail consists of the remaining components beyond the first and can be null).

An individual membership test is the membership test of a single membership_choice.

For the evaluation of a membership test using in whose membership_choice_list has a single
membership_choice, the fested simple_expression and the membership_choice are evaluated in an
arbitrary order; the result is the result of the individual membership test for the membership_choice.

For the evaluation of a membership test using in whose membership_choice_list has more than one
membership_choice, the tested simple_expression of the membership test is evaluated first and the
result of the operation is equivalent to that of a sequence consisting of an individual membership test
on each membership_choice combined with the short-circuit control form or else.

An individual membership test yields the result True if:

e The membership_choice is a choice_simple_expression, and the tested simple_expression
is equal to the value of the membership_choice. If the tested type is a record type or a record
extension, or is limited at the point where the membership test occurs, the test uses the
primitive equality for the type; otherwise, the test uses predefined equality.

e The membership_choice is a range and the value of the fested _simple_expression belongs
to the given range.

e The membership_choice is a subtype mark, the tested type is scalar, the value of the
tested_simple_expression belongs to the range of the named subtype, and the value satisfies
the predicates of the named subtype.

e The membership_choice is a subtype_mark, the tested type is not scalar, the value of the
tested_simple_expression satisfies any constraints of the named subtype, the value satisfies
the predicates of the named subtype, and:

o if the type of the tested simple_expression is class-wide, the value has a tag that
identifies a type covered by the tested type;

o if the tested type is an access type and the named subtype excludes null, the value of the
tested_simple_expression is not null;

o if the tested type is a general access-to-object type, the type of the
tested_simple_expression is convertible to the tested type and its accessibility level is no
deeper than that of the tested type; further, if the designated type of the tested type is
tagged and the fested_simple_expression is nonnull, the tag of the object designated by
the value of the tested simple_expression is covered by the designated type of the tested

type.
Otherwise, the test yields the result False.
A membership test using not in gives the complementary result to the corresponding membership test
using in.
Implementation Requirements

For all nonlimited types declared in language-defined packages, the "=" and "/=" operators of the type
shall behave as if they were the predefined equality operators for the purposes of the equality of
composite types and generic formal types.

© ISO/IEC 2021 — All rights reserved 122

ISO/IEC 8652:DIS

NOTES

15 If a composite type has components that depend on discriminants, two values of this type have matching
components if and only if their discriminants are equal. Two nonnull arrays have matching components if and only if
the length of each dimension is the same for both.

Examples

Examples of expressions involving relational operators and membership tests:

X /=Y

A String = "A" - - True (see 3.3.1)

"" < A String and A String < "Aa" -- True

A String < "Bb" and A String < "A " --True

My Car = null - - True if My_Car has been set to null (see 3.10.1)
My Car = Your Car - - True if we both share the same car
My Car.all = Your Car.all - - True if the two cars are identical

N not in 1 .. 10 - - range membership test

Today in Mon .. Fri - - range membership test

Today in Weekday - - subtype membership test (see 3.5.1)
Card in Clubs | Spades - - list membership test (see 3.5.1)
Archive in Disk Unit - - subtype membership test (see 3.8.1)
Tree.all in Addition'Class -- class membership test (see 3.9.1)

4.5.3 Binary Adding Operators

Static Semantics

The binary adding operators + (addition) and — (subtraction) are predefined for every specific numeric
type T with their conventional meaning. They have the following specifications:

function "+" (Left, Right : T) return T

function "-"(Left, Right : T) return T
The concatenation operators & are predefined for every nonlimited, one-dimensional array type T
with component type C. They have the following specifications:

function "&" (Left : T; Right : 7) return T
function "&" (Left T; Right : C) return T
function "&" (Left : C; Right : T) return T
function "&" (Left C; Right : C) return T
Dynamic Semantics

For the evaluation of a concatenation with result type 7, if both operands are of type 7, the result of
the concatenation is a one-dimensional array whose length is the sum of the lengths of its operands,
and whose components comprise the components of the left operand followed by the components of
the right operand. If the left operand is a null array, the result of the concatenation is the right
operand. Otherwise, the lower bound of the result is determined as follows:

o [f the ultimate ancestor of the array type was defined by a constrained_array_definition, then
the lower bound of the result is that of the index subtype;

o [f the ultimate ancestor of the array type was defined by an unconstrained_array_definition,
then the lower bound of the result is that of the left operand.

The upper bound is determined by the lower bound and the length. A check is made that the upper
bound of the result of the concatenation belongs to the range of the index subtype, unless the result is
a null array. Constraint_Error is raised if this check fails.

If either operand is of the component type C, the result of the concatenation is given by the above
rules, using in place of such an operand an array having this operand as its only component (converted
to the component subtype) and having the lower bound of the index subtype of the array type as its
lower bound.

The result of a concatenation is defined in terms of an assignment to an anonymous object, as for any
function call (see 6.5).

123 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

NOTES
16 As for all predefined operators on modular types, the binary adding operators + and — on modular types include a
final reduction modulo the modulus if the result is outside the base range of the type.

Examples

Examples of expressions involving binary adding operators:

Z + 0.1 -~ Z has to be of a real type

"A" & "BCD" -- concatenation of two string literals

'A' & "BCD" -- concatenation of a character literal and a string literal
'A' & 'A' - - concatenation of two character literals

4.5.4 Unary Adding Operators

Static Semantics

The unary adding operators + (identity) and — (negation) are predefined for every specific numeric
type T with their conventional meaning. They have the following specifications:

function "+" (Right : 7) return T
function "-"(Right : 7) return T
NOTES

17 For modular integer types, the unary adding operator —, when given a nonzero operand, returns the result of
subtracting the value of the operand from the modulus; for a zero operand, the result is zero.

4.5.5 Multiplying Operators

Static Semantics

The multiplying operators * (multiplication), / (division), mod (modulus), and rem (remainder) are

predefined for every specific integer type 7:
function "*" (Left, Right T) return
function "/" (Left, Right : 7T) return
function "mod" (Left, Right : 7T) return
function "rem" (Left, Right : 7) return

NNNN

Signed integer multiplication has its conventional meaning.

Signed integer division and remainder are defined by the relation:

A = (A/B)*B + (A rem B)
where (A rem B) has the sign of A and an absolute value less than the absolute value of B. Signed
integer division satisfies the identity:

(-A)/B = -(a/B) = A/(-B)

The signed integer modulus operator is defined such that the result of A mod B is either zero, or has
the sign of B and an absolute value less than the absolute value of B; in addition, for some signed
integer value N, this result satisfies the relation:

A = B*N + (A mod B)

The multiplying operators on modular types are defined in terms of the corresponding signed integer
operators, followed by a reduction modulo the modulus if the result is outside the base range of the
type (which is only possible for the "*" operator).

Multiplication and division operators are predefined for every specific floating point type T:

function "*" (Left, Right : 7T) return T
function "/" (Left, Right : T) return T

The following multiplication and division operators, with an operand of the predefined type Integer,
are predefined for every specific fixed point type T:

© ISO/IEC 2021 — All rights reserved 124

ISO/IEC 8652:DIS

function "*" (Left : 7; Right : Integer) return T

function "*" (Left : Integer; Right : T) return T

function "/" (Left : T; Right : Integer) return T
All of the above multiplying operators are usable with an operand of an appropriate universal numeric
type. The following additional multiplying operators for root real are predefined, and are usable
when both operands are of an appropriate universal or root numeric type, and the result is allowed to
be of type root_real, as in a number_declaration:

function "*" (Left, Right : root real) return root real

function "/" (Left, Right : root real) return root real

function "*" (Left : root integer; Right : root real) return root real

(
(
function "*" (Left : root real; Right : root integer) return root real
(
function "/" (Left : root real; Right : root_integer) return root real

Multiplication and division between any two fixed point types are provided by the following two
predefined operators:

function "*" (Left, Right : universal fixed) return universal fixed
function "/" (Left, Right : universal fixed) return universal fixed

Name Resolution Rules

The above two fixed-fixed multiplying operators shall not be used in a context where the expected
type for the result is itself universal fixed — the context has to identify some other numeric type to
which the result is to be converted, either explicitly or implicitly. Unless the predefined universal
operator is identified using an expanded name with prefix denoting the package Standard, an explicit
conversion is required on the result when using the above fixed-fixed multiplication operator if either
operand is of a type having a user-defined primitive multiplication operator such that:

e it is declared immediately within the same declaration list as the type or any partial or
incomplete view thereof; and

e both of its formal parameters are of a fixed-point type.

A corresponding requirement applies to the universal fixed-fixed division operator.

Dynamic Semantics

The multiplication and division operators for real types have their conventional meaning. For floating
point types, the accuracy of the result is determined by the precision of the result type. For decimal
fixed point types, the result is truncated toward zero if the mathematical result is between two
multiples of the small of the specific result type (possibly determined by context); for ordinary fixed
point types, if the mathematical result is between two multiples of the small, it is unspecified which of
the two is the result.

The exception Constraint Error is raised by integer division, rem, and mod if the right operand is
zero. Similarly, for a real type 7 with 7"Machine Overflows True, division by zero raises
Constraint_Error.

NOTES
18 For positive A and B, A/B is the quotient and A rem B is the remainder when A is divided by B. The following
relations are satisfied by the rem operator:

A rem (-B)
(-A) rem B

A rem B
- (A rem B)

19 For any signed integer K, the following identity holds:
A mod B = (A + K*B) mod B

125 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

The relations between signed integer division, remainder, and modulus are illustrated by the following table:

A B A/B A rem B A mod B A B A/B A rem B A mod B
10 5 2 0 0 -10 5 -2 0 0
11 5 2 1 1 -11 5 -2 -1 4
12 5 2 2 2 -12 5 -2 -2 3
13 5 2 3 3 -13 5 -2 -3 2
14 5 2 4 4 -14 5 -2 -4 1
A B A/B A rem B A mod B A B A/B A rem B A mod B
10 -5 -2 0 0 -10 -5 2 0 0
11 -5 -2 1 -4 -11 -5 2 -1 -1
12 -5 -2 2 -3 -12 -5 2 -2 -2
13 -5 -2 3 -2 -13 -5 2 -3 -3
14 -5 -2 4 -1 -14 -5 2 -4 -4
Examples

Examples of expressions involving multiplying operators:

I : Integer := 1;

J : Integer := 2;

K : Integer := 3;

X : Real := 1.0; -- see3.5.7

Y : Real := 2.0;

F : Fraction := 0.25; -- see3.5.9

G : Fraction := 0.5;

Expression Value Result Type

I*J 2 same as [and J, that is, Integer

K/ 1 same as K and J, that is, Integer

K mod]J 1 same as K and J, that is, Integer

XY 0.5 same as X and Y, that is, Real

F2 0.125 same as F, that is, Fraction

3*F 0.75 same as F, that is, Fraction

0.75*G 0.375 universal_fixed, implicitly convertible
to any fixed point type

Fraction(F*QG) 0.125 Fraction, as stated by the conversion

Real(J)*Y 4.0 Real, the type of both operands after

conversion of J

4.5.6 Highest Precedence Operators

Static Semantics

The highest precedence unary operator abs (absolute value) is predefined for every specific numeric
type 7, with the following specification:
function "abs" (Right : 7) return T

The highest precedence unary operator not (logical negation) is predefined for every boolean type T,
every modular type 7, and for every one-dimensional array type 7 whose components are of a boolean
type, with the following specification:

function "not" (Right : 7) return T

The result of the operator not for a modular type is defined as the difference between the high bound
of the base range of the type and the value of the operand. For a binary modulus, this corresponds to a
bit-wise complement of the binary representation of the value of the operand.

The operator not that applies to a one-dimensional array of boolean components yields a one-
dimensional boolean array with the same bounds; each component of the result is obtained by logical
negation of the corresponding component of the operand (that is, the component that has the same
index value). A check is made that each component of the result belongs to the component subtype;
the exception Constraint Error is raised if this check fails.

© ISO/IEC 2021 — All rights reserved 126

ISO/IEC 8652:DIS

The highest precedence exponentiation operator ** is predefined for every specific integer type 7 with
the following specification:
function "**" (Left : 7; Right : Natural) return T

Exponentiation is also predefined for every specific floating point type as well as root_real, with the
following specification (where T is root _real or the floating point type):

function "**" (Left : T7; Right : Integer'Base) return T

The right operand of an exponentiation is the exponent. The value of X**N with the value of the
exponent N positive is the same as the value of X*X*..X (with N-1 multiplications) except that the
multiplications are associated in an arbitrary order. With N equal to zero, the result is one. With the
value of N negative (only defined for a floating point operand), the result is the reciprocal of the result
using the absolute value of N as the exponent.

Implementation Permissions

The implementation of exponentiation for the case of a negative exponent is allowed to raise
Constraint_Error if the intermediate result of the repeated multiplications is outside the safe range of
the type, even though the final result (after taking the reciprocal) would not be. (The best machine
approximation to the final result in this case would generally be 0.0.)

NOTES

20 As implied by the specification given above for exponentiation of an integer type, a check is made that the
exponent is not negative. Constraint_Error is raised if this check fails.

4.5.7 Conditional Expressions

A conditional_expression selects for evaluation at most one of the enclosed dependent expressions,
depending on a decision among the alternatives. One kind of conditional_expression is the
if_expression, which selects for evaluation a dependent expression depending on the value of one or
more corresponding conditions. The other kind of conditional_expression is the case_expression,
which selects for evaluation one of a number of alternative dependent expressions; the chosen
alternative is determined by the value of a selecting expression.

Syntax
conditional_expression ::= if_expression | case_expression

if _expression ::=
if condition then dependent expression
{elsif condition then dependent_expression}
[else dependent _expression]

condition ::= boolean_expression

case_expression ::=
case selecting _expression is
case_expression_alternative {,
case_expression_alternative}

case_expression_alternative ::=
when discrete_choice_list =>
dependent expression

Wherever the Syntax Rules allow an expression, a conditional_expression may be used in place
of the expression, so long as it is immediately surrounded by parentheses.

Name Resolution Rules

If a conditional_expression is expected to be of a type 7, then each dependent expression of the
conditional_expression is expected to be of type 7. Similarly, if a conditional_expression is

127 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

expected to be of some class of types, then each dependent expression of the
conditional_expression is subject to the same expectation. If a conditional_expression shall resolve
to be of a type 7, then each dependent_expression shall resolve to be of type T.

The possible types of a conditional_expression are further determined as follows:

e If the conditional_expression is the operand of a type conversion, the type of the
conditional_expression is the target type of the conversion; otherwise,

o If all of the dependent expressions are of the same type, the type of the
conditional_expression is that type; otherwise,

o If a dependent _expression is of an elementary type, the type of the conditional_expression
shall be covered by that type; otherwise,

o If the conditional_expression is expected to be of type T or shall resolve to type 7, then the
conditional_expression is of type T.

A condition is expected to be of any boolean type.

The expected type for the selecting expression and the discrete_choices are as for case statements
(see 5.4).

Legality Rules

All of the dependent expressions shall be convertible (see 4.6) to the type of the
conditional_expression.

If the expected type of a conditional_expression is a specific tagged type, all of the
dependent expressions of the conditional_expression shall be dynamically tagged, or none shall be
dynamically tagged. In this case, the conditional_expression is dynamically tagged if all of the
dependent expressions are dynamically tagged, 1is tag-indeterminate if all of the
dependent _expressions are tag-indeterminate, and is statically tagged otherwise.

If there is no else dependent _expression, the if _expression shall be of a boolean type.

All Legality Rules that apply to the discrete_choices of a case_statement (see 5.4) also apply to the
discrete_choices of a case_expression except within an instance of a generic unit.

Dynamic Semantics

For the evaluation of an if_expression, the condition specified after if, and any conditions specified
after elsif, are evaluated in succession (treating a final else as elsif True then), until one evaluates to
True or all conditions are evaluated and yield False. If a condition evaluates to True, the associated
dependent expression is evaluated, converted to the type of the if_expression, and the resulting
value is the value of the if_expression. Otherwise (when there is no else clause), the value of the
if _expression is True.

For the evaluation of a case_expression, the selecting _expression is first evaluated. If the value of
the selecting expression is covered by the discrete_choice list of some
case_expression_alternative, then the dependent expression of the case_expression_alternative
is evaluated, converted to the type of the case_expression, and the resulting value is the value of the
case_expression. Otherwise (the value is not covered by any discrete_choice_list, perhaps due to
being outside the base range), Constraint_Error is raised.

Examples
Example of use of an if_expression:
Put Line ("Casey is " &
(if Casey.Sex = M then "Male" else "Female")); --see3.l0.]

Example of use of a case_expression:

© ISO/IEC 2021 — All rights reserved 128

ISO/IEC 8652:DIS

function Card Color (Card : Suit) return Color is -- see3.5.]
(case Card is
when Clubs | Spades => Black,

when Hearts | Diamonds => Red) ;

4.5.8 Quantified Expressions

Quantified expressions provide a way to write universally and existentially quantified predicates over
containers and arrays.

Syntax

quantified_expression ::= for quantifier loop_parameter_specification => predicate
| for quantifier iterator_specification => predicate

quantifier ::= all | some
predicate ::= boolean_expression

Wherever the Syntax Rules allow an expression, a quantified_expression may be used in place
of the expression, so long as it is immediately surrounded by parentheses.

Name Resolution Rules

The expected type of a quantified_expression is any Boolean type. The predicate in a
quantified_expression is expected to be of the same type.

Dynamic Semantics

For the evaluation of a quantified_expression, the loop_parameter_specification or
iterator_specification is first elaborated. The evaluation of a quantified_expression then performs an
iteration, and evaluates the predicate for each value conditionally produced by the iteration (see 5.5
and 5.5.2).

The value of the quantified_expression is determined as follows:

o [f the quantifier is all, the expression is False if the evaluation of any predicate yields False;
evaluation of the quantified_expression stops at that point. Otherwise (every predicate has
been evaluated and yielded True), the expression is True. Any exception raised by evaluation
of the predicate is propagated.

e If the quantifier is some, the expression is True if the evaluation of any predicate yields True;
evaluation of the quantified_expression stops at that point. Otherwise (every predicate has
been evaluated and yielded False), the expression is False. Any exception raised by evaluation
of the predicate is propagated.

Examples
Example of a quantified expression as a postcondition for a sorting routine on an array A with an
index subtype T:

Post => (A'Length < 2 or else
(for all I in A'First .. T'Pred(A'Last) => A (I) <= A (T'Succ (I))))

Example of use of a quantified expression as an assertion that a positive number N is composite (as
opposed to prime):

pragma Assert (for some X in 2 .. N when X * X <= N => Nmod X = 0);
- - see iterator_filter in 5.5

129 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

4.5.9 Declare Expressions
Declare expressions provide a way to declare local constants and object renamings in an expression
context.

Syntax

declare_expression ::=
declare {declare_item}
begin body expression

declare_item ::= object_declaration | object_renaming_declaration
Wherever the Syntax Rules allow an expression, a declare_expression may be used in place of
the expression, so long as it is immediately surrounded by parentheses.
Legality Rules
A declare_item that is an object_declaration shall declare a constant of a nonlimited type.

A declare_item that is an object_renaming_declaration (see 8.5.1) shall not rename an object of a
limited type if any operative constituent of the object name is a value conversion or is newly
constructed (see 4.4).

The following are not allowed within a declare_expression: a declaration containing the reserved
word aliased; the attribute_designator Access or Unchecked Access; or an anonymous access type.
Name Resolution Rules

If a declare_expression is expected to be of a type 7, then the body expression is expected to be of
type 7. Similarly, if a declare_expression is expected to be of some class of types, then the
body_expression is subject to the same expectation. If a declare_expression shall resolve to be of a
type 7, then the body expression shall resolve to be of type 7.

The type of a declare_expression is the type of the body expression.

Dynamic Semantics
For the evaluation of a declare_expression, the declare_items are elaborated in order, and then the
body_expression is evaluated. The value of the declare_expression is that of the body_expression.
Examples

Example of use of a declare expression as a replacement postcondition for Ada.Containers.Vectors.-
"&" (see A.18.2):

with Post =>

(declare

Result renames Vectors."&"'Result;

Length : constant Count Type := Left.Length + Right.Length;
begin

Result.Length = Length and then

not Tampering With Elements Prohibited (Result) and then
not Tampering With Cursors_Prohibited (Result) and then
Result.Capacity >= Length)

4.5.10 Reduction Expressions

Reduction expressions provide a way to map or transform a collection of values into a new set of
values, and then summarize the values produced by applying an operation to reduce the set to a single
value result. A reduction expression is represented as an attribute_reference of the reduction
attributes Reduce or Parallel Reduce.

© ISO/IEC 2021 — All rights reserved 130

ISO/IEC 8652:DIS

Syntax

reduction_attribute_reference ::=
value_sequence'reduction_attribute_designator
| prefix'reduction_attribute_designator

value_sequence ::=
'[' [parallel[(chunk_specification)] [aspect_specification]]
iterated_element_association ']'

reduction_attribute_designator ::= reduction_identifier(reduction_specification)
reduction_specification ::= reducer_name, initial value expression

The iterated_element_association of a value_sequence shall not have a key expression, nor
shall it have a loop_parameter_specification that has the reserved word reverse.

The chunk_specification, if any, of a value_sequence shall be an integer_simple_expression.

Name Resolution Rules
The expected type for a reduction_attribute reference shall be a single nonlimited type.

In the remainder of this subclause, we will refer to nonlimited subtypes Value Type and Accum_Type
of a reduction_attribute_reference. These subtypes and interpretations of the names and
expressions of a reduction_attribute_reference are determined by the following rules:

Accum_Type is a subtype of the expected type of the reduction_attribute_reference.

A reducer subprogram is subtype conformant with one of the following specifications:

function Reducer (Accumulator : Accum Type;
Value : Value Type) return Accum Type;

procedure Reducer (Accumulator : in out Accum Type;
Value : in Value Type) ;

e The reducer_name of a reduction_specification denotes a reducer subprogram.

e The expected type of an initial value expression of a reduction_specification is that of
subtype Accum_Type.

e The expected type of the expression of the iterated_element_association of a
value_sequence is that of subtype Value Type.

Legality Rules

If the reduction_attribute_reference has a value_sequence with the reserved word parallel, the
subtypes Accum_Type and Value Type shall statically match.

If the identifier of a reduction_attribute_designator is Parallel Reduce, the subtypes Accum_ Type
and Value Type shall statically match.

Static Semantics

A reduction_attribute_reference denotes a value, with its nominal subtype being the subtype of the
first parameter of the subprogram denoted by the reducer name.

Dynamic Semantics

For the evaluation of a value _sequence, the iterated_element_association, the
chunk_specification, and the aspect_specification, if any, are elaborated in an arbitrary order. Next
an iteration is performed, and for each value conditionally produced by the iteration (see 5.5 and
5.5.2), the associated expression is evaluated with the loop parameter having this value, which
produces a result that is converted to Value Type and is used to define the next value in the sequence.

If the value_sequence does not have the reserved word parallel, it is produced as a single sequence
of values by a single logical thread of control. If the reserved word parallel is present in the

131 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

value_sequence, the enclosing reduction_attribute reference is a parallel construct, and the
sequence of values is generated by a parallel iteration (as defined in 5.5, 5.5.1, and 5.5.2), as a set of
non-empty, non-overlapping contiguous chunks (subsequences) with one logical thread of control (see
clause 9) associated with each subsequence. If there is a chunk_specification, it determines the
maximum number of chunks, as defined in 5.5; otherwise the maximum number of chunks is
implementation defined.

For a value_sequence V, the following attribute is defined:

V'Reduce(Reducer, Initial Value)
This attribute represents a reduction expression, and is in the form of a
reduction_attribute_reference.

The evaluation of a use of this attribute begins by evaluating the parts of the
reduction_attribute_designator (the reducer_name Reducer and the
initial value expression Initial Value), in an arbitrary order. It then initializes the
accumulator of the reduction expression to the value of the initial value expression (the
initial value). The value_sequence V is then evaluated.

If the value_sequence does not have the reserved word parallel, each value of the
value_sequence is passed, in order, as the second (Value) parameter to a call on
Reducer, with the first (Accumulator) parameter being the prior value of the accumulator,
saving the result as the new value of the accumulator. The reduction expression yields the
final value of the accumulator.

If the reserved word parallel is present in a value_sequence, then the (parallel)
reduction expression is a parallel construct and the sequence has been partitioned into one
or more subsequences (see above) each with its own separate logical thread of control.

Each logical thread of control creates a local accumulator for processing its subsequence.
The accumulator for a subsequence is initialized to the first value of the subsequence, and
calls on Reducer start with the second value of the subsequence (if any). The result for the
subsequence is the final value of its local accumulator.

After all logical threads of control of a parallel reduction expression have completed,
Reducer is called for each subsequence, in the original sequence order, passing the local
accumulator for that subsequence as the second (Value) parameter, and the overall
accumulator (initialized above to the initial value) as the first (Accumulator) parameter,
with the result saved back in the overall accumulator. The parallel reduction expression
yields the final value of the overall accumulator.

If the evaluation of the value_sequence yields an empty sequence of values, the
reduction expression yields the initial value.

If an exception is propagated by one of the calls on Reducer, that exception is propagated
from the reduction expression. If different exceptions are propagated in different logical
threads of control, one is chosen arbitrarily to be propagated from the reduction
expression as a whole.

For a prefix X of an array type (after any implicit dereference), or that denotes an iterable container
object (see 5.5.1), the following attributes are defined:
X'Reduce(Reducer, Initial Value)

X'Reduce is a reduction expression that yields a result equivalent to replacing the prefix
of the attribute with the value_sequence:

[for Item of X => Item]
X'Parallel Reduce(Reducer, Initial Value)

X'Parallel Reduce is a reduction expression that yields a result equivalent to replacing the
attribute identifier with Reduce and the prefix of the attribute with the value_sequence:

[parallel for Item of X => Item]

© ISO/IEC 2021 — All rights reserved 132

ISO/IEC 8652:DIS

Bounded (Run-Time) Errors

For a parallel reduction expression, it is a bounded error if the reducer subprogram is not associative.
That is, for any arbitrary values of subtype Value Type A, B, C and a reducer function R, the result of
R (4, R (B, C)) should produce a result equal to R (R (4, B), C)); it is a bounded error if R does not.
The possible consequences are Program Error, or a result that does not match the equivalent
sequential reduction expression due to the order of calls on the reducer subprogram being unspecified
in the overall reduction. Analogous rules apply in the case of a reduction procedure.

Examples

Example of an expression function that returns its result as a reduction expression:
function Factorial (N : Natural) return Natural is
([for J in 1..N => J] 'Reduce("*", 1));

Example of a reduction expression that computes the Sine of X using a Taylor expansion:

function Sine (X : Float; Num Terms : Positive := 5) return Float is
([for I in 1..Num Terms =>
(-1.0)**(I-1) * X**x(2*I-1)/Float (Factorial (2*I-1))] 'Reduce("+", 0.0));

Example of a reduction expression that outputs the sum of squares:

Put Line ("Sum of Squares is" &
Integer'Image([for I in 1 .. 10 => I**2]'Reduce("+", 0)));

Example of a reduction expression used to compute the value of Pi:

-- See3.5.7.
function Pi (Number Of Steps : Natural := 10 _000) return Real is
(1.0 / Real (Number Of Steps) *
[for T in 1 .. Number Of Steps =>
(4.0 / (1.0 + ((Real (I) - 0.5) *
(1.0 / Real (Number Of Steps)))**2))]
'Reduce ("+", 0.0));

Example of a reduction expression used to calculate the sum of elements of an array of integers:
A'Reduce ("+",0) -- See4.3.3.

Example of a reduction expression used to determine if all elements in a two-dimensional array of
booleans are set to true:

Grid'Reduce ("and", True) -- See 3.6

Example of a reduction expression used to calculate the minimum value of an array of integers in
parallel:

A'Parallel Reduce (Integer'Min, Integer'Last)

Example of a parallel reduction expression used to calculate the mean of the elements of a two-
dimensional array of subtype Matrix (see 3.6) that are greater than 100.0:

type Accumulator is record
Sum : Real; -- See3.5.7.
Count : Integer;

end record;

function Accumulate (L, R : Accumulator) return Accumulator is
(Sum => L.Sum + R.Sum,
Count => L.Count + R.Count) ;

function Average of Values Greater Than 100 (M : Matrix) return Real is
(declare
Acc : constant Accumulator :=
[parallel for Val of M when Val > 100.0 => (Val, 1)]
'Reduce (Accumulate, (Sum => 0, Count => 0));
begin
Acc.Sum / Real (Acc.Count)) ;

133 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

4.6 Type Conversions

Explicit type conversions, both value conversions and view conversions, are allowed between closely
related types as defined below. This subclause also defines rules for value and view conversions to a
particular subtype of a type, both explicit ones and those implicit in other constructs.

Syntax

type_conversion ::=
subtype_mark(expression)
| subtype_mark(name)

The target subtype of a type_conversion is the subtype denoted by the subtype_mark. The operand
of a type_conversion is the expression or name within the parentheses; its type is the operand type.

One type is convertible to a second type if a type_conversion with the first type as operand type and
the second type as target type is legal according to the rules of this subclause. Two types are
convertible if each is convertible to the other.

A type_conversion is called a view conversion if both its target type and operand type are tagged, or
if it appears in a call as an actual parameter of mode out or in out; other type_conversions are called
value conversions.

Name Resolution Rules

The operand of a type_conversion is expected to be of any type.

The operand of a view conversion is interpreted only as a name; the operand of a value conversion is
interpreted as an expression.
Legality Rules

In a view conversion for an untagged type, the target type shall be convertible (back) to the operand
type.

If there is a type (other than a root numeric type) that is an ancestor of both the target type and the
operand type, or both types are class-wide types, then at least one of the following rules shall apply:

e The target type shall be untagged; or
e The operand type shall be covered by or descended from the target type; or
e The operand type shall be a class-wide type that covers the target type; or

e The operand and target types shall both be class-wide types and the specific type associated
with at least one of them shall be an interface type.

If there is no type (other than a root numeric type) that is the ancestor of both the target type and the
operand type, and they are not both class-wide types, one of the following rules shall apply:

o If the target type is a numeric type, then the operand type shall be a numeric type.

o [fthe target type is an array type, then the operand type shall be an array type. Further:
o The types shall have the same dimensionality;

o Corresponding index types shall be convertible;
o The component subtypes shall statically match;

o If the component types are anonymous access types, then the accessibility level of the
operand type shall not be statically deeper than that of the target type;

o Neither the target type nor the operand type shall be limited;

o If the target type of a view conversion has aliased components, then so shall the operand
type; and

© ISO/IEC 2021 — All rights reserved 134

ISO/IEC 8652:DIS

e The operand type of a view conversion shall not have a tagged, private, or volatile
subcomponent.

o If the target type is universal_access, then the operand type shall be an access type.
o [f the target type is a general access-to-object type, then the operand type shall be universal -
access or an access-to-object type. Further, if the operand type is not universal_access:
o Ifthe target type is an access-to-variable type, then the operand type shall be an access-to-
variable type;

o If the target designated type is tagged, then the operand designated type shall be
convertible to the target designated type;

o If the target designated type is not tagged, then the designated types shall be the same,
and either:

o the designated subtypes shall statically match; or

o the designated type shall be discriminated in its full view and unconstrained in any
partial view, and one of the designated subtypes shall be unconstrained;

o The accessibility level of the operand type shall not be statically deeper than that of the
target type, unless the target type is an anonymous access type of a stand-alone object. If
the target type is that of such a stand-alone object, the accessibility level of the operand
type shall not be statically deeper than that of the declaration of the stand-alone object.

o If the target type is a pool-specific access-to-object type, then the operand type shall be
universal_access.

o If the target type is an access-to-subprogram type, then the operand type shall be universal -
access or an access-to-subprogram type. Further, if the operand type is not universal _access:
o The designated profiles shall be subtype conformant.
o The accessibility level of the operand type shall not be statically deeper than that of the

target type. If the operand type is declared within a generic body, the target type shall be
declared within the generic body.

o If the target type has a Global aspect other than in out all or Unspecified, then each mode
of the Global aspect of the operand type shall identify a subset of the variables identified
by the corresponding mode of the target type Global aspect, or by the in out mode of the
target type Global aspect.

o Ifthe target type is nonblocking, the operand type shall be nonblocking.
In addition to the places where Legality Rules normally apply (see 12.3), these rules apply also in the
private part of an instance of a generic unit.
Static Semantics

A type_conversion that is a value conversion denotes the value that is the result of converting the
value of the operand to the target subtype.

A type_conversion that is a view conversion denotes a view of the object denoted by the operand.
This view is a variable of the target type if the operand denotes a variable; otherwise, it is a constant
of the target type.

The nominal subtype of a type _conversion is its target subtype.

Dynamic Semantics

For the evaluation of a type_conversion that is a value conversion, the operand is evaluated, and then
the value of the operand is converted to a corresponding value of the target type, if any. If there is no
value of the target type that corresponds to the operand value, Constraint_Error is raised; this can only
happen on conversion to a modular type, and only when the operand value is outside the base range of
the modular type. Additional rules follow:

135 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

e Numeric Type Conversion

o If the target and the operand types are both integer types, then the result is the value of the
target type that corresponds to the same mathematical integer as the operand.

« If the target type is a decimal fixed point type, then the result is truncated (toward 0) if the
value of the operand is not a multiple of the small of the target type.

o If the target type is some other real type, then the result is within the accuracy of the
target type (see G.2, “Numeric Performance Requirements”, for implementations that
support the Numerics Annex).

o If the target type is an integer type and the operand type is real, the result is rounded to
the nearest integer (away from zero if exactly halfway between two integers).

¢ Enumeration Type Conversion

o The result is the value of the target type with the same position number as that of the
operand value.

e Array Type Conversion

o If the target subtype is a constrained array subtype, then a check is made that the length of
each dimension of the value of the operand equals the length of the corresponding
dimension of the target subtype. The bounds of the result are those of the target subtype.

o If the target subtype is an unconstrained array subtype, then the bounds of the result are
obtained by converting each bound of the value of the operand to the corresponding index
type of the target type. For each nonnull index range, a check is made that the bounds of
the range belong to the corresponding index subtype.

o In either array case, the value of each component of the result is that of the matching
component of the operand value (see 4.5.2).

o If the component types of the array types are anonymous access types, then a check is
made that the accessibility level of the operand type is not deeper than that of the target

type.
e Composite (Non-Array) Type Conversion

e The value of each nondiscriminant component of the result is that of the matching
component of the operand value.

o The tag of the result is that of the operand. If the operand type is class-wide, a check is
made that the tag of the operand identifies a (specific) type that is covered by or
descended from the target type.

o For each discriminant of the target type that corresponds to a discriminant of the operand
type, its value is that of the corresponding discriminant of the operand value; if it
corresponds to more than one discriminant of the operand type, a check is made that all
these discriminants are equal in the operand value.

o For each discriminant of the target type that corresponds to a discriminant that is specified
by the derived_type_definition for some ancestor of the operand type (or if class-wide,
some ancestor of the specific type identified by the tag of the operand), its value in the
result is that specified by the derived_type_definition.

e For each discriminant of the operand type that corresponds to a discriminant that is
specified by the derived_type_definition for some ancestor of the target type, a check is
made that in the operand value it equals the value specified for it.

o For each discriminant of the result, a check is made that its value belongs to its subtype.
e Access Type Conversion

o For an access-to-object type, a check is made that the accessibility level of the operand
type is not deeper than that of the target type, unless the target type is an anonymous
access type of a stand-alone object. If the target type is that of such a stand-alone object, a

© ISO/IEC 2021 — All rights reserved 136

ISO/IEC 8652:DIS

check is made that the accessibility level of the operand type is not deeper than that of the
declaration of the stand-alone object; then if the check succeeds, the accessibility level of
the target type becomes that of the operand type.

o If the operand value is null, the result of the conversion is the null value of the target type.

o [fthe operand value is not null, then the result designates the same object (or subprogram)
as is designated by the operand value, but viewed as being of the target designated
subtype (or profile); any checks associated with evaluating a conversion to the target
designated subtype are performed.

After conversion of the value to the target type, if the target subtype is constrained, a check is
performed that the value satisfies this constraint. If the target subtype excludes null, then a check is
made that the value is not null. If predicate checks are enabled for the target subtype (see 3.2.4), a
check is performed that the value satisfies the predicates of the target subtype, unless the conversion
is:.
e a view conversion that is the target of an assignment statement and is not referenced with a
target_name, or an actual parameter of mode out; or

e an implicit subtype conversion of an actual parameter of mode out to the nominal subtype of
its formal parameter.

For the evaluation of a view conversion, the operand name is evaluated, and a new view of the object
denoted by the operand is created, whose type is the target type; if the target type is composite, checks
are performed as above for a value conversion.

The properties of this new view are as follows:

o [f the target type is composite, the bounds or discriminants (if any) of the view are as defined
above for a value conversion; each nondiscriminant component of the view denotes the
matching component of the operand object; the subtype of the view is constrained if either the
target subtype or the operand object is constrained, or if the target subtype is indefinite, or if
the operand type is a descendant of the target type and has discriminants that were not
inherited from the target type;

o [f the target type is tagged, then an assignment to the view assigns to the corresponding part
of the object denoted by the operand; otherwise, an assignment to the view assigns to the
object, after converting the assigned value to the subtype of the object (which might raise
Constraint_Error);

e Reading the value of the view yields the result of converting the value of the operand object
to the target subtype (which might raise Constraint Error), except if the object is of an
elementary type and the view conversion is passed as an out parameter; in this latter case, the
value of the operand object may be used to initialize the formal parameter without checking
against any constraint of the target subtype (as described more precisely in 6.4.1).

If an Accessibility Check fails, Program Error is raised. If a predicate check fails, the effect is as
defined in subclause 3.2.4, “Subtype Predicates”. Any other check associated with a conversion raises
Constraint_Error if it fails.

Conversion to a type is the same as conversion to an unconstrained subtype of the type.

Evaluation of a value conversion of an object either creates a new anonymous object (similar to the
object created by the evaluation of an aggregate or a function call) or yields a new view of the
operand object without creating a new object:

o If the target type is a by-reference type and there is a type that is an ancestor of both the target
type and the operand type then no new object is created;

o [f the target type is an array type having aliased components and the operand type is an array
type having unaliased components, then a new object is created;

o [f the target type is an elementary type, then a new object is created;

e Otherwise, it is unspecified whether a new object is created.

137 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

If a new object is created, then the initialization of that object is an assignment operation.

NOTES

21 In addition to explicit type_conversions, type conversions are performed implicitly in situations where the
expected type and the actual type of a construct differ, as is permitted by the type resolution rules (see 8.6). For
example, an integer literal is of the type universal integer, and is implicitly converted when assigned to a target of
some specific integer type. Similarly, an actual parameter of a specific tagged type is implicitly converted when the
corresponding formal parameter is of a class-wide type.

Even when the expected and actual types are the same, implicit subtype conversions are performed to adjust the array
bounds (if any) of an operand to match the desired target subtype, or to raise Constraint_Error if the (possibly adjusted)
value does not satisfy the constraints of the target subtype.

22 A ramification of the overload resolution rules is that the operand of an (explicit) type_conversion cannot be an
allocator, an aggregate, a string_literal, a character_literal, or an attribute_reference for an Access or
Unchecked Access attribute. Similarly, such an expression enclosed by parentheses is not allowed. A
qualified_expression (see 4.7) can be used instead of such a type_conversion.

23 The constraint of the target subtype has no effect for a type_conversion of an elementary type passed as an out
parameter. Hence, it is recommended that the first subtype be specified as the target to minimize confusion (a similar
recommendation applies to renaming and generic formal in out objects).

Examples
Examples of numeric type conversion:
Real (2*J) -- value is converted to floating point
Integer(1.6) -- value is 2
Integer (-0.4) -- valueis0

Example of conversion between derived types:
type A Form is new B Form;

X : A Form;
: B_Form;

A Form(Y)

Y
X p—
Y B_Form(X)

-- the reverse conversion

7
7

Examples of conversions between array types:

type Sequence is array (Integer range <>) of Integer;

subtype Dozen is Sequence(l .. 12);

Ledger : array(l .. 100) of Integer;

Sequence (Ledger) -- bounds are those of Ledger
Sequence (Ledger (31 .. 42)) - bounds are 31 and 42
Dozen (Ledger (31 .. 42)) -- bounds are those of Dozen

4.7 Qualified Expressions

A qualified_expression is used to state explicitly the type, and to verify the subtype, of an operand
that is either an expression or an aggregate.

Syntax
qualified_expression ::=
subtype_mark'(expression) | subtype_mark'aggregate
Name Resolution Rules

The expected type for the operand (the expression or aggregate) is determined by the subtype_-
mark. Furthermore, the operand shall resolve to be either the specified expected type or a universal
type that covers it.

Static Semantics

If the operand of a qualified_expression denotes an object, the qualified_expression denotes a
constant view of that object. The nominal subtype of a qualified_expression is the subtype denoted
by the subtype_mark.

© ISO/IEC 2021 — All rights reserved 138

ISO/IEC 8652:DIS

Dynamic Semantics

The evaluation of a qualified_expression evaluates the operand (and if of a universal type, converts it
to the type determined by the subtype mark) and checks that its value belongs to the subtype denoted
by the subtype mark. The exception Constraint Error is raised if this check fails. Furthermore, if
predicate checks are enabled for the subtype denoted by the subtype mark, a check is performed as
defined in subclause 3.2.4, “Subtype Predicates” that the value satifies the predicates of the subtype.
NOTES
24 When a given context does not uniquely identify an expected type, a qualified_expression can be used to do so. In

particular, if an overloaded name or aggregate is passed to an overloaded subprogram, it might be necessary to qualify
the operand to resolve its type.

Examples

Examples of disambiguating expressions using qualification:

type Mask is (Fix, Dec, Exp, Signif);
type Code is (Fix, Cla, Dec, Tnz, Sub);

Print (Mask' (Dec)); -- Decis of type Mask

Print (Code' (Dec)); -- Decisoftype Code

for J in Code' (Fix) .. Code' (Dec) loop ... --qualification needed for either Fix or Dec
for J in Code range Fix .. Dec loop ... -- qualification unnecessary

for J in Code' (Fix) .. Dec loop ... -- qualification unnecessary for Dec

Dozen'(l | 3 | 5 | 7 => 2, others => 0) --see4.6

4.8 Allocators

The evaluation of an allocator creates an object and yields an access value that designates the object.

Syntax

allocator ::=
new [subpool_specification] subtype_indication
| new [subpool_specification] qualified_expression

subpool_specification ::= (subpool handle_name)

For an allocator with a subtype_indication, the subtype_indication shall not specify a
null_exclusion.

Name Resolution Rules

The expected type for an allocator shall be a single access-to-object type with designated type D such
that either D covers the type determined by the subtype mark of the subtype_indication or
qualified_expression, or the expected type is anonymous and the determined type is D'Class. A
subpool _handle_name is expected to be of any type descended from Subpool Handle, which is the
type used to identify a subpool, declared in package System.Storage Pools.Subpools (see 13.11.4).

Legality Rules

An initialized allocator is an allocator with a qualified_expression. An uninitialized allocator is one
with a subtype_indication. In the subtype_indication of an uninitialized allocator, a constraint is
permitted only if the subtype mark denotes an unconstrained composite subtype; if there is no
constraint, then the subtype _mark shall denote a definite subtype.

If the type of the allocator is an access-to-constant type, the allocator shall be an initialized allocator.

If a subpool_specification is given, the type of the storage pool of the access type shall be a
descendant of Root_Storage Pool With Subpools.

139 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

If the designated type of the type of the allocator is class-wide, the accessibility level of the type
determined by the subtype_indication or qualified_expression shall not be statically deeper than that
of the type of the allocator.

If the subtype determined by the subtype_indication or qualified_expression of the allocator has one
or more access discriminants, then the accessibility level of the anonymous access type of each access
discriminant shall not be statically deeper than that of the type of the allocator (see 3.10.2).

An allocator shall not be of an access type for which the Storage Size has been specified by a static
expression with value zero or is defined by the language to be zero.

If the designated type of the type of the allocator is limited, then the allocator shall not be used to
define the value of an access discriminant, unless the discriminated type is immutably limited (see
7.5).

In addition to the places where Legality Rules normally apply (see 12.3), these rules apply also in the
private part of an instance of a generic unit.

Static Semantics

If the designated type of the type of the allocator is elementary, then the subtype of the created object
is the designated subtype. If the designated type is composite, then the subtype of the created object is
the designated subtype when the designated subtype is constrained or there is an ancestor of the
designated type that has a constrained partial view; otherwise, the created object is constrained by its
initial value (even if the designated subtype is unconstrained with defaults).

Dynamic Semantics

For the evaluation of an initialized allocator, the evaluation of the qualified_expression is performed
first. An object of the designated type is created and the value of the qualified_expression is
converted to the designated subtype and assigned to the object.

For the evaluation of an uninitialized allocator, the elaboration of the subtype_indication is
performed first. Then:

o If the designated type is elementary, an object of the designated subtype is created and any
implicit initial value is assigned;

o [f the designated type is composite, an object of the designated type is created with tag, if any,
determined by the subtype mark of the subtype_indication. This object is then initialized by
default (see 3.3.1) using the subtype_indication to determine its nominal subtype. A check is
made that the value of the object belongs to the designated subtype. Constraint Error is raised
if this check fails. This check and the initialization of the object are performed in an arbitrary
order.

For any allocator, if the designated type of the type of the allocator is class-wide, then a check is
made that the master of the type determined by the subtype_indication, or by the tag of the value of
the qualified_expression, includes the elaboration of the type of the allocator. If any part of the
subtype determined by the subtype_indication or qualified_expression of the allocator (or by the tag
of the value if the type of the qualified_expression is class-wide) has one or more access
discriminants, then a check is made that the accessibility level of the anonymous access type of each
access discriminant is not deeper than that of the type of the allocator. Program_Error is raised if
either such check fails.

If the object to be created by an allocator has a controlled or protected part, and the finalization of the
collection of the type of the allocator (see 7.6.1) has started, Program_Error is raised.

If the object to be created by an allocator contains any tasks, and the master of the type of the
allocator is completed, and all of the dependent tasks of the master are terminated (see 9.3), then
Program_Error is raised.

© ISO/IEC 2021 — All rights reserved 140

ISO/IEC 8652:DIS

If the allocator includes a subpool handle name, Constraint Error is raised if the subpool handle is
null. Program_Error is raised if the subpool does not belong (see 13.11.4) to the storage pool of the
access type of the allocator.

If the created object contains any tasks, they are activated (see 9.2). Finally, an access value that
designates the created object is returned.

Bounded (Run-Time) Errors

It is a bounded error if the finalization of the collection of the type (see 7.6.1) of the allocator has
started. If the error is detected, Program_Error is raised. Otherwise, the allocation proceeds normally.
NOTES
25 Allocators cannot create objects of an abstract type. See 3.9.3.

26 If any part of the created object is controlled, the initialization includes calls on corresponding Initialize or Adjust
procedures. See 7.6.

27 As explained in 13.11, “Storage Management”, the storage for an object allocated by an allocator comes from a
storage pool (possibly user defined). The exception Storage Error is raised by an allocator if there is not enough
storage. Instances of Unchecked Deallocation may be used to explicitly reclaim storage.

28 Implementations are permitted, but not required, to provide garbage collection.

Examples

Examples of allocators:
new Cell' (0, null, null) -- initialized explicitly, see 3.10.1
new Cell' (Value => 0, Succ => null, Pred => null) --initialized explicitly
new Cell -- not initialized
new Matrix(1 .. 10, 1 .. 20) -- the bounds only are given
new Matrix'(l .. 10 => (1 .. 20 => 0.0)) -- initialized explicitly
new Buffer (100) -- the discriminant only is given
new Buffer' (Size => 80, Pos => 0, Value => (1 .. 80 => 'A')) --initialized explicitly
Expr Ptr' (new Literal) -- allocator for access-to-class-wide type, see 3.9.1
Expr Ptr' (new Literal' (Expression with 3.5)) -- initialized explicitly

4.9 Static Expressions and Static Subtypes

Certain expressions of a scalar or string type are defined to be static. Similarly, certain discrete ranges
are defined to be static, and certain scalar and string subtypes are defined to be static subtypes. Static
means determinable at compile time, using the declared properties or values of the program entities.

Static Semantics

A static expression is a scalar or string expression that is one of the following:
e anumeric_literal of a numeric type;

a string_literal of a static string subtype;
e a name that denotes the declaration of a static constant;
e aname that denotes a named number, and that is interpreted as a value of a numeric type;

e a function_call whose function_name or function_prefix statically denotes a static function,
and whose actual parameters, if any (whether given explicitly or by default), are all static
expressions;

e an attribute _reference that denotes a scalar value, and whose prefix denotes a static scalar
subtype;

e an attribute_reference whose prefix statically names a statically constrained array object or
array subtype, and whose attribute_designator is First, Last, or Length, with an optional
dimension;

e an attribute_reference whose prefix denotes a non-generic entity that is not declared in a
generic unit, and whose attribute_designator is Nonblocking;

141 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

e a type_conversion whose subtype_mark denotes a static (scalar or string) subtype, and
whose operand is a static expression;

e a qualified_expression whose subtype _mark denotes a static (scalar or string) subtype, and
whose operand is a static expression;

e a membership test whose tested simple_expression is a static expression, and whose
membership_choice_list consists only of membership_choices that are either static
choice_simple_expressions, static ranges, or subtype_marks that denote a static (scalar or
string) subtype;

e ashort-circuit control form both of whose relations are static expressions;

e a conditional_expression all of whose conditions, selecting expressions, and
dependent _expressions are static expressions;

e a declare_expression whose body expression is static and each of whose declarations, if
any, is either the declaration of a static constant or is an object_renaming_declaration with
an object_name that statically names the renamed object;

e a static expression enclosed in parentheses.
A name statically denotes an entity if it denotes the entity and:

e [t is a direct_name, expanded name, or character_literal, and it denotes a declaration other
than a renaming_declaration; or

o [t is an attribute_reference whose prefix statically denotes some entity; or

e [tis atarget_name (see 5.2.1) in an assignment_statement whose variable_name statically
denotes some entity; or

¢ [t denotes a renaming_declaration with a name that statically denotes the renamed entity.
A name statically names an object if it:
o statically denotes the declaration of an object (possibly through one or more renames);

e is a selected_component whose prefix statically names an object, there is no implicit
dereference of the prefix, and the selector_name does not denote a component_declaration
occurring within a variant_part; or

e is an indexed_component whose prefix statically names an object, there is no implicit
dereference of the prefix, the object is statically constrained, and the index expressions of the
object are static and have values that are within the range of the index constraint.

For an entity other than an object, a name statically names an entity if the name statically denotes the
entity.

A static function is one of the following:

e a predefined operator whose parameter and result types are all scalar types none of which are
descendants of formal scalar types;

¢ a predefined relational operator whose parameters are of a string type that is not a descendant
of a formal array type;

¢ a predefined concatenation operator whose result type is a string type that is not a descendant
of a formal array type;

¢ a shifting or rotating function associated with a modular type declared in package Interfaces
(see B.2);

e an enumeration literal;
e astatic expression function (see 6.8);

¢ a language-defined attribute that is a function, if the prefix denotes a static scalar subtype, and
if the parameter and result types are scalar.

In any case, a generic formal subprogram is not a static function.

© ISO/IEC 2021 — All rights reserved 142

ISO/IEC 8652:DIS

A static constant is a constant view declared by a full constant declaration or an object_renaming_-
declaration with a static nominal subtype, having a value defined by a static scalar expression or by a
static string expression, and which satisfies any constraint or predicate that applies to the nominal
subtype.

A static range is a range whose bounds are static expressions, or a range_attribute_reference that is
equivalent to such a range. A static discrete_range is one that is a static range or is a subtype_-
indication that defines a static scalar subtype. The base range of a scalar type is a static range, unless
the type is a descendant of a formal scalar type.

A static subtype is either a static scalar subtype or a static string subtype. A static scalar subtype is an
unconstrained scalar subtype whose type is not a descendant of a formal type, or a constrained scalar
subtype formed by imposing a compatible static constraint on a static scalar subtype. A static string
subtype is an unconstrained string subtype whose index subtype and component subtype are static, or
a constrained string subtype formed by imposing a compatible static constraint on a static string
subtype. In any case, the subtype of a generic formal object of mode in out, and the result subtype of
a generic formal function, are not static. Also, a subtype is not static if any Dynamic Predicate
specifications apply to it.

The different kinds of static constraint are defined as follows:
e A null constraint is always static;
e A scalar constraint is static if it has no range_constraint, or one with a static range;

e An index constraint is static if each discrete_range is static, and each index subtype of the
corresponding array type is static;

e A discriminant constraint is static if each expression of the constraint is static, and the
subtype of each discriminant is static.

In any case, the constraint of the first subtype of a scalar formal type is neither static nor null.

A subtype is statically constrained if it is constrained, and its constraint is static. An object is
statically constrained if its nominal subtype is statically constrained, or if it is a static string constant.

Legality Rules

An expression is statically unevaluated if it is part of:

o the right operand of a static short-circuit control form whose value is determined by its left
operand; or

e a dependent_expression of an if_expression whose associated condition is static and equals
False; or

e a condition or dependent _expression of an if_expression where the condition corresponding
to at least one preceding dependent _expression of the if_expression is static and equals
True; or

e a dependent_expression of a case_expression whose selecting expression is static and
whose value is not covered by the corresponding discrete_choice_list; or

e a choice simple_expression (or a simple_expression of a range that occurs as a
membership_choice of a membership_choice _list) of a static membership test that is
preceded in the enclosing membership_choice list by another item whose individual
membership test (see 4.5.2) statically yields True.

A static expression is evaluated at compile time except when it is statically unevaluated. The compile-
time evaluation of a static expression is performed exactly, without performing Overflow_Checks. For
a static expression that is evaluated:

e The expression is illegal if its evaluation fails a language-defined check other than
Overflow_Check. For the purposes of this evaluation, the assertion policy is assumed to be
Check.

143 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

o If the expression is not part of a larger static expression and the expression is expected to be
of a single specific type, then its value shall be within the base range of its expected type.
Otherwise, the value may be arbitrarily large or small.

o If the expression is of type universal _real and its expected type is a decimal fixed point type,
then its value shall be a multiple of the small of the decimal type. This restriction does not
apply if the expected type is a descendant of a formal scalar type (or a corresponding actual
type in an instance).

In addition to the places where Legality Rules normally apply (see 12.3), the above restrictions also
apply in the private part of an instance of a generic unit.

Implementation Requirements

For a real static expression that is not part of a larger static expression, and whose expected type is not
a descendant of a formal type, the implementation shall round or truncate the value (according to the
Machine Rounds attribute of the expected type) to the nearest machine number of the expected type;
if the value is exactly half-way between two machine numbers, the rounding performed is
implementation-defined. If the expected type is a descendant of a formal type, or if the static
expression appears in the body of an instance of a generic unit and the corresponding expression is
nonstatic in the corresponding generic body, then no special rounding or truncating is required —
normal accuracy rules apply (see Annex G).

Implementation Advice

For a real static expression that is not part of a larger static expression, and whose expected type is not
a descendant of a formal type, the rounding should be the same as the default rounding for the target
system.

NOTES

29 An expression can be static even if it occurs in a context where staticness is not required.

30 A static (or run-time) type_conversion from a real type to an integer type performs rounding. If the operand value
is exactly half-way between two integers, the rounding is performed away from zero.

Examples
Examples of static expressions:
1+ 1 -2
abs (-10)*3 --30
Kilo : constant := 1000;
Mega : constant := Kilo*Kilo; --1_000_000
Long : constant := Float'Digits*2;
Half Pi : constant := Pi/2; --see 3.3.2
Deg To Rad : constant := Half Pi/90;

Rad_To Deg : comstant := 1.0/Deg_To Rad; --equivalentto 1.0/((3.14159 26536/2)/90)

4.9.1 Statically Matching Constraints and Subtypes

Static Semantics
A constraint statically matches another constraint if:
e both are null constraints;
e both are static and have equal corresponding bounds or discriminant values;

e both are nonstatic and result from the same elaboration of a constraint of a subtype -
indication or the same evaluation of a range of a discrete_subtype_definition; or

e both are nonstatic and come from the same formal_type declaration.

The Global or Global'Class aspects (see 6.1.2) of two entities statically match if both consist of a
single global_aspect_definition where each is the reserved word null, or each is of the form
“global_mode global_designator” with each global_mode being the same sequence of reserved

© ISO/IEC 2021 — All rights reserved 144

ISO/IEC 8652:DIS

words and each global_designator being the same reserved word, or each being a global_name that
statically names the same entity.

A subtype statically matches another subtype of the same type if they have statically matching
constraints, all predicate specifications that apply to them come from the same declarations,
Nonblocking aspects have the same value, global aspects statically match, Object _Size (see 13.3) has
been specified to have a nonconfirming value for either both or neither, and the nonconfirming values,
if any, are the same, and, for access subtypes, either both or neither exclude null. Two anonymous
access-to-object subtypes statically match if their designated subtypes statically match, and either both
or neither exclude null, and either both or neither are access-to-constant. Two anonymous access-to-
subprogram subtypes statically match if their designated profiles are subtype conformant, and either
both or neither exclude null.

Two ranges of the same type statically match if both result from the same evaluation of a range, or if
both are static and have equal corresponding bounds.

A constraint is statically compatible with a scalar subtype if it statically matches the constraint of the
subtype, or if both are static and the constraint is compatible with the subtype. A constraint is
statically compatible with an access or composite subtype if it statically matches the constraint of the
subtype, or if the subtype is unconstrained.

Two statically matching subtypes are statically compatible with each other. In addition, a subtype S/
is statically compatible with a subtype S2 if:

o the constraint of S/ is statically compatible with S2, and
o if S2 excludes null, so does S/, and

e either:
o all predicate specifications that apply to S2 apply also to S/, or

o both subtypes are static, every value that satisfies the predicates of S/ also satisfies the
predicates of S2, and it is not the case that both types each have at least one applicable
predicate specification, predicate checks are enabled (see 11.4.2) for S2, and predicate
checks are not enabled for S/.

4.10 Image Attributes

An image of a value is a string representing the value in display form. The attributes Image,
Wide Image, and Wide Wide Image are available to produce the image of a value as a String,
Wide String, or Wide Wide String (respectively). User-defined images for a given type can be
implemented by overriding the default implementation of the attribute Put Image.

Static Semantics

For every subtype S of a type T other than universal real or universal fixed, the following type-
related operational attribute is defined:
S'Put_Image

S'Put_Image denotes a procedure with the following specification:

procedure S'Put_ Image
(Buffer : in out
Ada.Strings.Text Buffers.Root Buffer Type'Class;
Arg : in T);
The default implementation of S'Put Image writes (using Wide Wide Put) an image of
the value of Arg.

The Put Image attribute may be specified for any specific type T either via an
attribute_definition_clause or via an aspect_specification specifying the Put Image aspect of the
type. The Put Image aspect is not inherited, but rather is implicitly composed for derived types, as
defined below.

145 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

For an aspect_specification or attribute_definition_clause specifying Put Image, the subtype of the
Arg parameter shall be the first subtype or the base subtype if scalar, and the first subtype if not scalar.

The behavior of the default implementation of S'Put_Image depends on the class of T.

For an untagged derived type, or a null extension, the default implementation of T'Put Image invokes
the Put_Image for its parent type on a conversion of the parameter of type T to the parent type.

For a nonderived elementary type, the implementation is equivalent to:

procedure Scalar Type'Put_ Image
(Buffer : in out Ada.Strings.Text Buffers.Root Buffer Type'Class;
Arg : in Scalar Type) is

begin
Buffer.Wide Wide Put (<described below>) ;

end Scalar Type'Put Image;

where the Wide Wide_String value written out to the text buffer is defined as follows:

For an integer type, the image written out is the corresponding decimal literal, without
underlines, leading zeros, exponent, or trailing spaces, but with a single leading character that
is either a minus sign or a space.

For an enumeration type, the image written out is either the corresponding identifier in upper
case or the corresponding character literal (including the two apostrophes); neither leading
nor trailing spaces are included. For a nongraphic character (a value of a character type that
has no enumeration literal associated with it), the value is a corresponding language-defined
name in upper case (for example, the image of the nongraphic character identified as nu/ is
"NUL" — the quotes are not part of the image).

For a floating point type, the image written out is a decimal real literal best approximating the
value (rounded away from zero if halfway between) with a single leading character that is
either a minus sign or a space, a single digit (that is nonzero unless the value is zero), a
decimal point, S'Digits-1 (see 3.5.8) digits after the decimal point (but one if S'Digits is one),
an upper case E, the sign of the exponent (either + or -), and two or more digits (with leading
zeros if necessary) representing the exponent. If S'Signed Zeros is True, then the leading
character is a minus sign for a negatively signed zero.

For a fixed point type, the image written out is a decimal real literal best approximating the
value (rounded away from zero if halfway between) with a single leading character that is
either a minus sign or a space, one or more digits before the decimal point (with no redundant
leading zeros), a decimal point, and S'Aft (see 3.5.10) digits after the decimal point.

For an access type (named or anonymous), the image written out depends on whether the
value is null. If it is null, then the image is "NULL". Otherwise the image is a left parenthesis
followed by "ACCESS", a space, and a sequence of graphic characters, other than space or
right parenthesis, representing the location of the designated object, followed by a right
parenthesis, as in " (ACCESS FFO0012AC) ".

For a nonnull type extension, the default implementation of T'Put Image depends on whether there
exists a noninterface ancestor of T (other than T itself) for which the Put Image aspect has been
directly specified. If so, then T'Put_Image will generate an image based on extension aggregate syntax
where the ancestor type of the extension aggregate is the nearest ancestor type whose Put Image
aspect has been specified. If no such ancestor exists, then the default implementation of T'Put Image
is the same as described below for a nonderived record type.

For a specific, nonderived composite type:

If the default implementation of Put Image writes components, the order in which
components are written is the same canonical order in which components of a composite type
T are written out by the default implementation of T'Write. This is also the order that is used
in determining the meaning of a positional aggregate of type T.

For an array type T, the default implementation of T'Put Image generates an image based on
named (not positional) array aggregate syntax (with '[' and ']' as the delimiters) using calls to

© ISO/IEC 2021 — All rights reserved

146

ISO/IEC 8652:DIS

the Put_Image procedures of the index type(s) and the element type to generate images for
values of those types.

The case of a null array is handled specially, using ranges for index bounds and "<>" as a
syntactic component-value placeholder.

e For a record type (or, as indicated above, a type extension with no noninterface ancestor
specifying Put Image), or a protected type, the default implementation of T'Put Image
generates an image based on named (not positional) record aggregate syntax (except that for a
protected type, the initial left parenthesis is followed by "PROTECTED with ").
Component names are displayed in upper case, following the rules for the image of an
enumeration value. Component values are displayed via calls to the component type's
Put Image procedure.

The image written out for a record having no components (including any interface type) is
" (NULL RECORD)". The image written out for a componentless protected type is
" (PROTECTED NULL RECORD) ". In the case of a protected type T, a call to the default
implementation of T'Put Image begins only one protected (read-only) action.

e For an undiscriminated task type, the default implementation of T'Put Image generates an
image of the form " (TASK <task id image>) " where <task id image> is the result
obtained by calling Task Identification.Image with the id of the given task and then passing
that String to Characters.Conversions.To_Wide Wide String.

e For a discriminated task type, the default implementation of T'Put Image also includes
discriminant values, as in:

"(TASK <task id image> with D1 => 123, D2 => 456)"

For a class-wide type, the default implementation of T'Put Image generates an image based on
qualified expression syntax. Wide Wide Put is called with Wide Wide Expanded Name of Arg'Tag.
Then S'Put_Image is called, where S is the specific type identified by Arg'Tag.

T'Put_Image is the same for both the partial view and full view of T, if T has a partial view.

In the parameter_and_result_profile for the default implementation of Put Image, the subtype of the
Arg parameter is the base subtype of T if T is a scalar type, and the first subtype otherwise. For an
aspect_specification or attribute_definition_clause specifying Put Image, the subprogram name
shall denote a nonabstract procedure whose second parameter is either of the first subtype of T, or as
an option when 7 is scalar, the base subtype of 7.

For every subtype S of a type T, the following attributes are defined:
S'Wide Wide Image
S'Wide Wide Image denotes a function with the following specification:
function S'Wide Wide Image (4rg : S'Base)

return Wide Wide String

S'Wide Wide Image calls S'Put Image passing Arg (which will typically store a
sequence of character values in a text buffer) and then returns the result of retrieving the
contents of that buffer with function Wide Wide Get. The lower bound of the result is
one. Any exception propagated by the call of S'Put_Image is propagated.

S'Wide Image
S'Wide Image denotes a function with the following specification:
function S'Wide Image (4drg : S'Base)
return Wide_ String

S'Wide Image calls S'Put_Image passing Arg (which will typically store a sequence of
character values in a text buffer) and then returns the result of retrieving the contents of
that buffer with function Wide Get. The lower bound of the result is one. Any exception
propagated by the call of S'Put_Image is propagated.

STmage S'Image denotes a function with the following specification:

function S'Image (4rg : S'Base)
return String

147 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

S'Tmage calls S'Put Image passing Arg (which will typically store a sequence of character
values in a text buffer) and then returns the result of retrieving the contents of that buffer
with function Get. The lower bound of the result is one. Any exception propagated by the
call of S'Put_Image is propagated.

For a prefix X of a type T other than universal real or universal_ fixed, the following attributes are
defined:
X'Wide Wide Image
X'Wide Wide Image denotes the result of calling function S'Wide Wide Image with
Arg being X, where S is the nominal subtype of X.
X'Wide Image
X'Wide Image denotes the result of calling function S'Wide Image with Arg being X,
where S is the nominal subtype of X.

X'Image X'Image denotes the result of calling function S'Tmage with Arg being X, where S is the
nominal subtype of X.

Implementation Permissions

An implementation may transform the image generated by the default implementation of S'Put_Image
for a composite subtype S in the following ways:

e If S is a composite subtype, the leading character of the image M of a component value or
index value is a space, and the immediately preceding character (if any) is an open
parenthesis, open bracket, or space, then the leading space of the image M may be omitted.

e If S is an array subtype, the low bound of the array in each dimension equals the low bound of
the corresponding index subtype, and the array value is not a null array value, then positional
array aggregate syntax may be used.

e If S is an array subtype and the given value can be displayed using named_array_aggregate
syntax where some discrete_choice_list identifies more than one index value by identifying a
sequence of one or more ranges and values separated by vertical bars, then this image may be
generated instead; this may involve the reordering of component values.

e Similarly, if S is a record subtype (or a discriminated type) and the given value can be
displayed using named component association syntax where the length of some
component choice_list is greater than one, then this image may be generated instead; this
may involve the reordering of component values.

e Additional spaces (Wide Wide Characters with position 32), and calls to the New Line
operation of a text buffer, may be inserted to improve readability of the generated image, with
the spaces inserted directly or via use of the Increase Indent and Decrease Indent procedures.

e For a string type, implementations may produce an image corresponding to a string literal.

e For an unchecked union type, implementations may raise Program Error or produce some
recognizable image (such as " (UNCHECKED UNION)") that does not require reading the
discriminants.

For each language-defined nonscalar type T, T'Put_Image may be specified.

Implementation Requirements

For each language-defined container type T (that is, each of the Vector, List, Map, Set, Tree, and
Holder types defined in the various children of Ada.Containers), T'Put Image shall be specified so
that T'Image produces a result consistent with array aggregate syntax (using '[' and '] as delimiters) as
follows:

e Vector images shall be consistent with the default image of an array type with the same index
and component types.

e Map images shall be consistent with named array aggregate syntax, using key value images in
place of discrete choice names. For example, [Keyl => Valuel, Key2 => Value2].

© ISO/IEC 2021 — All rights reserved 148

ISO/IEC 8652:DIS

e Set, List, and Holder images shall be consistent with positional array aggregate syntax. List
elements shall occur in order within an image of a list. The image of an empty holder shall be

(1.

e Tree images (and images of subtrees of trees) shall be consistent with positional array
aggregate syntax. For example, [[1, 2], [111, 222, 333]].

For each language-defined nonscalar type T that has a primitive language-defined Image function
whose profile is type conformant with that of T'Image (for example,
Ada.Numerics.Float Random.State has such an Image function), T'Put Image shall be specified so
that T'Image yields the same result as that Image function.

Implementation Advice

For each language-defined private type T, T'lmage should generate an image that would be
meaningful based only on the relevant public interfaces, as opposed to requiring knowledge of the
implementation of the private type.

149 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

5 Statements

A statement defines an action to be performed upon its execution.

This clause describes the general rules applicable to all statements. Some statements are discussed in
later clauses: Procedure_call_statements and return statements are described in 6, “Subprograms”.
Entry_call_statements, requeue_statements, delay_statements, accept_statements, select -
statements, and abort_statements are described in 9, “Tasks and Synchronization”. Raise_-
statements are described in 11, “Exceptions”, and code_statements in 13. The remaining forms of
statements are presented in this clause.

5.1 Simple and Compound Statements - Sequences of Statements

A statement is either simple or compound. A simple_statement encloses no other statement. A
compound_statement can enclose simple_statements and other compound_statements. A parallel
construct is a construct that introduces additional logical threads of control (see clause 9) without
creating a new task. Parallel loops (see 5.5) and parallel_block_statements (see 5.6.1) are parallel
constructs.

Syntax
sequence_of statements ::= statement {statement} {label}

statement ::=
{label} simple_statement | {label} compound_statement

simple_statement ::= null_statement

| assignment_statement | exit_statement

| goto_statement | procedure_call_statement
| simple_return_statement | entry_call_statement

| requeue_statement | delay_statement

| abort_statement | raise_statement

| code_statement

compound_statement ::=
if _statement | case_statement
| loop_statement | block_statement
| extended_return_statement
| parallel_block_statement
| accept_statement | select_statement

null_statement ::= null;
label ::= <</abel statement_identifier>>
statement_identifier ::= direct_name

The direct_name of a statement_identifier shall be an identifier (not an operator_symbol).

Name Resolution Rules

The direct_name of a statement_identifier shall resolve to denote its corresponding implicit
declaration (see below).

Legality Rules

Distinct identifiers shall be used for all statement_identifiers that appear in the same body, including
inner block_statements but excluding inner program units.

151 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

Static Semantics

For each statement_identifier, there is an implicit declaration (with the specified identifier) at the end
of the declarative_part of the innermost block statement or body that encloses the
statement_identifier. The implicit declarations occur in the same order as the statement_identifiers
occur in the source text. If a usage name denotes such an implicit declaration, the entity it denotes is
the label, loop_statement, or block_statement with the given statement_identifier.

If one or more labels end a sequence_of_statements, an implicit null_statement follows the labels
before any following constructs.

Dynamic Semantics
The execution of a null_statement has no effect.

A transfer of control is the run-time action of an exit_statement, return statement, goto_statement,
or requeue_statement, selection of a terminate_alternative, raising of an exception, or an abort,
which causes the next action performed to be one other than what would normally be expected from
the other rules of the language. As explained in 7.6.1, a transfer of control can cause the execution of
constructs to be completed and then left, which may trigger finalization.

The execution of a sequence_of statements consists of the execution of the individual statements
in succession until the sequence_ is completed.

Within a parallel construct, if a transfer of control out of the construct is initiated by one of the logical
threads of control, an attempt is made to cancel all other logical threads of control initiated by the
parallel construct. Once all other logical threads of control of the construct either complete or are
canceled, the transfer of control occurs. If two or more logical threads of control of the same construct
initiate such a transfer of control concurrently, one of them is chosen arbitrarily and the others are
canceled.

When a logical thread of control is canceled, the cancellation causes it to complete as though it had
performed a transfer of control to the point where it would have finished its execution. Such a
cancellation is deferred while the logical thread of control is executing within an abort-deferred
operation (see 9.8), and may be deferred further, but not past a point where the logical thread initiates
a new nested parallel construct or reaches an exception handler that is outside such an abort-deferred
operation.

Bounded (Run-Time) Errors

During the execution of a parallel construct, it is a bounded error to invoke an operation that is
potentially blocking (see 9.5). Program_Error is raised if the error is detected by the implementation;
otherwise, the execution of the potentially blocking operation might proceed normally, or it might
result in the indefinite blocking of some or all of the logical threads of control making up the current
task.
NOTES
1 A statement_identifier that appears immediately within the declarative region of a named loop_statement or an
accept_statement is nevertheless implicitly declared immediately within the declarative region of the innermost
enclosing body or block_statement; in other words, the expanded name for a named statement is not affected by

whether the statement occurs inside or outside a named loop or an accept_statement — only nesting within
block_statements is relevant to the form of its expanded name.

Examples

Examples of labeled statements:
<<Here>> <<Ici>> <<Aqui>> <<Hier>> null;

<<After>> X := 1;

© ISO/IEC 2021 — All rights reserved 152

ISO/IEC 8652:DIS

5.2 Assignment Statements

An assignment_statement replaces the current value of a variable with the result of evaluating an
expression.

Syntax
assignment_statement ::=

variable_name := expression;

The execution of an assignment_statement includes the evaluation of the expression and the
assignment of the value of the expression into the farget. An assignment operation (as opposed to an
assignment_statement) is performed in other contexts as well, including object initialization and by-
copy parameter passing. The farget of an assignment operation is the view of the object to which a
value is being assigned; the target of an assignment_statement is the variable denoted by the
variable_name.

Name Resolution Rules

The variable name of an assignment_statement is expected to be of any type. The expected type
for the expression is the type of the target.

Legality Rules
The target denoted by the variable name shall be a variable of a nonlimited type.

If the target is of a tagged class-wide type 7T'Class, then the expression shall either be dynamically
tagged, or of type T and tag-indeterminate (see 3.9.2).

Dynamic Semantics

For the execution of an assignment_statement, the variable name and the expression are first
evaluated in an arbitrary order.
When the type of the target is class-wide:

e If the expression is tag-indeterminate (see 3.9.2), then the controlling tag value for the
expression is the tag of the target;

e Otherwise (the expression is dynamically tagged), a check is made that the tag of the value of
the expression is the same as that of the target; if this check fails, Constraint_Error is raised.

The value of the expression is converted to the subtype of the target. The conversion might raise an
exception (see 4.6).

In cases involving controlled types, the target is finalized, and an anonymous object might be used as
an intermediate in the assignment, as described in 7.6.1, “Completion and Finalization”. In any case,
the converted value of the expression is then assigned to the target, which consists of the following
two steps:

e The value of the target becomes the converted value.

e If any part of the target is controlled, its value is adjusted as explained in subclause 7.6.

NOTES
2 The tag of an object never changes; in particular, an assignment_statement does not change the tag of the target.

Examples
Examples of assignment statements:
Value := Max Value - 1;
Shade := Blue;
Next Frame(F) (M, N) := 2.5; -- seed.l.1
U := Dot _Product (V, W); -- see 6.3

153 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

Writer := (Status => Open, Unit => Printer, Line Count => 60); --see3.d./
Next.all := (72074, null, Head); -- see3.10.1

Examples involving scalar subtype conversions:

I, J : Integer range 1 .. 10 := 5;

K : Integer range 1 .. 20 := 15;

I :=J; -- identical ranges

K := J; -- compatible ranges

J := K; -- will raise Constraint_Error if K > 10

Examples involving array subtype conversions:

A : String(l .. 31);

B : String(3 .. 33);

A := B; -- same number of components

A(1 .. 9) = "tar sauce";

A(4 .. 12) := A(1 .. 9); -- A(l..12) = "tartar sauce"
NOTES

3 Notes on the examples: Assignment_statements are allowed even in the case of overlapping slices of the same
array, because the variable name and expression are both evaluated before copying the value into the variable. In the
above example, an implementation yielding A(1 .. 12) = "tartartartar" would be incorrect.

5.2.1 Target Name Symbols

@, known as the target name of an assignment statement, provides an abbreviation to avoid repetition
of potentially long names in assignment statements.

Syntax

target_name ::= @

Name Resolution Rules

If a target_name occurs in an assignment_statement 4, the variable hame V of 4 is a complete
context. The target name is a constant view of ¥, having the nominal subtype of V.

Legality Rules

A target_name shall appear only in the expression of an assignment_statement.

Dynamic Semantics

For the execution of an assignment_statement with one or more target names appearing in its
expression, the variable name V of the assignment_statement is evaluated first to determine the
object denoted by V, and then the expression of the assignment_statement is evaluated with the
evaluation of each target_name yielding a constant view of the the target whose properties are
otherwise identical to those of the view provided by V. The remainder of the execution of the
assignment_statement is as given in subclause 5.2.

Examples
Examples of the use of target name symbols:
Board(l, 1) := @ + 1.0; -- Anabbreviation for Board(l, 1) := Board(1, 1) + 1.0;
-- (Board is declared in 3.6.1).
My Complex Array : array (1 .. Max) of Complex; -- See3.3.2 3.8

- - Square the element in the Count (see 3.3.1) position:
My Complex Array (Count) := (Re => @.Re**2 - @.Im**2,
Im => 2.0 * @.Re * @.Im);
-- A target_name can be used multiple times and as a prefix if needed.

© ISO/IEC 2021 — All rights reserved 154

ISO/IEC 8652:DIS

5.3 If Statements

An if _statement selects for execution at most one of the enclosed sequences_of statements,
depending on the (truth) value of one or more corresponding conditions.

Syntax

if_statement ::=

if condition then
sequence_of statements

{elsif condition then
sequence_of_statements}

[else
sequence_of_statements]

end if;

Dynamic Semantics

For the execution of an if_statement, the condition specified after if, and any conditions specified
after elsif, are evaluated in succession (treating a final else as elsif True then), until one evaluates to
True or all conditions are evaluated and yield False. If a condition evaluates to True, then the
corresponding sequence_of statements is executed; otherwise, none of them is executed.

Examples

Examples of if statements:
if Month = December and Day = 31 then

Month := January;

Day =1;

Year = Year + 1;
end if;

if Line Too_Short then
raise Layout Error;
elsif Line Full then
New_Line;
Put (Item) ;
else
Put (Item) ;
end if;

if My Car.Owner.Vehicle /= My Car then -~ see3.10.1
Report ("Incorrect data");
end if;

5.4 Case Statements

A case_statement selects for execution one of a number of alternative sequences_of statements;
the chosen alternative is defined by the value of an expression.

Syntax

case_statement ::=
case selecting_expression is
case_statement_alternative
{case_statement_alternative}
end case;

case_statement_alternative ::=
when discrete_choice_list =>
sequence_of statements

155 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

Name Resolution Rules

The selecting expression is expected to be of any discrete type. The expected type for each
discrete_choice is the type of the selecting expression.

Legality Rules

The choice expressions, subtype_indications, and ranges given as discrete choices of a
case_statement shall be static. A discrete_choice others, if present, shall appear alone and in the
last discrete_choice_list.

The possible values of the selecting expression shall be covered (see 3.8.1) as follows:

o If the selecting expression is a name (including a type conversion, qualified_expression,
or function_call) having a static and constrained nominal subtype, then each non-others
discrete_choice shall cover only values in that subtype that satisfy its predicates (see 3.2.4),
and each value of that subtype that satisfies its predicates shall be covered by some
discrete_choice (either explicitly or by others).

o [f the type of the selecting expression is root_integer, universal_integer, or a descendant of
a formal scalar type, then the case_statement shall have an others discrete_choice.

e Otherwise, each value of the base range of the type of the selecting expression shall be
covered (either explicitly or by others).

Two distinct discrete_choices of a case_statement shall not cover the same value.

Dynamic Semantics
For the execution of a case_statement, the selecting expression is first evaluated.

If the value of the selecting expression is covered by the discrete_choice_list of some case_ -
statement_alternative, then the sequence_of statements of the _alternative is executed.

Otherwise (the value is not covered by any discrete_choice_list, perhaps due to being outside the
base range), Constraint_Error is raised.

NOTES
4 The execution of a case_statement chooses one and only one alternative. Qualification of the expression of a
case_statement by a static subtype can often be used to limit the number of choices that need be given explicitly.

Examples

Examples of case statements:

case Sensor is
when Elevation => Record Elevation(Sensor Value)

when Azimuth => Record Azimuth (Sensor Value) ;
when Distance => Record Distance (Sensor_Value);
when others => null;

end case;

case Today is

when Mon => Compute_ Initial Balance;
when Fri => Compute Closing Balance;
when Tue .. Thu=> Generate Report (Today) ;
when Sat .. Sun=> null;

end case;

case Bin Number (Count) is

when 1 => Update_Bin(1) ;
when 2 => Update Bin(2) ;
when 3 | 4=>
Empty Bin(1);
Empty Bin(2);
when others => raise Error;
end case;

© ISO/IEC 2021 — All rights reserved 156

ISO/IEC 8652:DIS

5.5 Loop Statements

A loop_statement includes a sequence_of statements that is to be executed repeatedly, zero or
more times with the iterations running sequentially or concurrently with one another.

Syntax

loop_statement ::=
[loop_statement_identifier:]
[iteration_scheme] loop
sequence_of statements
end loop [loop_identifier];

iteration_scheme ::= while condition

| for loop_parameter_specification

| for iterator_specification

| [parallel [aspect_specification]]
for procedural_iterator

| parallel [(chunk_specification)] [aspect_specification]
for loop_parameter_specification

| parallel [(chunk_specification)] [aspect_specification]
for iterator_specification

chunk_specification ::=
integer simple_expression
| defining_identifier in discrete_subtype_definition
loop_parameter_specification ::=
defining_identifier in [reverse] discrete_subtype_definition
[iterator_filter]

iterator_filter ::= when condition

If a loop_statement has a loop_statement_identifier, then the identifier shall be repeated after the
end loop; otherwise, there shall not be an identifier after the end loop.

An iteration_scheme that begins with the reserved word parallel shall not have the reserved
word reverse in its loop_parameter_specification.

Name Resolution Rules

In a chunk_specification that is an integer simple_expression, the integer simple_expression is
expected to be of any integer type.

Static Semantics

A loop_parameter_specification declares a loop parameter, which is an object whose subtype (and
nominal subtype) is that defined by the discrete_subtype_definition.

In a chunk_specification that has a discrete_subtype_definition, the chunk_specification declares a
chunk parameter object whose subtype (and nominal subtype) is that defined by the
discrete_subtype_definition.

Dynamic Semantics

The filter of an iterator construct (a loop_parameter_specification, iterator specification, or
procedural_iterator) is defined to be satisfied when there is no iterator_filter for the iterator construct,
or when the condition of the iterator_filter evaluates to True for a given iteration of the iterator
construct.

157 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

If a sequence of statements of a loop_statement with an iterator construct is said to be
conditionally executed, then the statements are executed only when the filter of the iterator construct
is satisfied.

The loop iterators loop_parameter_specification and iterator_specification can also be used in
contexts other than loop_statements (for example, see 4.3.5 and 4.5.8). In such a context, the iterator
conditionally produces values in the order specified for the associated construct below or in 5.5.2. The
values produced are the values given to the loop parameter when the filter of the iterator construct is
satisfied for that value. No value is produced when the condition of an iterator_filter evaluates to
False.

For the execution of a loop_statement, the sequence_of statements is executed zero or more times,
until the loop_statement is complete. The loop_statement is complete when a transfer of control
occurs that transfers control out of the loop, or, in the case of an iteration_scheme, as specified
below.

For the execution of a loop_statement with a while iteration_scheme, the condition is evaluated
before each execution of the sequence of statements; if the value of the condition is True, the
sequence_of_statements is executed; if False, the execution of the loop_statement is complete.

If the reserved word parallel is present in the iteration_scheme of a loop_statement (a parallel
loop), the iterations are partitioned into one or more chunks, each with its own separate logical thread
of control (see clause 9). If a chunk_specification is present in a parallel loop, it is elaborated first,
and the result of the elaboration determines the maximum number of chunks used for the parallel
loop. If the chunk_specification is an integer simple_expression, the elaboration evaluates the
expression, and the value of the expression determines the maximum number of chunks. If a
discrete_subtype_definition is present, the elaboration elaborates the discrete subtype definition,
which defines the subtype of the chunk parameter, and the number of values in this subtype
determines the maximum number of chunks. After elaborating the chunk_specification, a check is
made that the determined maximum number of chunks is greater than zero. If this check fails,
Program_Error is raised.

For the execution of a loop_statement that has an iteration_scheme including a loop_parameter_-
specification, after elaborating the chunk_specification and aspect_specification, if any, the loop_-
parameter_specification is elaborated. This elaborates the discrete_subtype definition, which
defines the subtype of the loop parameter. If the discrete_subtype_definition defines a subtype with a
null range, the execution of the loop_statement is complete. Otherwise, the sequence_ of -
statements is conditionally executed once for each value of the discrete subtype defined by the
discrete_subtype_definition that satisfies the predicates of the subtype (or until the loop is left as a
consequence of a transfer of control). Prior to each such iteration, the corresponding value of the
discrete subtype is assigned to the loop parameter associated with the given iteration. If the loop is a
parallel loop, each chunk has its own logical thread of control with its own copy of the loop
parameter; otherwise (a sequential loop), a single logical thread of control performs the loop, and
there is a single copy of the loop parameter. Each logical thread of control handles a distinct subrange
of the values of the subtype of the loop parameter such that all values are covered with no overlaps.
Within each logical thread of control, the values are assigned to the loop parameter in increasing order
unless the reserved word reverse is present, in which case the values are assigned in decreasing order.
In the absence of a transfer of control, the associated parallel construct of a
loop_parameter_specification is complete when all of its logical threads of control are complete.

If a chunk_specification with a discrete_subtype definition is present, then the logical thread of
control associated with a given chunk has its own copy of the chunk parameter initialized with a
distinct value from the discrete subtype defined by the discrete_subtype definition. The values of the
chunk parameters are assigned such that they increase with increasing values of the ranges covered by
the corresponding loop parameters.

© ISO/IEC 2021 — All rights reserved 158

ISO/IEC 8652:DIS

Whether or not a chunk_specification is present in a parallel loop, the total number of iterations of
the loop represents an upper bound on the number of logical threads of control devoted to the loop.

For details about the execution of a loop_statement with the iteration_scheme including an
iterator_specification, see 5.5.2. For details relating to a procedural_iterator, see 5.5.3.

NOTES

5 A loop parameter declared by a loop_parameter_specification is a constant; it cannot be updated within the

sequence_of_statements of the loop (see 3.3).

6 An object_declaration should not be given for a loop parameter, since the loop parameter is automatically declared
by the loop_parameter_specification. The scope of a loop parameter extends from the loop_parameter_specification
to the end of the loop_statement, and the visibility rules are such that a loop parameter is only visible within the

sequence_of_statements of the loop.

7 The discrete_subtype_definition of a for loop is elaborated just once. Use of the reserved word reverse does not
alter the discrete subtype defined, so that the following iteration_schemes are not equivalent; the first has a null range.

for J in reverse 1 .. 0
for Jin 0 .. 1

Examples

Example of a loop statement without an iteration scheme:

loop

Get (Current_ Character) ;

exit when Current Character = '*';
end loop;

Example of a loop statement with a while iteration scheme:

while Bid(N) .Price < Cut_Off.Price loop
Record Bid(Bid(N) .Price) ;
N := N+ 1;

end loop;

Example of a loop statement with a for iteration scheme:

for J in Buffer'Range loop - - works even with a null range
if Buffer(J) /= Space then
put (Buffer (J)) ;
end if;
end loop;

Example of a loop statement with a name:

Summation:
while Next /= Head loop --see3.10.1
Sum := Sum + Next.Value;
Next := Next.Succ;

end loop Summation;

Example of a simple parallel loop:

-- see3.6
parallel
for I in Grid'Range(l) loop
Grid(I, 1) := (for all J in Grid'Range(2) => Grid(I,
end loop;

Example of a parallel loop with a chunk specification:

declare
subtype Chunk Number is Natural range 1 .. 8;

Partial Sum,

Partial Max : array (Chunk Number) of Natural

Partial Min : array (Chunk Number) of Natural
(others => Natural'Last) ;

159

J) = True) ;

(others => 0);

© ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

begin

parallel (Chunk in Chunk Number)
for I in Grid'Range(1l) loop
declare

True Count : constant Natural :=
[for J in Grid'Range(2) =>
(if Grid (I, J) then 1 else 0)]'Reduce("+",0);

begin
Partial_ Sum (Chunk) := @ + True_Count;
Partial Min (Chunk) = Natural'Min(@, True_ Count) ;
Partial Max (Chunk) := Natural'Max(@, True_Count) ;
end;
end loop;
Put_Line

("Total=" & Partial Sum'Reduce("+", 0)'Image &

n
I
n
1

end;

Min=" & Partial Min'Reduce (Natural'Min, Natural'Last) 'Image &
Max=" & Partial Max'Reduce (Natural'Max, 0)'Image) ;

For an example of an iterator_filter, see 4.5.8.

5.5.1 User-Defined Iterator Types

Static Semantics

The following language-defined generic library package exists:

generic
type
with
package
with

type

Cursor;

function Has Element (Position : Cursor) return Boolean;
Ada.Iterator Interfaces

Pure, Nonblocking => False is

Forward Iterator is limited interface;

function First (Object : Forward Iterator) return Cursor is abstract;
function Next (Object : Forward Iterator; Position : Cursor)
return Cursor is abstract;

type

Reversible Iterator is limited interface and Forward Iterator;

function Last (Object : Reversible Iterator) return Cursor is abstract;
function Previous (Object : Reversible Iterator; Position : Cursor)
return Cursor is abstract;

type

Parallel Iterator is limited interface and Forward Iterator;

subtype Chunk Index is Positive;

function Is_Split (Object : Parallel Iterator)
return Boolean is abstract;

procedure Split Into_ Chunks (Object : in out Parallel Iterator;
Max_ Chunks : in Chunk Index) is abstract
with Pre'Class => not Object.Is Split or else raise Program Error,

Post'Class => Object.Is_Split and then
Object.Chunk Count <= Max Chunks;

function Chunk_Count (Object : Parallel Iterator)
return Chunk Index is abstract

with Pre'Class => Object.Is_Split or else raise Program Error;
function First (Object : Parallel Iterator;
Chunk : Chunk Index) return Cursor is abstract
with Pre'Class => (Object.Is_Split and then

Chunk <= Object.Chunk_ Count)
or else raise Program Error;

function Next (Object : Parallel Iterator;
Position : Cursor;
Chunk : Chunk_Index) return Cursor is abstract
with Pre'Class => (Object.Is Split and then

type

Chunk <= Object.Chunk Count)
or else raise Program Error;

Parallel Reversible Iterator is limited interface

and Parallel Iterator and Reversible Iterator;

© ISO/IEC 2021 — All rights reserved 160

ISO/IEC 8652:DIS

end Ada.Iterator Interfaces;

An iterator type is a type descended from the Forward Iterator interface from some instance of
Ada.Iterator _Interfaces. A reversible iterator type is a type descended from the Reversible Iterator
interface from some instance of Ada.lterator Interfaces. A parallel iterator type is a type descended
from the Parallel Iterator interface from some instance of Ada.lterator Interfaces. A type descended
from the Parallel Reversible Iterator interface from some instance of Ada.lterator Interfaces is both a
parallel iterator type and a reversible iterator type. An iterator object is an object of an iterator type. A
reversible iterator object is an object of a reversible iterator type. A parallel iterator object is an
object of a parallel iterator type. The formal subtype Cursor from the associated instance of
Ada.lterator Interfaces is the iteration cursor subtype for the iterator type.

The following type-related operational aspects may be specified for an indexable container type 7T (see
4.1.6):

Default_Iterator

This aspect is specified by a name that denotes exactly one function declared
immediately within the same declaration list in which 7, or the declaration completed by
T, is declared, whose first parameter is of type T or T'Class or an access parameter whose
designated type is type T or T'Class, whose other parameters, if any, have default
expressions, and whose result type is an iterator type. This function is the default iterator
Sfunction for T. Its result subtype is the default iterator subtype for T. The iteration cursor
subtype for the default iterator subtype is the default cursor subtype for T. This aspect is
inherited by descendants of type 7T (including 7"Class).

Iterator Element
This aspect is specified by a name that denotes a subtype. This is the default element
subtype for T. This aspect is inherited by descendants of type T (including 7'Class).

Iterator View
This aspect is specified by a name that denotes a type 72 with the following properties:

T2 is declared in the same compilation unit as T;,

T2 is an iterable container type;

T2 has a single discriminant which is an access discriminant designating 7 and
e The default iterator subtypes for 7' and 72 statically match.
This aspect is never inherited, even by 7"Class.

An iterable container type is an indexable container type with specified Default Iterator and
Iterator_Element aspects. A reversible iterable container type is an iterable container type with the
default iterator type being a reversible iterator type. A parallel iterable container type is an iterable
container type with the default iterator type being a parallel iterator type. An iterable container object
is an object of an iterable container type. A reversible iterable container object is an object of a
reversible iterable container type. A parallel iterable container object is an object of a parallel iterable
container type.

The Default Iterator and Iterator Element aspects are nonoverridable (see 13.1.1).

Legality Rules

The Constant Indexing aspect (if any) of an iterable container type T shall denote exactly one
function with the following properties:

o the result type of the function is covered by the default element type of T or is a reference
type (see 4.1.5) with an access discriminant designating a type covered by the default element
type of T;

o the type of the second parameter of the function covers the default cursor type for T;
e if there are more than two parameters, the additional parameters all have default expressions.

This function (if any) is the default constant indexing function for T.

161 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

The Variable Indexing aspect (if any) of an iterable container type 7T shall denote exactly one
function with the following properties:

o the result type of the function is a reference type (see 4.1.5) with an access discriminant
designating a type covered by the default element type of 7;

o the type of the second parameter of the function covers the default cursor type for T;
¢ if there are more than two parameters, the additional parameters all have default expressions.

This function (if any) is the default variable indexing function for T.

Erroneous Execution

A call on the First or Next operation on a given Parallel Iterator object with a given Chunk value,
which does not propagate an exception, should return a Cursor value that either yields False when
passed to Has_Element, or that identifies an element distinct from any Cursor value returned by a call
on a First or Next operation on the same Parallel Iterator object with a different Chunk value. If the
First or Next operations with a Chunk parameter behave in any other manner, execution is erroneous.

5.5.2 Generalized Loop Iteration

Generalized forms of loop iteration are provided by an iterator_specification.

Syntax

iterator_specification ::=
defining_identifier [: loop_parameter_subtype_indication] in [reverse] iterator_name
[iterator_filter]
| defining_identifier [: loop_parameter_subtype_indication] of [reverse] iterable name
[iterator_filter]

loop_parameter_subtype_indication ::= subtype_indication | access_definition

If an iterator_specification is for a parallel construct, the reserved word reverse shall not appear
in the iterator_specification.

Name Resolution Rules

For the first form of iterator_specification, called a generalized iterator, the expected type for the
iterator_name is any iterator type. For the second form of iterator_specification, the expected type
for the iterable name is any array or iterable container type. If the iterable_ name denotes an array
object, the iterator_specification is called an array component iterator; otherwise it is called a
container element iterator.

Legality Rules

If the reserved word reverse appears, the iterator_specification is a reverse iterator. 1f the
iterator_specification is for a parallel construct, the iterator_specification is a parallel iterator.
Otherwise, it is a forward iterator. Forward and reverse iterators are collectively called sequential
iterators. In a reverse generalized iterator, the iterator_name shall be of a reversible iterator type. In a
parallel generalized iterator, the iferator name shall be of a parallel iterator type. In a reverse
container element iterator, the default iterator type for the type of the iterable name shall be a
reversible iterator type. In a parallel container element iterator, the default iterator type for the type of
the iterable_name shall be of a parallel iterator type.

The subtype defined by the loop_parameter_subtype_indication, if any, of a generalized iterator
shall statically match the iteration cursor subtype. The subtype defined by the loop parameter -
subtype_indication, if any, of an array component iterator shall statically match the component
subtype of the type of the iterable name. The subtype defined by the loop_parameter_subtype_-

© ISO/IEC 2021 — All rights reserved 162

ISO/IEC 8652:DIS

indication, if any, of a container element iterator shall statically match the default element subtype for
the type of the iterable_name.

In a container element iterator whose iterable_ name has type 7, if the iterable name denotes a
constant or the Variable Indexing aspect is not specified for 7, then the Constant Indexing aspect
shall be specified for 7.

The iterator_name or iterable_name of an iterator_specification shall not denote a subcomponent
that depends on discriminants of an object whose nominal subtype is unconstrained, unless the object
is known to be constrained.

A container element iterator is illegal if the call of the default iterator function that creates the loop
iterator (see below) is illegal.

A generalized iterator is illegal if the iteration cursor subtype of the iterator_name is a limited type at
the point of the generalized iterator. A container element iterator is illegal if the default cursor subtype
of the type of the iterable_name is a limited type at the point of the container element iterator.

Static Semantics

An iterator_specification declares a loop parameter. In a generalized iterator, an array component
iterator, or a container element iterator, if a loop_parameter_subtype_indication is present, it
determines the nominal subtype of the loop parameter. In a generalized iterator, if a
loop_parameter_subtype_indication is not present, the nominal subtype of the loop parameter is the
iteration cursor subtype. In an array component iterator, if a loop_parameter_subtype_indication is
not present, the nominal subtype of the loop parameter is the component subtype of the type of the
iterable name. In a container element iterator, if a loop_parameter_subtype indication is not
present, the nominal subtype of the loop parameter is the default element subtype for the type of the
iterable_name.

In a generalized iterator, the loop parameter is a constant. In an array component iterator, the loop
parameter is a constant if the iterable name denotes a constant; otherwise it denotes a variable. In a
container element iterator, the loop parameter is a constant if the iterable_name denotes a constant, or
if the Variable Indexing aspect is not specified for the type of the iferable_name; otherwise it is a
variable.

Dynamic Semantics

For the execution of a loop_statement with an iterator_specification, the iterator_specification is
first elaborated. This elaboration elaborates the subtype_indication, if any.

For a sequential generalized iterator, the loop parameter is created, the iterator name is evaluated,
and the denoted iterator object becomes the loop iferator. In a forward generalized iterator, the
operation First of the iterator type is called on the loop iterator, to produce the initial value for the
loop parameter. If the result of calling Has_Element on the initial value is False, then the execution of
the loop_statement is complete. Otherwise, the sequence_of_statements is conditionally executed
and then the Next operation of the iterator type is called with the loop iterator and the current value of
the loop parameter to produce the next value to be assigned to the loop parameter. This repeats until
the result of calling Has_Element on the loop parameter is False, or the loop is left as a consequence
of a transfer of control. For a reverse generalized iterator, the operations Last and Previous are called
rather than First and Next.

For a parallel generalized iterator, the chunk_specification, if any, of the associated parallel construct,
is first elaborated, to determine the maximum number of chunks (see 5.5), and then the operation
Split Into Chunks of the iterator type is called, with the determined maximum passed as the
Max_Chunks parameter, specifying the upper bound for the number of loop parameter objects (and
the number of logical threads of control) to be associated with the iterator. In the absence of a
chunk_specification, the maximum number of chunks is determined in an implementation-defined
manner.

163 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

Upon return from Split Into Chunks, the actual number of chunks for the loop is determined by
calling the Chunk Count operation of the iterator, at which point one logical thread of control is
initiated for each chunk, with an associated chunk index in the range from one to the actual number of
chunks.

Within each logical thread of control, a loop parameter is created. If a chunk_specification with a
discrete_subtype_definition is present in the associated parallel construct, then a chunk parameter is
created and initialized with a value from the discrete subtype defined by the
discrete_subtype_definition, so that the order of the chosen chunk parameter values correspond to
the order of the chunk indices associated with the logical threads of control. The operation First of the
iterator type that has a Chunk parameter is called on the loop iterator, with Chunk initialized from the
corresponding chunk index, to produce the initial value for the loop parameter. If the result of calling
Has Element on this initial value is False, then the execution of the logical thread of control is
complete. Otherwise, the sequence_of statements is conditionally executed, and then the Next
operation of the iterator type that has a Chunk parameter is called with the loop iterator, the current
value of the loop parameter, and the corresponding chunk index, to produce the next value to be
assigned to the loop parameter. This repeats until the result of calling Has Element on the loop
parameter is False, or the associated parallel construct is left as a consequence of a transfer of control.

In the absence of a transfer of control, the associated parallel construct of a parallel generalized
iterator is complete when all of its logical threads of control are complete.

For an array component iterator, the chunk_specification of the associated parallel construct, if any,
is first elaborated to determine the maximum number of chunks (see 5.5), and then the iterable name
is evaluated and the denoted array object becomes the array for the loop. If the array for the loop is a
null array, then the execution of the loop_statement is complete. Otherwise, the
sequence_of statements is conditionally executed with the loop parameter denoting each
component of the array for the loop, using a canonical order of components, which is last dimension
varying fastest (unless the array has convention Fortran, in which case it is first dimension varying
fastest). For a forward array component iterator, the iteration starts with the component whose index
values are each the first in their index range, and continues in the canonical order. For a reverse array
component iterator, the iteration starts with the component whose index values are each the last in
their index range, and continues in the reverse of the canonical order. For a parallel array component
iterator, the iteration is broken up into contiguous chunks of the canonical order, such that all
components are covered with no overlaps; each chunk has its own logical thread of control with its
own loop parameter and iteration within each chunk is in the canonical order. The number of chunks
is implementation defined, but is limited in the presence of a chunk_specification to the determined
maximum. The loop iteration proceeds until the sequence_of statements has been conditionally
executed for each component of the array for the loop, or until the loop is left as a consequence of a
transfer of control.

If a chunk_specification with a discrete_subtype_definition is present in the associated parallel
construct, then the logical thread of control associated with a given chunk has a chunk parameter
initialized with a distinct value from the discrete subtype defined by the discrete_subtype_definition.
The values of the chunk parameters are assigned such that they increase in the canonical order of the
starting array components for the chunks.

For a container element iterator, the chunk_specification of the associated parallel construct, if any, is
first elaborated to determine the maximum number of chunks (see 5.5), and then the iterable_name is
evaluated. If the container type has Iterator View specified, an object of the Iterator View type is
created with the discriminant referencing the iterable container object denoted by the iterable_name.
This is the iferable container object for the loop. Otherwise, the iterable container object denoted by
the iferable_name becomes the iterable container object for the loop. The default iterator function for
the type of the iterable container object for the loop is called on the iterable container object and the
result is the loop iterator. For a sequential container element iterator, an object of the default cursor

© ISO/IEC 2021 — All rights reserved 164

ISO/IEC 8652:DIS

subtype is created (the loop cursor). For a parallel container element iterator, each chunk of iterations
will have its own loop cursor, again of the default cursor subtype.

A container element iterator then proceeds as described above for a generalized iterator, except that
each reference to a loop parameter is replaced by a reference to the corresponding loop cursor. For a
container element iterator, the loop parameter for each iteration instead denotes an indexing (see
4.1.6) into the iterable container object for the loop, with the only parameter to the indexing being the
value of the loop cursor for the given iteration. If the loop parameter is a constant (see above), then
the indexing uses the default constant indexing function for the type of the iterable container object
for the loop; otherwise it uses the default variable indexing function.

Any exception propagated by the execution of a generalized iterator or container element iterator is
propagated by the immediately enclosing loop statement.

Examples

Example of a parallel generalized loop over an array:

parallel
for Element of Board loop -- See3.6.1.

Element := Element * 2.0; -- Double each element of Board, a two-dimensional array.
end loop;

For examples of use of generalized iterators, see A.18.33 and the corresponding container packages
inA.18.2 and A.18.3.

5.5.3 Procedural Iterators

A procedural_iterator invokes a user-defined procedure, passing in the body of the enclosing
loop_statement as a parameter of an anonymous access-to-procedure type, to allow the loop body to
be executed repeatedly as part of the invocation of the user-defined procedure.

Syntax

procedural_iterator ::=
iterator_parameter_specification of iterator_procedure_call
[iterator_filter]

iterator_parameter_specification ::=
formal_part
| (defining_identifier{, defining_identifier})

iterator_procedure_call ::=
procedure_name
| procedure_prefix iterator_actual_parameter_part

iterator_actual_parameter_part ::=
(iterator_parameter_association {, iterator_parameter_association})

iterator_parameter_association ::=
parameter_association
| parameter_association_with_box

parameter_association_with_box ::=
[formal_parameter_selector_name =>] <>

At most one iterator_parameter_association within an iterator_actual_parameter_part shall be
a parameter_association_with_box.

Name Resolution Rules

The name or prefix given in an iterator_procedure_call shall resolve to denote a callable entity C
(the iterating procedure) that is a procedure, or an entry renamed as (viewed as) a procedure. When

165 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

there is an iterator_actual_parameter_part, the prefix can be an implicit_dereference of an access-
to-subprogram value.

An iterator_procedure_call without a parameter_association_with_box is equivalent to one with an
iterator_actual_parameter_part with an additional parameter_association_with_box at the end,
with the formal parameter selector_name identifying the last formal parameter of the callable entity
denoted by the name or prefix.

An iterator_procedure_call shall contain at most one iterator_parameter_association for each
formal parameter of the callable entity C. Each formal parameter without an
iterator_parameter_association shall have a default_expression (in the profile of the view of C
denoted by the name or prefix).

The formal parameter of the callable entity C associated with the parameter_association_with_box
shall be of an anonymous access-to-procedure type A.

Legality Rules

The anonymous access-to-procedure type A shall have at least one formal parameter in its parameter
profile. If the iterator_parameter_specification is a formal_part, then this formal_part shall be mode
conformant with that of 4. If the iterator_parameter_specification is a list of defining_identifiers, the
number of formal parameters of 4 shall be the same as the length of this list.

If the name or prefix given in an iterator_procedure_call denotes an abstract subprogram, the
subprogram shall be a dispatching subprogram.

Static Semantics

A loop_statement with an iteration_scheme that has a procedural_iterator is equivalent to a local
declaration of a procedure P followed by a procedure_call_statement that is formed from the
iterator_procedure_call by replacing the <> of the parameter_association_with_box with P'Access.
The formal_part of the locally declared procedure P is formed from the formal_part of the
anonymous access-to-procedure type A, by replacing the identifier of each formal parameter of this
formal_part with the identifier of the corresponding formal parameter or element of the list of
defining_identifiers given in the iterator_parameter_specification. The body of P consists of the
conditionally executed sequence_of_statements. The procedure P is called the loop body procedure.

In a procedural iterator, the Parallel Calls aspect (see 9.10.1) of the loop body procedure is True if the
reserved word parallel occurs in the corresponding loop statement, and False otherwise.

The following aspects may be specified for a callable entity S that has exactly one formal parameter of
an anonymous access-to-subprogram type:

Allows_Exit
The Allows Exit aspect is of type Boolean. The specified value shall be static. The
Allows_Exit aspect of an inherited primitive subprogram is True if Allows_Exit is True
either for the corresponding subprogram of the progenitor type or for any other inherited
subprogram that it overrides. If not specified or inherited as True, the Allows_Exit aspect
of a callable entity is False. For an entry, only a confirming specification of False is
permitted for the Allows_Exit aspect.

Specifying the Allows Exit aspect to be True for a subprogram indicates that the
subprogram allows exit, meaning that it is prepared to be completed by arbitrary transfers
of control from the loop body procedure, including propagation of exceptions. A
subprogram for which Allows_Exit is True should use finalization as appropriate rather
than exception handling to recover resources and make any necessary final updates to
data structures.

Parallel Iterator
The Parallel Iterator aspect is of type Boolean. The specified value shall be static. The
Parallel Iterator aspect of an inherited primitive subprogram is True if Parallel Iterator is

© ISO/IEC 2021 — All rights reserved 166

ISO/IEC 8652:DIS

True either for the corresponding subprogram of the progenitor type or for any other
inherited subprogram that it overrides. If not specified or inherited as True, the
Parallel Iterator aspect of a callable entity is False.

Specifying the Parallel Iterator aspect to be True for a callable entity indicates that the
entity might invoke the loop body procedure from multiple distinct logical threads of
control. The Parallel Iterator aspect for a subprogram shall be statically False if the
subprogram allows exit.

Legality Rules

If a callable entity overrides an inherited dispatching subprogram that allows exit, the overriding
callable entity also shall allow exit. If a callable entity overrides an inherited dispatching subprogram
that has a True Parallel Iterator aspect, the overriding callable entity also shall have a True
Parallel Iterator aspect.

A loop_statement with a procedural_iterator as its iteration_scheme shall begin with the reserved
word parallel if and only if the callable entity identified in the iterator_procedure_call has a
Parallel iterator aspect of True.

If the actual parameter of an anonymous access-to-subprogram type, passed in an explicit call of a
subprogram for which the Parallel Iterator aspect is True, is of the form P'Access, the designated
subprogram P shall have a Parallel Calls aspect True (see 9.10.1).

The sequence_of statements of a loop_statement with a procedural_iterator as its
iteration_scheme shall contain an exit_statement, return statement, goto statement, or
requeue_statement that leaves the loop only if the callable entity associated with the
procedural_iterator allows exit.

The sequence of statements of a loop statement with a procedural iterator as its
iteration_scheme shall not contain an accept_statement whose entry_declaration occurs outside the
loop_statement.

Dynamic Semantics

For the execution of a loop_statement with an iteration_scheme that has a procedural_iterator, the
procedure denoted by the name or prefix of the iterator_procedure_call (the iterating procedure) is
invoked, passing an access value designating the loop body procedure as a parameter. The iterating
procedure then calls the loop body procedure zero or more times and returns, whereupon the
loop_statement is complete. If the parallel reserved word is present, the iterating procedure might
invoke the loop body procedure from multiple distinct logical threads of control. The
aspect_specification, if any, is elaborated prior to the invocation of the iterating procedure.

Bounded (Run-Time) Errors

If the callable entity identified in the iterator_procedure_call allows exit, then it is a bounded error
for a call of the loop body procedure to be performed from within an abort-deferred operation (see
9.8), unless the entire loop_statement was within the same abort-deferred operation. If detected,
Program_FError is raised at the point of the call; otherwise, a transfer of control from the
sequence_of statements of the loop_statement might not terminate the loop_statement, and the
loop body procedure might be called again.

If a loop_statement with the procedural_iterator as its iteration_scheme (see 5.5) does not begin
with the reserved word parallel, it is a bounded error if the loop body procedure is invoked from a
different logical thread of control than the one that initiates the loop_statement. If detected,
Program_Error is raised; otherwise, conflicts associated with concurrent executions of the loop body
procedure can occur without being detected by the applicable conflict check policy (see 9.10.1).
Furthermore, propagating an exception or making an attempt to exit in the presence of multiple
threads of control might not terminate the loop_statement, deadlock might occur, or the loop body
procedure might be called again.

167 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

Examples

Example of iterating over a map from My Key Type to My Element Type (see A.18.4):
for (C : Cursor) of My Map.Iterate loop

Put Line (My Key Type'Image (Key (C)) & " => " &
My Element Type'Image (Element (C)));
end loop;
- - The above is equivalent to:
declare
procedure P (C : Cursor) is
begin
Put Line (My Key Type'Image (Key (c)) & " => " &
My Element Type'Image (Element (C)));
end P;
begin
My Map.Iterate (P'Access);
end;

Example of iterating over the environment variables (see A.17):

for (Name, Val) of Ada.Environment Variables.Iterate(<>) loop
-- "(<>)"is optional because it is the last parameter
Put_Line (Name & " => " & Val);

end loop;

- - The above is equivalent to:

declare

procedure P (Name : String; Val : String) is

begin

Put Line (Name & " => " & Val);

end P;
begin

Ada.Environment Variables.Iterate (P'Access);
end;

5.6 Block Statements

A Dblock_statement encloses a handled_sequence of statements optionally preceded by a
declarative_part.

Syntax

block_statement ::=
[block_statement_identifier:]
[declare
declarative_part]
begin
handled_sequence_of statements
end [block_identifier];

If a block_statement has a block_statement_identifier, then the identifier shall be repeated after
the end; otherwise, there shall not be an identifier after the end.

Static Semantics

A block_statement that has no explicit declarative_part has an implicit empty declarative_part.

Dynamic Semantics

The execution of a block_statement consists of the elaboration of its declarative_part followed by
the execution of its handled_sequence_of statements.

© ISO/IEC 2021 — All rights reserved 168

ISO/IEC 8652:DIS

Examples

Example of a block statement with a local variable:

Swap:
declare
Temp : Integer;
begin
Temp := V; V := U; U := Temp;
end Swap;

5.6.1 Parallel Block Statements

A parallel_block_statement comprises two or more sequence_of statements separated by and
where each represents an independent activity that is intended to proceed concurrently with the others.

Syntax

parallel_block_statement ::=

parallel [(chunk_specification)] [aspect_specification] do
sequence_of_ statements

and
sequence_of_ statements

{and
sequence_of_statements}

end do;

The chunk_ specification, if any, of a parallel_block_statement shall be an
integer _simple_expression.

Dynamic Semantics

For the execution of a parallel_block statement, the chunk specification and the
aspect_specification, if any, are elaborated in an arbitrary order. After elaborating the
chunk_specification, if any, a check is made that the determined maximum number of chunks is
greater than zero. If this check fails, Program_Error is raised.

Then, the various sequence_of_statements are grouped into one or more chunks, each with its own
logical thread of control (see clause 9), up to the maximum number of chunks specified by the
chunk_specification, if any. Within each chunk every sequence_of statements of the chunk is
executed in turn, in an arbitrary order. The parallel_block_statement is complete once every one of
the sequence_of_statements has completed, either by reaching the end of its execution, or due to a
transfer of control out of the construct by one of the sequence_of statements (see 5.1).

Examples

Example of a parallel block used to walk a binary tree in parallel:

procedure Traverse (T : Expr Ptr) is --see3.9./
begin
if T /= null and then
T.all in Binary Operation'Class -- see3.9.]
then - - recurse down the binary tree

parallel do
Traverse (T.Left);
and
Traverse (T.Right) ;
and
Ada.Text IO.Put_ Line
("Processing " & Ada.Tags.Expanded Name (T'Tag)) ;
end do;
end if;
end Traverse;

Example of a parallel block used to search two halves of a string in parallel:

169 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

function Search (S : String; Char : Character) return Boolean is
begin
if S'Length <= 1000 then
- - Sequential scan
return (for some C of S => C = Char);
else
- - Parallel divide and conquer
declare
Mid : constant Positive := S'First + S'Length/2 - 1;
begin
parallel do
for C of S(S'First .. Mid) loop
if C = Char then
return True; -- Terminates enclosing do
end if;
end loop;
and
for C of S(Mid + 1 .. S'Last) loop
if C = Char then
return True; -- Terminates enclosing do
end if;
end loop;
end do;
- - Not found
return False;
end;
end if;
end Search;

5.7 Exit Statements

An exit_statement is used to complete the execution of an enclosing loop_statement; the completion
is conditional if the exit_statement includes a condition.

Syntax

exit_statement ::=
exit [loop_name] [when condition];

Name Resolution Rules

The loop_name, if any, in an exit_statement shall resolve to denote a loop_statement.

Legality Rules

Each exit_statement applies to a loop_statement; this is the loop_statement being exited. An exit_-
statement with a name is only allowed within the loop_statement denoted by the name, and applies
to that loop_statement. An exit_statement without a name is only allowed within a loop_statement,
and applies to the innermost enclosing one. An exit_statement that applies to a given loop_-
statement shall not appear within a body or accept_statement, if this construct is itself enclosed by
the given loop_statement.

Dynamic Semantics

For the execution of an exit_statement, the condition, if present, is first evaluated. If the value of the
condition is True, or if there is no condition, a transfer of control is done to complete the loop_-
statement. If the value of the condition is False, no transfer of control takes place.

NOTES
8 Several nested loops can be exited by an exit_statement that names the outer loop.

© ISO/IEC 2021 — All rights reserved 170

ISO/IEC 8652:DIS

Examples

Examples of loops with exit statements.

for N in 1 .. Max Num Items loop
Get New Item(New_ Item) ;
Merge Item(New_Item, Storage File);
exit when New Item = Terminal Item;
end loop;

Main Cycle:
loop
- - initial statements
exit Main_Cycle when Found;
- - final statements
end loop Main Cycle;

5.8 Goto Statements

A goto_statement specifies an explicit transfer of control from this statement to a target statement
with a given label.

Syntax

goto_statement ::= goto label name;

Name Resolution Rules

The label name shall resolve to denote a label; the statement with that label is the target statement.

Legality Rules

The innermost sequence_of statements that encloses the target statement shall also enclose the
goto_statement. Furthermore, if a goto_statement is enclosed by an accept_statement or a body,
then the target statement shall not be outside this enclosing construct.

Dynamic Semantics

The execution of a goto_statement transfers control to the target statement, completing the execution
of any compound_statement that encloses the goto_statement but does not enclose the target.

NOTES

9 The above rules allow transfer of control to a statement of an enclosing sequence_of statements but not the
reverse. Similarly, they prohibit transfers of control such as between alternatives of a case_statement, if_statement, or
select_statement; between exception_handlers; or from an exception_handler of a
handled_sequence_of_statements back to its sequence_of_statements.

Examples

Example of a loop containing a goto statement:

<<Sort>>
for I in 1 .. N-1 loop
if A(I) > A(I+1) then
Exchange (A(I), A(I+1));
goto Sort;
end if;
end loop;

171 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

6 Subprograms

A subprogram is a program unit or intrinsic operation whose execution is invoked by a subprogram
call. There are two forms of subprogram: procedures and functions. A procedure call is a statement; a
function call is an expression and returns a value. The definition of a subprogram can be given in two
parts: a subprogram declaration defining its interface, and a subprogram_body defining its execution.
Operators and enumeration literals are functions.

A callable entity is a subprogram or entry (see Section 9). A callable entity is invoked by a call; that
is, a subprogram call or entry call. A callable construct is a construct that defines the action of a call
upon a callable entity: a subprogram_body, entry_body, or accept_statement.

6.1 Subprogram Declarations

A subprogram_declaration declares a procedure or function.

Syntax

subprogram_declaration ::=
[overriding_indicator]

subprogram_specification

[aspect_specification];

subprogram_specification ::=
procedure_specification
| function_specification

procedure_specification ::= procedure defining_program_unit_name parameter_profile
function_specification ::= function defining_designator parameter_and_result_profile
designator ::= [parent_unit_name . Jidentifier | operator_symbol

defining_designator ::= defining_program_unit_name | defining_operator_symbol
defining_program_unit_name ::= [parent_unit_name .]defining_identifier

The optional parent_unit_name is only allowed for library units (see 10.1.1).
operator_symbol ::= string_literal

The sequence of characters in an operator_symbol shall form a reserved word, a delimiter, or
compound delimiter that corresponds to an operator belonging to one of the six categories of
operators defined in subclause 4.5.

defining_operator_symbol ::= operator_symbol
parameter_profile ::= [formal_part]

parameter_and_result_profile ::=
[formal_part] return [null_exclusion] subtype mark
| [formal_part] return access_definition

formal_part ::=
(parameter_specification {; parameter_specification})

parameter_specification ::=
defining_identifier_list : [aliased] mode [null_exclusion] subtype_mark [:= default_expressi
on]
[aspect_specification]
| defining_identifier_list : access_definition [:= default_expression]
[aspect_specification]

© ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

mode ::= [in] | in out | out
Name Resolution Rules

A formal parameter is an object directly visible within a subprogram_body that represents the actual
parameter passed to the subprogram in a call; it is declared by a parameter_specification. For a
formal parameter, the expected type for its default_expression, if any, is that of the formal parameter.

Legality Rules

The parameter mode of a formal parameter conveys the direction of information transfer with the
actual parameter: in, in out, or out. Mode in is the default, and is the mode of a parameter defined by
an access_definition.

A default_expression is only allowed in a parameter_specification for a formal parameter of mode
in.

A subprogram_declaration or a generic_subprogram_declaration requires a completion unless the
Import aspect (see B.l1) is True for the declaration; the completion shall be a body or a
renaming_declaration (see 8.5). A completion is not allowed for an
abstract_subprogram_declaration (see 3.9.3), a null_procedure_declaration (see 6.7), or an
expression_function_declaration (see 6.8).

A name that denotes a formal parameter is not allowed within the formal_part in which it is declared,
nor within the formal_part of a corresponding body or accept_statement.

Static Semantics

The profile of (a view of) a callable entity is either a parameter_profile or
parameter_and_result_profile; it embodies information about the interface to that entity — for
example, the profile includes information about parameters passed to the callable entity. All callable
entities have a profile — enumeration literals, other subprograms, and entries. An access-to-
subprogram type has a designated profile. Associated with a profile is a calling convention. A
subprogram_declaration declares a procedure or a function, as indicated by the initial reserved word,
with name and profile as given by its specification.

The nominal subtype of a formal parameter is the subtype determined by the optional null_exclusion
and the subtype_mark, or defined by the access_definition, in the parameter_specification. The
nominal subtype of a function result is the subtype determined by the optional null_exclusion and the
subtype_mark, or defined by the access_definition, in the parameter_and_result_profile.

An explicitly aliased parameter is a formal parameter whose parameter_specification includes the
reserved word aliased.

An access parameter is a formal in parameter specified by an access_definition. An access result
type is a function result type specified by an access_definition. An access parameter or result type is
of an anonymous access type (see 3.10). Access parameters of an access-to-object type allow
dispatching calls to be controlled by access values. Access parameters of an access-to-subprogram
type permit calls to subprograms passed as parameters irrespective of their accessibility level.
The subtypes of a profile are:

e For any non-access parameters, the nominal subtype of the parameter.

e For any access parameters of an access-to-object type, the designated subtype of the
parameter type.

e For any access parameters of an access-to-subprogram type, the subtypes of the designated
profile of the parameter type.

e For any non-access result, the nominal subtype of the function result.

© ISO/IEC 2021 — All rights reserved 174

ISO/IEC 8652:DIS

e For any access result type of an access-to-object type, the designated subtype of the result
type.
e For any access result type of an access-to-subprogram type, the subtypes of the designated
profile of the result type.
The types of a profile are the types of those subtypes.

A subprogram declared by an abstract_subprogram_declaration is abstract; a subprogram declared
by a subprogram_declaration is not. See 3.9.3, “Abstract Types and Subprograms”. Similarly, a
procedure declared by a null_procedure_declaration is a null procedure; a procedure declared by a
subprogram_declaration is not. See 6.7, “Null Procedures”. Finally, a function declared by an
expression_function_declaration is an expression function; a function declared by a
subprogram_declaration is not. See 6.8, “Expression Functions”.

An overriding_indicator is used to indicate whether overriding is intended. See 8.3.1, “Overriding
Indicators”.

Dynamic Semantics
The elaboration of a subprogram_declaration has no effect.

NOTES
1 A parameter_specification with several identifiers is equivalent to a sequence of single parameter_specifications,
as explained in 3.3.

2 Abstract subprograms do not have bodies, and cannot be used in a nondispatching call (see 3.9.3, “Abstract Types
and Subprograms”).

3 The evaluation of default_expressions is caused by certain calls, as described in 6.4.1. They are not evaluated
during the elaboration of the subprogram declaration.

4 Subprograms can be called recursively and can be called concurrently from multiple tasks.

Examples

Examples of subprogram declarations:

procedure Traverse Tree;
procedure Increment (X : in out Integer) ;

procedure Right Indent (Margin : out Line Size); -- see3.5.4
procedure Switch(From, To : in out Link); -- see3.10.1
function Random return Probability; -- see3.5.7
function Min Cell (X : Link) return Cell; -- see 3.10.1
function Next Frame (K : Positive) return Frame; -- see 3.10
function Dot Product (Left, Right : Vector) return Real; -- see 3.6
function Find(B : aliased in out Barrel; Key : String) return Real;
-- seed. 1.5
function "*" (Left, Right : Matrix) return Matrix; -- see 3.6

Examples of in parameters with default expressions:

procedure Print Header (Pages : in Natural;
Header : in Line = (1 .. Line'Last => "' '); -- see36
Center : in Boolean := True) ;

6.1.1 Preconditions and Postconditions

For a noninstance subprogram (including a generic formal subprogram), a generic subprogram, an
entry, or an access-to-subprogram type, the following language-defined assertion aspects may be
specified with an aspect_specification (see 13.1.1):

Pre This aspect specifies a specific precondition for a callable entity or an access-to-
subprogram type; it shall be specified by an expression, called a specific precondition
expression. If not specified for an entity, the specific precondition expression for the
entity is the enumeration literal True.

175 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

Pre'Class This aspect specifies a class-wide precondition for a dispatching operation of a tagged
type and its descendants; it shall be specified by an expression, called a class-wide
precondition expression. If not specified for an entity, then if no other class-wide
precondition applies to the entity, the class-wide precondition expression for the entity is
the enumeration literal True.

Post This aspect specifies a specific postcondition for a callable entity or an access-to-
subprogram type; it shall be specified by an expression, called a specific postcondition
expression. If not specified for an entity, the specific postcondition expression for the
entity is the enumeration literal True.

Post'Class This aspect specifies a class-wide postcondition for a dispatching operation of a tagged
type and its descendants; it shall be specified by an expression, called a class-wide
postcondition expression. If not specified for an entity, the class-wide postcondition
expression for the entity is the enumeration literal True.

Name Resolution Rules
The expected type for a precondition or postcondition expression is any boolean type.

Within the expression for a Pre'Class or Post'Class aspect for a primitive subprogram S of a tagged
type T, a name that denotes a formal parameter (or S'Result) of type T is interpreted as though it had a
(notional) nonabstract type NT that is a formal derived type whose ancestor type is 7, with directly
visible primitive operations. Similarly, a name that denotes a formal access parameter (or S'"Result for
an access result) of type access-to-7 is interpreted as having type access-to-N7. The result of this
interpretation is that the only operations that can be applied to such names are those defined for such
a formal derived type.

For an attribute_reference with attribute_designator Old, if the attribute reference has an expected
type (or class of types) or shall resolve to a given type, the same applies to the prefix; otherwise, the
prefix shall be resolved independently of context.

Legality Rules

The Pre or Post aspect shall not be specified for an abstract subprogram or a null procedure. Only the
Pre'Class and Post'Class aspects may be specified for such a subprogram.

If a type T has an implicitly declared subprogram P inherited from a parent type 7/ and a homograph
(see 8.3) of P from a progenitor type 72, and
o the corresponding primitive subprogram P/ of type 77 is neither null nor abstract; and

e the class-wide precondition expression True does not apply to P/ (implicitly or explicitly);
and

e there is a class-wide precondition expression that applies to the corresponding primitive
subprogram P2 of T2 that does not fully conform to any class-wide precondition expression
that applies to P1,

then:
o Ifthe type T is abstract, the implicitly declared subprogram P is abstract.

e Otherwise, the subprogram P requires overriding and shall be overridden with a nonabstract
subprogram.

If a renaming of a subprogram or entry S/ overrides an inherited subprogram S2, then the overriding
is illegal unless each class-wide precondition expression that applies to S/ fully conforms to some
class-wide precondition expression that applies to S2 and each class-wide precondition expression that
applies to S2 fully conforms to some class-wide precondition expression that applies to S/.

Pre'Class shall not be specified for an overriding primitive subprogram of a tagged type 7 unless the
Pre'Class aspect is specified for the corresponding primitive subprogram of some ancestor of 7.

© ISO/IEC 2021 — All rights reserved 176

ISO/IEC 8652:DIS

In addition to the places where Legality Rules normally apply (see 12.3), these rules also apply in the
private part of an instance of a generic unit.

Static Semantics

If a Pre'Class or Post'Class aspect is specified for a primitive subprogram S of a tagged type 7, or such
an aspect defaults to True, then a corresponding expression also applies to the corresponding primitive
subprogram S of each descendant of T (including 7 itself). The corresponding expression is
constructed from the associated expression as follows:

e References to formal parameters of S (or to § itself) are replaced with references to the
corresponding formal parameters of the corresponding inherited or overriding subprogram S
(or to the corresponding subprogram S itself).

If the primitive subprogram S is not abstract, but the given descendant of 7 is abstract, then a
nondispatching call on S is illegal if any Pre'Class or Post'Class aspect that applies to S is other than a
static boolean expression. Similarly, a primitive subprogram of an abstract type 7, to which a non-
static Pre'Class or Post'Class aspect applies, shall neither be the prefix of an Access
attribute _reference, nor shall it be a generic actual subprogram for a formal subprogram declared by a
formal_concrete_subprogram_declaration.

If performing checks is required by the Pre, Pre'Class, Post, or Post'Class assertion policies (see
11.4.2) in effect at the point of a corresponding aspect specification applicable to a given subprogram,
entry, or access-to-subprogram type, then the respective precondition or postcondition expressions are
considered enabled.

A subexpression of a postcondition expression is known on entry if it is any of:
e astatic subexpression (see 4.9);

e a literal whose type does not have any Integer Literal, Real Literal, or String_Literal aspect
specified, or the function specified by such an attribute has aspect Global specified to be null;

e a name statically denoting a full constant declaration which is known to have no variable
views (see 3.3);

e aname statically denoting a nonaliased in parameter of an elementary type;
e an Old attribute_reference;
e an invocation of a predefined operator where all of the operands are known on entry;

e a function call where the function has aspect Global => null where all of the actual
parameters are known on entry;

e aselected_component of a known-on-entry prefix;

¢ an indexed_component of a known-on-entry prefix where all index expressions are known
on entry;

e a parenthesized known-on-entry expression;
e aqualified_expression or type_conversion whose operand is a known-on-entry expression;

e a conditional_expression where all of the conditions, selecting expressions, and
dependent_expressions are known on entry.

A subexpression of a postcondition expression is unconditionally evaluated, conditionally evaluated,
or repeatedly evaluated. A subexpression is considered unconditionally evaluated unless it is
conditionally evaluated or repeatedly evaluated.

The following subexpressions are repeatedly evaluated:
e A subexpression of a predicate of a quantified_expression;
e A subexpression of the expression of an array_component_association;

e A subexpression of the expression of a container_element_association.

177 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

For a subexpression that is conditionally evaluated, there is a set of determining expressions that
determine whether the subexpression is actually evaluated at run time. Subexpressions that are
conditionally evaluated and their determining expressions are as follows:

e For an if_expression that is not repeatedly evaluated, a subexpression of any part other than
the first condition is conditionally evaluated, and its determining expressions include all
conditions of the if_expression that precede the subexpression textually;

e For a case_expression that is not repeatedly evaluated, a subexpression of any
dependent _expression is conditionally evaluated, and its determining expressions include the
selecting expression of the case_expression;

e For a short-circuit control form that is not repeatedly evaluated, a subexpression of the right-
hand operand is conditionally evaluated, and its determining expressions include the left-hand
operand of the short-circuit control form;

e For a membership test that is not repeatedly evaluated, a subexpression of a
membership_choice other than the first is conditionally evaluated, and its determining
expressions include the fested simple_expression and the preceding membership_choices
of the membership test.

A conditionally evaluated subexpression is determined to be unevaluated at run time if its set of
determining expressions are all known on entry, and when evaluated on entry their values are such
that the given subexpression is not evaluated.

For a prefix X that denotes an object of a nonlimited type, the following attribute is defined:

X'0Old Each X'Old in a postcondition expression that is enabled, other than those that occur in
subexpressions that are determined to be unevaluated, denotes a constant that is implicitly
declared at the beginning of the subprogram body, entry body, or accept statement.

The implicitly declared entity denoted by each occurrence of X'Old is declared as
follows:
e If X is of an anonymous access type defined by an access_definition 4 then

X'0ld : comnstant A := X;

e If X is of a specific tagged type 7 then
anonymous : comstant T'Class := T'Class (X);
X'0ld : T renames T (anonymous) ;
where the name X'Old denotes the object renaming.

e Otherwise
X'0ld : constant S := X;

where S is the nominal subtype of X. This includes the case where the type of S is
an anonymous array type or a universal type.

The type and nominal subtype of X'Old are as implied by the above definitions.

Reference to this attribute is only allowed within a postcondition expression. The prefix
of an Old attribute_reference shall not contain a Result attribute_reference, nor an Old
attribute_reference, nor a use of an entity declared within the postcondition expression
but not within prefix itself (for example, the loop parameter of an enclosing
quantified_expression). The prefix of an Old attribute_reference shall statically name
(see 4.9) an entity, unless the attribute_reference is unconditionally evaluated, or is
conditionally evaluated where all of the determining expressions are known on entry.

For a prefix F that denotes a function declaration or an access-to-function type, the following attribute
is defined:

F'Result ~ Within a postcondition expression for F, denotes the return object of the function call for
which the postcondition expression is evaluated. The type of this attribute is that of the
result subtype of the function or access-to-function type except within a Post'Class
postcondition expression for a function with a controlling result or with a controlling

© ISO/IEC 2021 — All rights reserved 178

ISO/IEC 8652:DIS

access result; in those cases the type of the attribute is described above as part of the
Name Resolution Rules for Post'Class.

Use of this attribute is allowed only within a postcondition expression for F.

For a prefix E that denotes an entry declaration of an entry family (see 9.5.2), the following attribute
is defined:

E'Index Within a precondition or postcondition expression for entry family E, denotes the value of
the entry index for the call of E. The nominal subtype of this attribute is the entry index
subtype.

Use of this attribute is allowed only within a precondition or postcondition expression for
E.

Dynamic Semantics

Upon a call of the subprogram or entry, after evaluating any actual parameters, precondition checks
are performed as follows:

e The specific precondition check begins with the evaluation of the specific precondition
expression that applies to the subprogram or entry, if it is enabled; if the expression evaluates
to False, Assertions.Assertion Error is raised; if the expression is not enabled, the check
succeeds.

e The class-wide precondition check begins with the evaluation of any enabled class-wide
precondition expressions that apply to the subprogram or entry. If and only if all the class-
wide precondition expressions evaluate to False, Assertions.Assertion_Error is raised.

The precondition checks are performed in an arbitrary order, and if any of the class-wide precondition
expressions evaluate to True, it is not specified whether the other class-wide precondition expressions
are evaluated. The precondition checks and any check for elaboration of the subprogram body are
performed in an arbitrary order. In a call on a protected operation, the checks are performed before
starting the protected action. For an entry call, the checks are performed prior to checking whether the
entry is open.

Upon successful return from a call of the subprogram or entry, prior to copying back any by-copy in
out or out parameters, the postcondition check is performed. This consists of the evaluation of any
enabled specific and class-wide postcondition expressions that apply to the subprogram or entry. If
any of the postcondition expressions evaluate to False, then Assertions.Assertion_Error is raised. The
postcondition expressions are evaluated in an arbitrary order, and if any postcondition expression
evaluates to False, it is not specified whether any other postcondition expressions are evaluated. The
postcondition check, and any constraint or predicate checks associated with in out or out parameters
are performed in an arbitrary order.

For a call to a task entry, the postcondition check is performed before the end of the rendezvous; for a
call to a protected operation, the postcondition check is performed before the end of the protected
action of the call. The postcondition check for any call is performed before the finalization of any
implicitly-declared constants associated (as described above) with Old attribute_references but after
the finalization of any other entities whose accessibility level is that of the execution of the callable
construct.

If a precondition or postcondition check fails, the exception is raised at the point of the call; the
exception cannot be handled inside the called subprogram or entry. Similarly, any exception raised by
the evaluation of a precondition or postcondition expression is raised at the point of call.

For any call to a subprogram or entry S (including dispatching calls), the checks that are performed to
verify specific precondition expressions and specific and class-wide postcondition expressions are
determined by those for the subprogram or entry actually invoked. Note that the class-wide
postcondition expressions verified by the postcondition check that is part of a call on a primitive
subprogram of type T includes all class-wide postcondition expressions originating in any progenitor
of 7, even if the primitive subprogram called is inherited from a type 7/ and some of the

179 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

postcondition expressions do not apply to the corresponding primitive subprogram of T/. Any
operations within a class-wide postcondition expression that were resolved as primitive operations of
the (notional) formal derived type NT, are in the evaluation of the postcondition bound to the
corresponding operations of the type identified by the controlling tag of the call on S. This applies to
both dispatching and non-dispatching calls on S.

The class-wide precondition check for a call to a subprogram or entry S consists solely of checking
the class-wide precondition expressions that apply to the denoted callable entity (not necessarily to the
one that is invoked). Any operations within such an expression that were resolved as primitive
operations of the (notional) formal derived type NT are in the evaluation of the precondition bound to
the corresponding operations of the type identified by the controlling tag of the call on S. This applies
to both dispatching and non-dispatching calls on S.

For the purposes of the above rules, a call on an inherited subprogram is considered to involve a call
on a subprogram §' whose body consists only of a call (with appropriate conversions) on the non-
inherited subprogram S from which the inherited subprogram was derived. It is not specified whether
class-wide precondition or postcondition expressions that are equivalent (with respect to which non-
inherited function bodies are executed) for S and S' are evaluated once or twice. If evaluated only
once, the value returned is used for both associated checks.

For a call via an access-to-subprogram value, precondition and postcondition checks performed are as
determined by the subprogram or entry denoted by the prefix of the Access attribute reference that
produced the value. In addition, a precondition check of any precondition expression associated with
the access-to-subprogram type is performed. Similarly, a postcondition check of any postcondition
expression associated with the access-to-subprogram type is performed.

For a call on a generic formal subprogram, precondition and postcondition checks performed are as
determined by the subprogram or entry denoted by the actual subprogram, along with any specific
precondition and specific postcondition of the formal subprogram itself.

Implementation Permissions

An implementation may evaluate a known-on-entry subexpression of a postcondition expression of an
entity at the place where X'Old constants are created for the entity, with the normal evaluation of the
postcondition expression, or both.

NOTES

5 A precondition is checked just before the call. If another task can change any value that the precondition expression
depends on, the precondition need not hold within the subprogram or entry body.

6 For an example of the use of these aspects and attributes, see the Streams Subsystem definitions in 13.13.1.

6.1.2 The Global and Global'Class Aspects

The Global and Global'Class aspects of a program unit are used to identify the objects global to the
unit that might be read or written during its execution.

Syntax

global_aspect_definition ::=
null
| Unspecified
| global_mode global_designator
| (global_aspect_element{; global_aspect_element})

global_aspect_element ::=
global_mode global_set
| global_mode all
| global_mode synchronized

© ISO/IEC 2021 — All rights reserved 180

ISO/IEC 8652:DIS

global_mode ::=
basic_global_mode
| extended_global_mode

basic_global_mode ::= in | in out | out
global_set ::= global_name {, global_name}
global_designator ::= all | synchronized | global_name

global_name ::= object name | package name

Name Resolution Rules

A global_name shall resolve to statically name an object or a package (including a limited view of a
package).

Static Semantics

For a subprogram, an entry, an access-to-subprogram type, a task unit, a protected unit, or a library
package or generic library package, the following language-defined aspect may be specified with an
aspect_specification (see 13.1.1):

Global The Global aspect shall be specified with a global_aspect_definition.

The Global aspect identifies the set of variables (which, for the purposes of this clause,
includes all constants except those which are known to have no variable views (see 3.3))
that are global to a callable entity or task body, and that are read or updated as part of the
execution of the callable entity or task body. If specified for a protected unit, it refers to
all of the protected operations of the protected unit. Constants of any type may also be
mentioned in a Global aspect.

If not specified or otherwise defined below, the aspect defaults to the Global aspect for
the enclosing library unit if the entity is declared at library level, and to Unspecified
otherwise. If not specified for a library unit, the aspect defaults to Global => null
for a library unit that is declared Pure, and to Global => Unspecified otherwise.

For a dispatching subprogram, the following language-defined aspect may be specified with an
aspect_specification (see 13.1.1):

Global'Class
The Global'Class aspect shall be specified with a global_aspect_definition. This aspect
identifies an upper bound on the set of variables global to a dispatching operation that can
be read or updated as a result of a dispatching call on the operation. If not specified, the
aspect defaults to the Global aspect for the dispatching subprogram.

Together, we refer to the Global and Global'Class aspects as global aspects.

A global_aspect_definition defines the Global or Global'Class aspect of some entity. The Global
aspect identifies the sets of global variables that can be read, written, or modified as a side effect of
executing the operation(s) associated with the entity. The Global'Class aspect associated with a
dispatching operation of type T represents a restriction on the Global aspect on a corresponding
operation of any descendant of type 7.

The Global aspect for a callable entity defines the global variables that might be referenced as part of
a call on the entity, including any assertion expressions that apply to the call (even if not enabled),
including preconditions, postconditions, predicates, and type invariants.

The Global aspect for an access-to-subprogram object (or subtype) identifies the global variables that
might be referenced when calling via the object (or any object of that subtype) including assertion
expressions that apply.

For a predefined operator of an elementary type, the function representing an enumeration literal, or
any other static function (see 4.9), the Global aspect is null. For a predefined operator of a composite

181 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

type, the Global aspect of the operator defaults to that of the enclosing library unit (unless a Global
aspect is specified for the type — see H.7).

The following is defined in terms of operations that are performed by or on behalf of an entity. The
rules on operations apply to the entity(s) associated with those operations.

The global variables associated with any global_mode can be read as a side effect of an operation.
The in out and out global_modes together identify the set of global variables that can be updated as a
side effect of an operation. Creating an access-to-variable value that designates an object is considered
an update of the designated object, and creating an access-to-constant value that designates an object
is considered a read of the designated object.

The overall set of objects associated with each global _mode includes all objects identified for the
mode in the global_aspect_definition.

A global_set identifies a global variable set as follows:
o all identifies the set of all global variables;

¢ synchronized identifies the set of all synchronized variables (see 9.10), as well as variables of
a composite type all of whose non-discriminant subcomponents are synchronized;

e global_name{, global_name} identifies the union of the sets of variables identified by the
global_names in the list, for the following forms of global_name:

e object_ name identifies the specified global variable (or constant);

e package name identifies the set of all variables declared in the private part or body of the
package, or anywhere within a private descendant of the package.

Legality Rules

Within a global_aspect_definition, a given global_mode shall be specified at most once. Similarly,
within a global_aspect_definition, a given entity shall be named at most once by a global_name.

If an entity (other than a library package or generic library package) has a Global aspect other than
Unspecified or in out all, then the associated operation(s) shall read only those variables global to the
entity that are within the global variable set associated with the in, in out, or out global_modes, and
the operation(s) shall update only those variables global to the entity that are within the global
variable set associated with either the in out or out global_modes. In the absence of the
No_Hidden Indirect Globals restriction (see H.4), this ignores objects reached via a dereference of an
access value. The above rule includes any possible Global effects of calls occurring during the
execution of the operation, except for the following excluded calls:

o calls to formal subprograms;

e calls associated with operations on formal subtypes;

e calls through formal objects of an access-to-subprogram type;
o calls through access-to-subprogram parameters;

e calls on operations with Global aspect Unspecified.

The possible Global effects of these excluded calls (other than those that are Unspecified) are taken
into account by the caller of the original operation, by presuming they occur at least once during its
execution. For calls that are not excluded, the possible Global effects of the call are those permitted by
the Global aspect of the associated entity, or by its Global'Class aspect if a dispatching call.

If a Global aspect other than Unspecified or in out all applies to an access-to-subprogram type, then
the prefix of an Access attribute_reference producing a value of such a type shall denote a
subprogram whose Global aspect is not Unspecified and is covered by that of the result type, where a
global aspect G/ is covered by a global aspect G2 if the set of variables that G/ identifies as readable
or updatable is a subset of the corresponding set for G2. Similarly on a conversion to such a type, the

© ISO/IEC 2021 — All rights reserved 182

ISO/IEC 8652:DIS

operand shall be of a named access-to-subprogram type whose Global aspect is covered by that of the
target type.

If an implementation-defined global_mode applies to a given set of variables, an implementation-
defined rule determines what sort of references to them are permitted.

For a subprogram that is a dispatching operation of a tagged type 7, each mode of its Global aspect
shall identify a subset of the variables identified by the corresponding mode, or by the in out mode, of
the Global'Class aspect of a corresponding dispatching subprogram of any ancestor of 7, unless the
aspect of that ancestor is Unspecified.

Implementation Permissions

An implementation need not require that all references to a constant object be accounted for by the
Global or Global'Class aspect when it is considered a variable in the above rules if the implementation
can determine that the object is in fact immutable.

Implementations may perform additional checks on calls to operations with an Unspecified Global
aspect to ensure that they do not violate any limitations associated with the point of call.

Implementations may extend the syntax or semantics of the Global aspect in an implementation-
defined manner; for example, supporting additional global_modes.

NOTES
7 For an example of the use of these aspects and attributes, see the Vector container definition in A.18.2.

6.2 Formal Parameter Modes

A parameter_specification declares a formal parameter of mode in, in out, or out.

Static Semantics

A parameter is passed either by copy or by reference. When a parameter is passed by copy, the formal
parameter denotes a separate object from the actual parameter, and any information transfer between
the two occurs only before and after executing the subprogram. When a parameter is passed by
reference, the formal parameter denotes (a view of) the object denoted by the actual parameter; reads
and updates of the formal parameter directly reference the actual parameter object.

A type is a by-copy type if it is an elementary type, or if it is a descendant of a private type whose full
type is a by-copy type. A parameter of a by-copy type is passed by copy, unless the formal parameter
is explicitly aliased.
A type is a by-reference type if it is a descendant of one of the following:

e atagged type;

e atask or protected type;

e an explicitly limited record type;

e acomposite type with a subcomponent of a by-reference type;

e aprivate type whose full type is a by-reference type.

A parameter of a by-reference type is passed by reference, as is an explicitly aliased parameter of any
type. Each value of a by-reference type has an associated object. For a value conversion, the
associated object is the anonymous result object if such an object is created (see 4.6); otherwise it is
the associated object of the operand. In other cases, the object associated with the evaluated operative
constituent of the name or expression (see 4.4) determines its associated object.

For other parameters, it is unspecified whether the parameter is passed by copy or by reference.

183 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

Bounded (Run-Time) Errors

If one name denotes a part of a formal parameter, and a second name denotes a part of a distinct
formal parameter or an object that is not part of a formal parameter, then the two names are
considered distinct access paths. If an object is of a type for which the parameter passing mechanism
is not specified and is not an explicitly aliased parameter, then it is a bounded error to assign to the
object via one access path, and then read the value of the object via a distinct access path, unless the
first access path denotes a part of a formal parameter that no longer exists at the point of the second
access (due to leaving the corresponding callable construct). The possible consequences are that
Program_Error is raised, or the newly assigned value is read, or some old value of the object is read.
NOTES

8 The mode of a formal parameter describes the direction of information transfer to or from the subprogram_body
(see 6.1).

9 A formal parameter of mode in is a constant view (see 3.3); it cannot be updated within the subprogram_body.

10 A formal parameter of mode out might be uninitialized at the start of the subprogram_body (see 6.4.1).

6.3 Subprogram Bodies

A subprogram_body specifies the execution of a subprogram.

Syntax

subprogram_body ::=
[overriding_indicator]
subprogram_specification
[aspect_specification] is
declarative_part
begin
handled_sequence_of statements
end [designator];

If a designator appears at the end of a subprogram_body, it shall repeat the defining_designator
of the subprogram_specification.
Legality Rules

In contrast to other bodies, a subprogram_body need not be the completion of a previous declaration,
in which case the body declares the subprogram. If the body is a completion, it shall be the
completion of a subprogram_declaration or generic_subprogram_declaration. The profile of a
subprogram_body that completes a declaration shall conform fully to that of the declaration.

Static Semantics

A subprogram_body is considered a declaration. It can either complete a previous declaration, or
itself be the initial declaration of the subprogram.

Dynamic Semantics

The elaboration of a nongeneric subprogram_body has no other effect than to establish that the
subprogram can from then on be called without failing the Elaboration Check.

The execution of a subprogram_body is invoked by a subprogram call. For this execution the
declarative_part is elaborated, and the handled_sequence_of statements is then executed.

© ISO/IEC 2021 — All rights reserved 184

ISO/IEC 8652:DIS

Examples

Example of procedure body:

procedure Push(E : in Element Type; S : in out Stack) is
begin
if S.Index = S.Size then
raise Stack Overflow;

else
S.Index := S.Index + 1;
S.Space (S.Index) := E;
end if;
end Push;

Example of a function body:

function Dot Product (Left, Right : Vector) return Real is
Sum : Real := 0.0;
begin
Check (Left'First = Right'First and Left'Last = Right'Last);
for J in Left'Range loop
Sum := Sum + Left (J)*Right (J);
end loop;
return Sum;
end Dot Product;

6.3.1 Conformance Rules

When subprogram profiles are given in more than one place, they are required to conform in one of
four ways: type conformance, mode conformance, subtype conformance, or full conformance.

Static Semantics

As explained in B.1, “Interfacing Aspects”, a convention can be specified for an entity. Unless this
International Standard states otherwise, the default convention of an entity is Ada. For a callable
entity or access-to-subprogram type, the convention is called the calling convention. The following
conventions are defined by the language:

e The default calling convention for any subprogram not listed below is Ada. The Convention
aspect may be specified to override the default calling convention (see B.1).

e The Intrinsic calling convention represents subprograms that are “built in” to the compiler.
The default calling convention is Intrinsic for the following:

e an enumeration literal;

e a'"/=" operator declared implicitly due to the declaration of "=" (see 6.6);

o any other implicitly declared subprogram unless it is a dispatching operation of a tagged
type;

« an inherited subprogram of a generic formal tagged type with unknown discriminants;

e an attribute that is a subprogram;

¢ a subprogram declared immediately within a protected_body;

o any prefixed view of a subprogram (see 4.1.3) without synchronization kind (see 9.5)
By Entry or By Protected Procedure.

The Access attribute is not allowed for Intrinsic subprograms.

e The default calling convention is protected for a protected subprogram, for a prefixed view of
a subprogram with a synchronization kind of By Protected Procedure, and for an access-to-
subprogram type with the reserved word protected in its definition.

e The default calling convention is entry for an entry and for a prefixed view of a subprogram
with a synchronization kind of By Entry.

e The calling convention for an anonymous access-to-subprogram parameter or anonymous
access-to-subprogram result is protected if the reserved word protected appears in its

185 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

definition; otherwise, it is the convention of the entity that has the parameter or result, unless
that entity has convention protected, entry, or Intrinsic, in which case the convention is Ada.

e If not specified above as Intrinsic, the calling convention for any inherited or overriding
dispatching operation of a tagged type is that of the corresponding subprogram of the parent
type. The default calling convention for a new dispatching operation of a tagged type is the
convention of the type.

Of these four conventions, only Ada and Intrinsic are allowed as a convention_identifier in the
specification of a Convention aspect.

Two profiles are fype conformant if they have the same number of parameters, and both have a result
if either does, and corresponding parameter and result types are the same, or, for access parameters or
access results, corresponding designated types are the same, or corresponding designated profiles are
type conformant.

Two profiles are mode conformant if:
o they are type conformant; and

e corresponding parameters have identical modes and both or neither are explicitly aliased
parameters; and

e for corresponding access parameters and any access result type, the designated subtypes
statically match and either both or neither are access-to-constant, or the designated profiles
are subtype conformant.

Two profiles are subtype conformant if they are mode conformant, corresponding subtypes of the
profile statically match, and the associated calling conventions are the same. The profile of a generic
formal subprogram is not subtype conformant with any other profile.

Two profiles are fully conformant if they are subtype conformant, if they have access-to-subprogram
results whose designated profiles are fully conformant, and for corresponding parameters:

o they have the same names; and

e both or neither have null_exclusions; and

e neither have default_expressions, or they both have default expressions that are fully
conformant with one another; and

e for access-to-subprogram parameters, the designated profiles are fully conformant.

Two expressions are fully conformant if, after replacing each use of an operator with the equivalent
function_call:

e cach constituent construct of one corresponds to an instance of the same syntactic category in
the other, except that an expanded name may correspond to a direct_name (or
character_literal) or to a different expanded name in the other; and

e corresponding defining_identifiers occurring within the two expressions are the same; and

e cach direct_name, character_literal, and selector_name that is not part of the prefix of an
expanded name in one denotes the same declaration as the corresponding direct_name,
character_literal, or selector_name in the other, or they denote corresponding declarations
occurring within the two expressions; and

e cach attribute_designator in one is the same as the corresponding attribute_designator in the
other; and

e cach primary that is a literal in one is a user-defined literal if and only if the corresponding
literal in the other is also a user-defined literal. Furthermore, if neither are user-defined literals
then they shall have the same values, but they may have differing textual representations; if
both are user-defined literals then they shall have the same textual representation.

© ISO/IEC 2021 — All rights reserved 186

ISO/IEC 8652:DIS

Two known_discriminant_parts are fully conformant if they have the same number of discriminants,
and discriminants in the same positions have the same names, statically matching subtypes, and
default_expressions that are fully conformant with one another.

Two discrete_subtype_definitions are fully conformant if they are both subtype_indications or are
both ranges, the subtype_marks (if any) denote the same subtype, and the corresponding
simple_expressions of the ranges (if any) fully conform.

The prefixed view profile of a subprogram is the profile obtained by omitting the first parameter of
that subprogram. There is no prefixed view profile for a parameterless subprogram. For the purposes
of defining subtype and mode conformance, the convention of a prefixed view profile is considered to
match that of either an entry or a protected operation.

Implementation Permissions
An implementation may declare an operator declared in a language-defined library unit to be intrinsic.

NOTES

11 Any conformance requirements between aspect_specifications that are part of a profile or
known_discriminant_part are defined by the semantics of each particular aspect. In particular, there is no general
requirement for aspect_specifications to match in conforming profiles or discriminant parts.

6.3.2 Inline Expansion of Subprograms

Subprograms may be expanded in line at the call site.

Static Semantics

For a callable entity or a generic subprogram, the following language-defined representation aspect

may be specified:

Inline The type of aspect Inline is Boolean. When aspect Inline is True for a callable entity,
inline expansion is desired for all calls to that entity. When aspect Inline is True for a
generic subprogram, inline expansion is desired for all calls to all instances of that generic
subprogram.

If directly specified, the aspect_definition shall be a static expression. This aspect is
never inherited; if not directly specified, the aspect is False.
Implementation Permissions

For each call, an implementation is free to follow or to ignore the recommendation determined by the
Inline aspect.

6.4 Subprogram Calls

A subprogram call is either a procedure_call_statement or a function_call; it invokes the execution
of the subprogram_body. The call specifies the association of the actual parameters, if any, with
formal parameters of the subprogram.

Syntax

procedure_call_statement ::=
procedure_name;
| procedure_prefix actual_parameter_part;

function_call ::=
function_name
| function_prefix actual_parameter_part

actual_parameter_part ::=
(parameter_association {, parameter_association})

187 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

parameter_association ::=
[formal parameter selector_name =>] explicit_actual_parameter

explicit_actual_parameter ::= expression | variable name

A parameter_association is named or positional according to whether or not the formal -
parameter_selector_name is specified. For the parameter_associations of a single
actual_parameter_part or iterator_actual_parameter_part, any positional associations shall
precede any named associations. Named associations are not allowed if the prefix in a subprogram
call is an attribute_reference.

Name Resolution Rules

The name or prefix given in a procedure_call_statement shall resolve to denote a callable entity that
is a procedure, or an entry renamed as (viewed as) a procedure. The name or prefix given in a
function_call shall resolve to denote a callable entity that is a function. The name or prefix shall not
resolve to denote an abstract subprogram unless it is also a dispatching subprogram. When there is an
actual_parameter_part, the prefix can be an implicit_dereference of an access-to-subprogram value.

A subprogram call shall contain at most one association for each formal parameter. Each formal
parameter without an association shall have a default_expression (in the profile of the view denoted
by the name or prefix). This rule is an overloading rule (see 8.6).

Static Semantics

If the name or prefix of a subprogram call denotes a prefixed view (see 4.1.3), the subprogram call is
equivalent to a call on the underlying subprogram, with the first actual parameter being provided by
the prefix of the prefixed view (or the Access attribute of this prefix if the first formal parameter is an
access parameter), and the remaining actual parameters given by the actual_parameter_part, if any.

Dynamic Semantics

For the execution of a subprogram call, the name or prefix of the call is evaluated, and each
parameter_association is evaluated (see 6.4.1). If a default_expression is used, an implicit
parameter_association is assumed for this rule. These evaluations are done in an arbitrary order. The
subprogram_body is then executed, or a call on an entry or protected subprogram is performed (see
3.9.2). Finally, if the subprogram completes normally, then after it is left, any necessary assigning
back of formal to actual parameters occurs (see 6.4.1).

The exception Program_ Error is raised at the point of a function_call if the function completes
normally without executing a return statement.

A function_call denotes a constant, as defined in 6.5; the nominal subtype of the constant is given by
the nominal subtype of the function result.

Examples
Examples of procedure calls:
Traverse_ Tree; -- seeb6.1
Print Header (128, Title, True); -- seeb6.1
Switch (From => X, To => Next); -- see 6.1
Print Header (128, Header => Title, Center => True); -- seeb6.1
Print Header (Header => Title, Center => True, Pages => 128); -- see0./
Examples of function calls:
Dot Product (U, V) -- see 6.1 and 6.3
Clock -- see 9.6
F.all -- presuming F is of an access-to-subprogram type — see 3.10

© ISO/IEC 2021 — All rights reserved 188

ISO/IEC 8652:DIS

Examples of procedures with default expressions:

procedure Activate(Process : in Process_Name;
After : in Process_Name := No_Process;
Wait : in Duration := 0.0;
Prior : in Boolean := False);
procedure Pair (Left, Right : in Person Name := new Person(M)) ; -- see3.10.1

Examples of their calls:
Activate (X) ;

(
Activate (X, After => Y);
Activate (X, Wait => 60.0, Prior => True) ;
Activate (X, Y, 10.0, False);
Pair;
Pair (Left => new Person(F), Right => new Person(M)) ;
NOTES

12 If a default_expression is used for two or more parameters in a multiple parameter_specification, the default_-
expression is evaluated once for each omitted parameter. Hence in the above examples, the two calls of Pair are
equivalent.

Examples

Examples of overloaded subprograms:

procedure Put (X in Integer) ;

procedure Put (X in String) ;

procedure Set (Tint : in Color)
(

7
i

procedure Set (Signal : in Light)

Examples of their calls:

Put (28) ;

Put ("no possible ambiguity here") ;
Set (Tint => Red) ;

Set (Signal => Red);

Set (Color' (Red)) ;

- - Set(Red) would be ambiguous since Red may
- - denote a value either of type Color or of type Light

6.4.1 Parameter Associations

A parameter association defines the association between an actual parameter and a formal parameter.

Name Resolution Rules

The formal _parameter_selector_name of a named parameter_association shall resolve to denote a
parameter_specification of the view being called; this is the formal parameter of the association. The
formal parameter for a positional parameter_association is the parameter with the corresponding
position in the formal part of the view being called.

The actual parameter is either the explicit_actual_parameter given in a parameter_association for a
given formal parameter, or the corresponding default_expression if no parameter_association is
given for the formal parameter. The expected type for an actual parameter is the type of the
corresponding formal parameter.

If the mode is in, the actual is interpreted as an expression; otherwise, the actual is interpreted only as
a name, if possible.

Legality Rules
If the mode is in out or out, the actual shall be a name that denotes a variable.

If the mode is out, the actual parameter is a view conversion, and the type of the formal parameter is a
scalar type, then

189 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

¢ neither the target type nor the operand type has the Default Value aspect specified; or

¢ both the target type and the operand type shall have the Default Value aspect specified, and
there shall exist a type (other than a root numeric type) that is an ancestor of both the target
type and the operand type.

In addition to the places where Legality Rules normally apply (see 12.3), these rules also apply in the
private part of an instance of a generic unit.

If the formal parameter is an explicitly aliased parameter, the type of the actual parameter shall be
tagged or the actual parameter shall be an aliased view of an object. Further, if the formal parameter
subtype F is untagged:

¢ the subtype F shall statically match the nominal subtype of the actual object; or

o the subtype F' shall be unconstrained, discriminated in its full view, and unconstrained in any
partial view.

In addition to the places where Legality Rules normally apply (see 12.3), these rules also apply in the
private part of an instance of a generic unit.

In a function call, the accessibility level of the actual object for each explicitly aliased parameter shall
not be statically deeper than the accessibility level of the master of the call (see 3.10.2).

Two names are known to denote the same object if:
¢ both names statically denote the same stand-alone object or parameter; or

e both names are selected_components, their prefixes are known to denote the same object,
and their selector_names denote the same component; or

e both names are dereferences (implicit or explicit) and the dereferenced names are known to
denote the same object; or

e both names are indexed_components, their prefixes are known to denote the same object,
and each of the pairs of corresponding index values are either both static expressions with the
same static value or both names that are known to denote the same object; or

e both names are slices, their prefixes are known to denote the same object, and the two slices
have statically matching index constraints; or

e one of the two names statically denotes a renaming declaration whose renamed object_name
is known to denote the same object as the other, the prefix of any dereference within the
renamed object_name is not a variable, and any expression within the renamed object_name
contains no references to variables nor calls on nonstatic functions.

Two names are known to refer to the same object if
e The two names are known to denote the same object; or

¢ One of the names is a selected_component, indexed_component, or slice and its prefix is
known to refer to the same object as the other name; or

¢ One of the two names statically denotes a renaming declaration whose renamed object name
is known to refer to the same object as the other name.

If a call C has two or more parameters of mode in out or out that are of an elementary type, then the
call is legal only if:

e For each name N denoting an object of an elementary type that is passed as a parameter of
mode in out or out to the call C, there is no other name among the other parameters of mode
in out or out to C that is known to denote the same object.

If a construct C has two or more direct constituents that are names or expressions whose evaluation
may occur in an arbitrary order, at least one of which contains a function call with an in out or out
parameter, then the construct is legal only if:

e For each name N that is passed as a parameter of mode in out or out to some inner function
call C2 (not including the construct C itself), there is no other name anywhere within a direct

© ISO/IEC 2021 — All rights reserved 190

ISO/IEC 8652:DIS

constituent of the construct C other than the one containing C2, that is known to refer to the
same object.

For the purposes of checking this rule:

e For an array aggregate, an expression associated with a discrete_choice_list that has two or
more discrete choices, or that has a nonstatic range, is considered as two or more separate
occurrences of the expression;

¢ For a record aggregate:

o The expression of a record_component_association is considered to occur once for
each associated component; and

o The default_expression for each record_component_association with <> for which the
associated component has a default_expression is considered part of the aggregate;

o For a call, any default_expression evaluated as part of the call is considered part of the call.

Dynamic Semantics
For the evaluation of a parameter_association:
e The actual parameter is first evaluated.

e For an access parameter, the access_definition is elaborated, which creates the anonymous
access type.

e For a parameter (of any mode) that is passed by reference (see 6.2), a view conversion of the
actual parameter to the nominal subtype of the formal parameter is evaluated, and the formal
parameter denotes that conversion.

e For an in or in out parameter that is passed by copy (see 6.2), the formal parameter object is
created, and the value of the actual parameter is converted to the nominal subtype of the
formal parameter and assigned to the formal.

e For an out parameter that is passed by copy, the formal parameter object is created, and:

e For an access type, the formal parameter is initialized from the value of the actual,
without checking whether the value satisfies any constraints, predicates, or null
exclusions, but including any dynamic accessibility checks associated with a conversion
to the type of the formal parameter.

e For a scalar type that has the Default Value aspect specified, the formal parameter is
initialized from the value of the actual, without checking that the value satisfies any
constraint or any predicate.

e For a composite type with discriminants or that has implicit initial values for any
subcomponents (see 3.3.1), the behavior is as for an in out parameter passed by copy,
except that no predicate check is performed.

e For any other type, the formal parameter is uninitialized. If composite, a view conversion
of the actual parameter to the nominal subtype of the formal is evaluated (which might
raise Constraint Error), and the actual subtype of the formal is that of the view
conversion. If elementary, the actual subtype of the formal is given by its nominal
subtype.

e Furthermore, if the type is a scalar type, and the actual parameter is a view conversion,
then Program Error is raised if either the target or the operand type has the
Default Value aspect specified, unless they both have the Default Value aspect specified,
and there is a type (other than a root numeric type) that is an ancestor of both the target
type and the operand type.

¢ In a function call, for each explicitly aliased parameter, a check is made that the accessibility
level of the master of the actual object is not deeper than that of the master of the call (see
3.10.2).

191 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

A formal parameter of mode in out or out with discriminants is constrained if either its nominal
subtype or the actual parameter is constrained.

After normal completion and leaving of a subprogram, for each in out or out parameter that is passed
by copy, the value of the formal parameter is converted to the subtype of the variable given as the
actual parameter and assigned to it. These conversions and assignments occur in an arbitrary order.

Erroneous Execution

If the nominal subtype of a formal parameter with discriminants is constrained or indefinite, and the
parameter is passed by reference, then the execution of the call is erroneous if the value of any
discriminant of the actual is changed while the formal parameter exists (that is, before leaving the
corresponding callable construct).

Implementation Permissions

If the actual parameter in a parameter_association with mode out is a view conversion between two
access types that do not share a common ancestor type, the implementation may pass in the null value
of the type of the formal parameter instead of the value of the actual parameter. It is implementation-
defined under what circumstances the implementation passes in the null value.

6.5 Return Statements

A simple_return_statement or extended_return_statement (collectively called a return statement)
is used to complete the execution of the innermost enclosing subprogram_body, entry _body, or
accept_statement.

Syntax
simple_return_statement ::= return [expression];

extended_return_object_declaration ::=
defining_identifier : [aliased][constant] return_subtype_indication [:= expression]
[aspect_specification]

extended_return_statement ::=
return extended_return_object_declaration [do
handled_sequence_of statements
end return];

return_subtype_indication ::= subtype_indication | access_definition

Name Resolution Rules

The result subtype of a function is the subtype denoted by the subtype_mark, or defined by the
access_definition, after the reserved word return in the profile of the function. The expected type for
the expression, if any, of a simple_return_statement is the result type of the corresponding function.
The expected type for the expression of an extended_return_object_declaration is that of the
return_subtype_indication.

Legality Rules

A return statement shall be within a callable construct, and it applies to the innermost callable
construct or extended_return_statement that contains it. A return statement shall not be within a
body that is within the construct to which the return statement applies.

A function body shall contain at least one return statement that applies to the function body, unless the
function contains code_statements. A simple_return_statement shall include an expression if and
only if it applies to a function body. An extended_return_statement shall apply to a function body.

© ISO/IEC 2021 — All rights reserved 192

ISO/IEC 8652:DIS

An extended_return_object declaration with the reserved word constant shall include an
expression.

The expression of an extended_return_statement is the expression (if any) of the
extended_return_object_declaration of the extended_return_statement.

For an extended_return_statement that applies to a function body:

e If the result subtype of the function is defined by a subtype_mark, the return_subtype_ -
indication shall be a subtype_indication. The type of the subtype_indication shall be covered
by the result type of the function. The subtype defined by the subtype_indication shall be
statically compatible with the result subtype of the function; if the result type of the function
is elementary, the two subtypes shall statically match. If the result subtype of the function is
indefinite, then the subtype defined by the subtype_indication shall be a definite subtype, or
there shall be an expression.

o [f the result subtype of the function is defined by an access_definition, the return_subtype_-
indication shall be an access_definition. The subtype defined by the access_definition shall
statically match the result subtype of the function. The accessibility level of this anonymous
access subtype is that of the result subtype.

o [f the result subtype of the function is class-wide, the accessibility level of the type of the
subtype defined by the return_subtype_indication shall not be statically deeper than that of
the master that elaborated the function body.

For any return statement that applies to a function body:

o If the result subtype of the function is limited, then the expression of the return statement (if
any) shall meet the restrictions described in 7.5.

o [f the result subtype of the function is class-wide, the accessibility level of the type of the
expression (if any) of the return statement shall not be statically deeper than that of the
master that elaborated the function body.

e If the subtype determined by the expression of the simple_return_statement or by the
return_subtype_indication has one or more access discriminants, the accessibility level of the
anonymous access type of each access discriminant shall not be statically deeper than that of
the master that elaborated the function body.

If the reserved word aliased is present in an extended_return_object_declaration, the type of the
extended return object shall be immutably limited.

Static Semantics

Within an extended_return_statement, the return object is declared with the given
defining_identifier, with the nominal subtype defined by the return_subtype_indication. An
extended_return_statement with the reserved word constant is a full constant declaration that
declares the return object to be a constant object.

Dynamic Semantics

For the execution of an extended_return_statement, the subtype_indication or access_definition is
elaborated. This creates the nominal subtype of the return object. If there is an expression, it is
evaluated and converted to the nominal subtype (which might raise Constraint Error — see 4.6); the
return object is created and the converted value is assigned to the return object. Otherwise, the return
object is created and initialized by default as for a stand-alone object of its nominal subtype (see
3.3.1). If the nominal subtype is indefinite, the return object is constrained by its initial value. A check
is made that the value of the return object belongs to the function result subtype. Constraint_Error is
raised if this check fails.

For the execution of a simple_return_statement, the expression (if any) is first evaluated, converted
to the result subtype, and then is assigned to the anonymous return object.

193 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

If the return object has any parts that are tasks, the activation of those tasks does not occur until after
the function returns (see 9.2).

If the result type of a function is a specific tagged type, the tag of the return object is that of the result
type. If the result type is class-wide, the tag of the return object is that of the value of the expression
of the return statement, unless the return object is defined by an extended_return_object_declaration
with a subtype_indication that is specific, in which case it is that of the type of the
subtype_indication. A check is made that the master of the type identified by the tag of the result
includes the elaboration of the master that elaborated the function body. If this check fails,
Program_Error is raised.

For the execution of an extended_return_statement, the handled_sequence of statements is
executed. Within this handled_sequence_of statements, the execution of a simple_return_-
statement that applies to the extended_return_statement causes a transfer of control that completes
the extended_return_statement. Upon completion of a return statement that applies to a callable
construct by the normal completion of a simple_return_statement or by reaching the end return of
an extended_return_statement, a transfer of control is performed which completes the execution of
the callable construct, and returns to the caller.

If the result subtype of the function is defined by an access_definition designating a specific tagged
type 7, a check is made that the result value is null or the tag of the object designated by the result
value identifies 7. Constraint Error is raised if this check fails.

If any part of the specific type of the return object of a function (or coextension thereof) has one or
more access discriminants whose value is not constrained by the result subtype of the function, a
check is made that the accessibility level of the anonymous access type of each access discriminant, as
determined by the expression or the return_subtype_indication of the return statement, is not deeper
than the level of the master of the call (see 3.10.2). If this check fails, Program_Error is raised.

A check is performed that the return value satisfies the predicates of the return subtype. If this check
fails, the effect is as defined in subclause 3.2.4, “Subtype Predicates”.

In the case of a function, the function_call denotes a constant view of the return object.

Implementation Permissions

For a function call used to initialize a composite object with a constrained nominal subtype or used to
initialize a return object that is built in place into such an object:

o If the result subtype of the function is constrained, and conversion of an object of this subtype
to the subtype of the object being initialized would raise Constraint Error, then
Constraint_Error may be raised before calling the function.

o If the result subtype of the function is unconstrained, and a return statement is executed such
that the return object is known to be constrained, and conversion of the return object to the
subtype of the object being initialized would raise Constraint Error, then Constraint Error
may be raised at the point of the call (after abandoning the execution of the function body).

Examples
Examples of return statements:
return; - - in a procedure body, entry_body,
- - accept_statement, or extended_return_statement

return Key Value (Last Index) ; - - in a function body
return Node : Cell do - - in a function body, see 3.10.1 for Cell

Node.Value := Result;

Node.Succ := Next Node;

end return;

© ISO/IEC 2021 — All rights reserved 194

ISO/IEC 8652:DIS

6.5.1 Nonreturning Subprograms

Specifying aspect No_Return to have the value True indicates that a subprogram cannot return
normally; it may, for example, propagate an exception or loop forever.

Static Semantics

For a subprogram or generic subprogram, the following language-defined representation aspect may
be specified:

No_Return The type of aspect No_Return is Boolean. When aspect No_Return is True for an entity,
the entity is said to be nonreturning.

If directly specified, the aspect_definition shall be a static expression. When not directly
specified, if the subprogram is primitive subprogram inherited by a derived type, then the
aspect is True if any corresponding subprogram of the parent or progenitor types is
nonreturning. Otherwise, the aspect is False.

If a generic subprogram is nonreturning, then so are its instances. If a subprogram declared within a

generic unit is nonreturning, then so are the corresponding copies of that subprogram in instances.
Legality Rules

Aspect No_Return shall not be specified for a null procedure nor an instance of a generic unit.

A return statement shall not apply to a nonreturning procedure or generic procedure.

Any return statement that applies to a nonreturning function or generic function shall be a
simple_return_statement with an expression that is a raise_expression, a call on a nonreturning
function, or a parenthesized expression of one of these.

A subprogram shall be nonreturning if it overrides a dispatching nonreturning subprogram. In addition
to the places where Legality Rules normally apply (see 12.3), this rule applies also in the private part
of an instance of a generic unit.

If a renaming-as-body completes a nonreturning subprogram declaration, then the renamed
subprogram shall be nonreturning.
Dynamic Semantics
If the body of a nonreturning procedure completes normally, Program_Error is raised at the point of
the call.
Examples

Example of a specification of a No_Return aspect:

procedure Fail (Msg : String) - - raises Fatal Error exception
with No Return;
- - Inform compiler and reader that procedure never returns normally

6.6 Overloading of Operators

An operator is a function whose designator is an operator_symbol. Operators, like other functions,
may be overloaded.
Name Resolution Rules

Each use of a unary or binary operator is equivalent to a function_call with function_prefix being the
corresponding operator_symbol, and with (respectively) one or two positional actual parameters
being the operand(s) of the operator (in order).

195 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

Legality Rules

The subprogram_specification of a unary or binary operator shall have one or two parameters,
respectively. The parameters shall be of mode in. A generic function instantiation whose designator
is an operator_symbol is only allowed if the specification of the generic function has the
corresponding number of parameters, and they are all of mode in.

Default_expressions are not allowed for the parameters of an operator (whether the operator is
declared with an explicit subprogram_specification or by a generic_instantiation).

An explicit declaration of "/=" shall not have a result type of the predefined type Boolean.

Static Semantics
An explicit declaration of "=" whose result type is Boolean implicitly declares an operator "/=" that
gives the complementary result.

NOTES
13 The operators "+" and "—" are both unary and binary operators, and hence may be overloaded with both one- and
two-parameter functions.

Examples

Examples of user-defined operators:
function "+" (Left, Right : Matrix) return Matrix;
function "+" (Left, Right : Vector) return Vector;

- - assuming that A, B, and C are of the type Vector
- - the following two statements are equivalent:

A
A

B + C;
"+ (B, C);

6.7 Null Procedures

A null_procedure_declaration provides a shorthand to declare a procedure with an empty body.

Syntax
null_procedure_declaration ::=
[overriding_indicator]
procedure_specification is null
[aspect_specification];
Legality Rules

If a null_procedure declaration is a completion, it shall be the completion of a
subprogram_declaration or generic_subprogram_declaration. The profile of a
null_procedure_declaration that completes a declaration shall conform fully to that of the
declaration.

Static Semantics

A null_procedure_declaration that is not a completion declares a null procedure. A completion is not
allowed for a null_procedure_declaration; however, a null_procedure_declaration can complete a
previous declaration.

Dynamic Semantics

The execution of a null procedure is invoked by a subprogram call. For the execution of a subprogram
call on a null procedure, or on a procedure completed with a null_procedure_declaration, the
execution of the subprogram_body has no effect.

© ISO/IEC 2021 — All rights reserved 196

ISO/IEC 8652:DIS

The elaboration of a null_procedure_declaration has no other effect than to establish that the null
procedure can be called without failing the Elaboration Check.

Examples

Example of the declaration of a null procedure:

procedure Simplify (Expr : in out Expression) is null; -- see3.9
- - By default, Simplify does nothing, but it may be overridden in extensions of Expression

6.8 Expression Functions

An expression_function_declaration provides a shorthand to declare a function whose body consists
of a single return statement.

Syntax

expression_function_declaration ::=
[overriding_indicator]
function_specification is
(expression)
[aspect_specification];
| [overriding_indicator]
function_specification is
aggregate
[aspect_specification];

Name Resolution Rules

The expected type for the expression or aggregate of an expression_function_declaration is the
result type (see 6.5) of the function.

Static Semantics

An expression_function_declaration that is not a completion declares an expression function. The
return expression of an expression function 1is the expression or aggregate of the
expression_function_declaration. A completion is not allowed for an expression_function -
declaration; however, an expression_function_declaration can complete a previous declaration.

A potentially static expression is defined in the same way as a static expression except that

e a name denoting a formal parameter of an expression function is a potentially static
expression; and

e cach use of “static expression” in the definition of “static expression” is replaced with a
corresponding use of “potentially static expression” in the definition of “potentially static
expression”.

The following language-defined representation aspect may be specified for an expression function:

Static The type of aspect Static is Boolean. When aspect Static is True for an expression
function, the function is a static expression function. 1If directly specified, the
aspect_definition shall be a static expression.

The Static value for an inherited function is True if some corresponding primitive
function of the parent or progenitor type is a static expression function; otherwise, if not
directly specified, the aspect is False.

A static expression function is a static function; see 4.9.

197 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

Legality Rules

If an expression_function_declaration is a completion, it shall be the completion of a
subprogram_declaration or generic_subprogram_declaration. The profile of an expression_-
function_declaration that completes a declaration shall conform fully to that of the declaration.

If the result subtype has one or more unconstrained access discriminants, the accessibility level of the
anonymous access type of each access discriminant, as determined by the expression or aggregate of
the expression_function_declaration, shall not be statically deeper than that of the master that
elaborated the expression_function_declaration.

Aspect Static shall be specified to have the value True only if the associated expression_function_-
declaration:

e isnota completion;
¢ has an expression that is a potentially static expression;
e contains no calls to itself;
e cach parameter (if any) is of mode in and is of a static subtype;
o has a result subtype that is a static subtype;
¢ has no applicable precondition or postcondition expression; and
o for result type R, if the function is a boundary entity for type R (see 7.3.2), no type invariant
applies to type R; if R has a component type C, a similar rule applies to C.
Dynamic Semantics

The execution of an expression function is invoked by a subprogram call. For the execution of a
subprogram call on an expression function, or on a function completed with a expression_function_-
declaration, the execution of the subprogram_body executes an implicit function body containing
only a simple_return_statement whose expression is the return expression of the expression
function.

The elaboration of an expression_function_declaration has no other effect than to establish that the
expression function can be called without failing the Elaboration_Check.
Examples

Example of an expression function:

function Is Origin (P : in Point) return Boolean is -- see3.9
(P.X = 0.0 and P.Y = 0.0);

© ISO/IEC 2021 — All rights reserved 198

ISO/IEC 8652:DIS

7 Packages

Packages are program units that allow the specification of groups of logically related entities.
Typically, a package contains the declaration of a type (often a private type or private extension)
along with the declarations of primitive subprograms of the type, which can be called from outside the
package, while their inner workings remain hidden from outside users.

7.1 Package Specifications and Declarations

A package is generally provided in two parts: a package_specification and a package_body. Every
package has a package_specification, but not all packages have a package_body.

Syntax
package_declaration ::= package_specification;

package_specification ::=
package defining_program_unit_name
[aspect_specification] is
{basic_declarative_item}
[private
{basic_declarative_item}]
end [[parent_unit_name.]identifier]

If an identifier or parent_unit_name.identifier appears at the end of a package_specification,
then this sequence of lexical elements shall repeat the defining_program_unit_name.

Legality Rules

A package_declaration or generic_package_declaration requires a completion (a body) if it
contains any basic_declarative_item that requires a completion, but whose completion is not in its
package_specification.

Static Semantics

The first list of basic_declarative_items of a package_specification of a package other than a
generic formal package is called the visible part of the package. The optional list of
basic_declarative_items after the reserved word private (of any package_specification) is called the
private part of the package. If the reserved word private does not appear, the package has an implicit
empty private part. Each list of basic_declarative_items of a package_specification forms a
declaration list of the package.

An entity declared in the private part of a package is visible only within the declarative region of the
package itself (including any child units — see 10.1.1). In contrast, expanded names denoting entities
declared in the visible part can be used even outside the package; furthermore, direct visibility of such
entities can be achieved by means of use_clauses (see 4.1.3 and 8.4).

Dynamic Semantics

The elaboration of a package_declaration consists of the elaboration of its basic_declarative_items
in the given order.
NOTES

1 The visible part of a package contains all the information that another program unit is able to know about the
package.

2 If a declaration occurs immediately within the specification of a package, and the declaration has a corresponding
completion that is a body, then that body has to occur immediately within the body of the package.

199 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

Examples
Example of a package declaration:
package Rational Numbers is
type Rational is
record
Numerator : Integer;
Denominator : Positive;
end record;
function "="(X,Y : Rational) return Boolean;
function "/" (X,Y : Integer) return Rational; -- fo constructa rational number
function "+" (X,Y : Rational) return Rational;
function "-" (X,Y : Rational) return Rational;
function "*" (X,Y : Rational) return Rational;
function "/" (X,Y : Rational) return Rational;

end Rational Numbers;

There are also many examples of package declarations in the predefined language environment (see
Annex A).

7.2 Package Bodies

In contrast to the entities declared in the visible part of a package, the entities declared in the
package_body are visible only within the package_body itself. As a consequence, a package with a
package_body can be used for the construction of a group of related subprograms in which the
logical operations available to clients are clearly isolated from the internal entities.

Syntax

package body ::=
package body defining_program_unit_name
[aspect_specification] is
declarative_part
[begin
handled_sequence_of statements]
end [[parent_unit_name.]identifier];

If an identifier or parent_unit_name.identifier appears at the end of a package_body, then this
sequence of lexical elements shall repeat the defining_program_unit_name.

Legality Rules

A package_body shall be the completion of a previous package_declaration or generic_package_-
declaration. A library package_declaration or library generic_package_declaration shall not have
a body unless it requires a body; the Elaborate Body aspect can be used to require a library_unit_-
declaration to have a body (see 10.2.1) if it would not otherwise require one.

Static Semantics

In any package body without statements there is an implicit null_statement. For any package -
declaration without an explicit completion, there is an implicit package_body containing a single
null_statement. For a noninstance, nonlibrary package, this body occurs at the end of the
declarative_part of the innermost enclosing program unit or block_statement; if there are several
such packages, the order of the implicit package_bodies is unspecified. (For an instance, the implicit
package_body occurs at the place of the instantiation (see 12.3). For a library package, the place is
partially determined by the elaboration dependences (see Clause 10).)

© ISO/IEC 2021 — All rights reserved 200

Dynamic Semantics

ISO/IEC 8652:DIS

For the elaboration of a nongeneric package_body, its declarative_part is first elaborated, and its

handled_sequence_of statements is then executed.
NOTES

3 A variable declared in the body of a package is only visible within this body and, consequently, its value can only be
changed within the package_body. In the absence of local tasks, the value of such a variable remains unchanged
between calls issued from outside the package to subprograms declared in the visible part. The properties of such a

variable are similar to those of a “static” variable of C.

4 The elaboration of the body of a subprogram explicitly declared in the visible part of a package is caused by the
elaboration of the body of the package. Hence a call of such a subprogram by an outside program unit raises the
exception Program_Error if the call takes place before the elaboration of the package_body (see 3.11).

Examples

Example of a package body (see 7.1):

package body Rational Numbers is

procedure Same_ Denominator (X,Y : in out Rational)

begin
- - reduces X and Y to the same denominator:

end Same_ Denominator;

function "="(X,Y : Rational) return Boolean is
U : Rational := X;
V : Rational := Y;

begin

Same Denominator (U,V);

return U.Numerator = V.Numerator;
end "=";

function "/" (X,Y : Integer) return Rational is

begin
if Y > 0 then

return (Numerator => X, Denominator => Y);

else
return (Numerator => -X, Denominator =>
end if;
end u/n’.
function "+" (X,Y : Rational) return Rational
function "-" (X,Y : Rational) return Rational
function "*" (X,Y : Rational) return Rational
)

function "/"

(X,Y : Rational) return Rational

end Rational_ Numbers;

7.3 Private Types and Private Extensions

-Y);

is
is
is
is

is

end "+";
end n_n ;
end man ;
end " / ",

The declaration (in the visible part of a package) of a type as a private type or private extension serves
to separate the characteristics that can be used directly by outside program units (that is, the logical
properties) from other characteristics whose direct use is confined to the package (the details of the
definition of the type itself). See 3.9.1 for an overview of type extensions.

Syntax

private_type declaration ::=
type defining_identifier [discriminant_part] is [[abstract] tagged] [limited] private
[aspect_specification];

private_extension_declaration ::=
type defining_identifier [discriminant_part] is
[abstract] [limited | synchronized]| new ancestor subtype_indication
[and interface_list] with private
[aspect_specification];

201

© ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

Legality Rules

A private_type_declaration or private_extension_declaration declares a partial view of the type;
such a declaration is allowed only as a declarative_item of the visible part of a package, and it
requires a completion, which shall be a full_type_declaration that occurs as a declarative_item of the
private part of the package. The view of the type declared by the full_type_declaration is called the
full view. A generic formal private type or a generic formal private extension is also a partial view.

A type shall be completely defined before it is frozen (see 3.11.1 and 13.14). Thus, neither the
declaration of a variable of a partial view of a type, nor the creation by an allocator of an object of the
partial view are allowed before the full declaration of the type. Similarly, before the full declaration,
the name of the partial view cannot be used in a generic_instantiation or in a representation item.

A private type is limited if its declaration includes the reserved word limited; a private extension is
limited if its ancestor type is a limited type that is not an interface type, or if the reserved word
limited or synchronized appears in its definition. If the partial view is nonlimited, then the full view
shall be nonlimited. If a tagged partial view is limited, then the full view shall be limited. On the other
hand, if an untagged partial view is limited, the full view may be limited or nonlimited.

If the partial view is tagged, then the full view shall be tagged. On the other hand, if the partial view is
untagged, then the full view may be tagged or untagged. In the case where the partial view is
untagged and the full view is tagged, no derivatives of the partial view are allowed within the
immediate scope of the partial view; derivatives of the full view are allowed.

If a full type has a partial view that is tagged, then:

o the partial view shall be a synchronized tagged type (see 3.9.4) if and only if the full type is a
synchronized tagged type;

o the partial view shall be a descendant of an interface type (see 3.9.4) if and only if the full
type is a descendant of the interface type.

The ancestor subtype of a private_extension_declaration is the subtype defined by the ancestor -
subtype_indication; the ancestor type shall be a specific tagged type. The full view of a private
extension shall be derived (directly or indirectly) from the ancestor type. In addition to the places
where Legality Rules normally apply (see 12.3), the requirement that the ancestor be specific applies
also in the private part of an instance of a generic unit.

If the reserved word limited appears in a private_extension_declaration, the ancestor type shall be a
limited type. If the reserved word synchronized appears in a private_extension_declaration, the
ancestor type shall be a limited interface.

If the declaration of a partial view includes a known_discriminant_part, then the
full_type_declaration shall have a fully conforming (explicit) known_discriminant_part (see 6.3.1,
“Conformance Rules”). The ancestor subtype may be unconstrained; the parent subtype of the full
view is required to be constrained (see 3.7).

If a private extension inherits known discriminants from the ancestor subtype, then the full view shall
also inherit its discriminants from the ancestor subtype, and the parent subtype of the full view shall
be constrained if and only if the ancestor subtype is constrained.

If the full_type declaration for a private extension includes a derived_type definition, then the
reserved word limited shall appear in the full_type declaration if and only if it also appears in the
private_extension_declaration.

If a partial view has unknown discriminants, then the full_type declaration may define a definite or
an indefinite subtype, with or without discriminants.

If a partial view has neither known nor unknown discriminants, then the full_type_declaration shall
define a definite subtype.

© ISO/IEC 2021 — All rights reserved 202

ISO/IEC 8652:DIS

If the ancestor subtype of a private extension has constrained discriminants, then the parent subtype of
the full view shall impose a statically matching constraint on those discriminants.

Static Semantics

A private_type_declaration declares a private type and its first subtype. Similarly, a private -
extension_declaration declares a private extension and its first subtype.

A declaration of a partial view and the corresponding full_type_declaration define two views of a
single type. The declaration of a partial view together with the visible part define the operations that
are available to outside program units; the declaration of the full view together with the private part
define other operations whose direct use is possible only within the declarative region of the package
itself. Moreover, within the scope of the declaration of the full view, the characteristics (see 3.4) of
the type are determined by the full view; in particular, within its scope, the full view determines the
classes that include the type, which components, entries, and protected subprograms are visible, what
attributes and other predefined operations are allowed, and whether the first subtype is static. See
7.3.1.

For a private extension, the characteristics (including components, but excluding discriminants if
there is a new discriminant_part specified), predefined operators, and inherited user-defined primitive
subprograms are determined by its ancestor type and its progenitor types (if any), in the same way that
those of a record extension are determined by those of its parent type and its progenitor types (see 3.4
and 7.3.1).

Dynamic Semantics

The elaboration of a private_type_declaration creates a partial view of a type. The elaboration of a
private_extension_declaration elaborates the ancestor subtype_indication, and creates a partial
view of a type.

NOTES
5 The partial view of a type as declared by a private_type_declaration is defined to be a composite view (in 3.2). The
full view of the type might or might not be composite. A private extension is also composite, as is its full view.

6 Declaring a private type with an unknown_discriminant_part is a way of preventing clients from creating
uninitialized objects of the type; they are then forced to initialize each object by calling some operation declared in the
visible part of the package.

7 The ancestor type specified in a private_extension_declaration and the parent type specified in the corresponding
declaration of a record extension given in the private part need not be the same. If the ancestor type is not an interface
type, the parent type of the full view can be any descendant of the ancestor type. In this case, for a primitive
subprogram that is inherited from the ancestor type and not overridden, the formal parameter names and default
expressions (if any) come from the corresponding primitive subprogram of the specified ancestor type, while the body
comes from the corresponding primitive subprogram of the parent type of the full view. See 3.9.2.

8 If the ancestor type specified in a private_extension_declaration is an interface type, the parent type can be any type
so long as the full view is a descendant of the ancestor type. The progenitor types specified in a
private_extension_declaration and the progenitor types specified in the corresponding declaration of a record
extension given in the private part need not be the same — the only requirement is that the private extension and the
record extension be descended from the same set of interfaces.

Examples

Examples of private type declarations:

type Key is private;
type File Name is limited private;

Example of a private extension declaration:

type List is new Ada.Finalization.Controlled with private;

203 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

7.3.1 Private Operations

For a type declared in the visible part of a package or generic package, certain operations on the type
do not become visible until later in the package — either in the private part or the body. Such private
operations are available only inside the declarative region of the package or generic package.

Static Semantics

The predefined operators that exist for a given type are determined by the classes to which the type
belongs. For example, an integer type has a predefined "+" operator. In most cases, the predefined
operators of a type are declared immediately after the definition of the type; the exceptions are
explained below. Inherited subprograms are also implicitly declared immediately after the definition
of the type, except as stated below.

For a composite type, the characteristics (see 7.3) of the type are determined in part by the
characteristics of its component types. At the place where the composite type is declared, the only
characteristics of component types used are those characteristics visible at that place. If later
immediately within the declarative region in which the composite type is declared additional
characteristics become visible for a component type, then any corresponding characteristics become
visible for the composite type. Any additional predefined operators are implicitly declared at that
place. If there is no such place, then additional predefined operators are not declared at all, but they
still exist.

The corresponding rule applies to a type defined by a derived_type_definition, if there is a place
immediately within the declarative region in which the type is declared where additional
characteristics of its parent type become visible.

For example, an array type whose component type is limited private becomes nonlimited if the full
view of the component type is nonlimited and visible at some later place immediately within the
declarative region in which the array type is declared. In such a case, the predefined "=" operator is
implicitly declared at that place, and assignment is allowed after that place.

The characteristics and constraints of the designated subtype of an access type follow a somewhat
different rule. The view of the designated subtype of (a view of) an access type at a given place is
determined by the view of the designated subtype that is visible at that place, rather than the view at
the place where the access type is declared.

A type is a descendant of the full view of some ancestor of its parent type only if the current view it
has of its parent is a descendant of the full view of that ancestor. More generally, at any given place, a
type is descended from the same view of an ancestor as that from which the current view of its parent
is descended. This view determines what characteristics are inherited from the ancestor, and, for
example, whether the type is considered to be a descendant of a record type, or a descendant only
through record extensions of a more distant ancestor.

Furthermore, it is possible for there to be places where a derived type is known to be derived
indirectly from an ancestor type, but is not a descendant of even a partial view of the ancestor type,
because the parent of the derived type is not visibly a descendant of the ancestor. In this case, the
derived type inherits no characteristics from that ancestor, but nevertheless is within the derivation
class of the ancestor for the purposes of type conversion, the "covers" relationship, and matching
against a formal derived type. In this case the derived type is effectively a descendant of an
incomplete view of the ancestor.

Inherited primitive subprograms follow a different rule. For a derived_type_definition, each inherited
primitive subprogram is implicitly declared at the earliest place, if any, immediately within the
declarative region in which the type declaration occurs, but after the type_declaration, where the
corresponding declaration from the parent is visible. If there is no such place, then the inherited

© ISO/IEC 2021 — All rights reserved 204

ISO/IEC 8652:DIS

subprogram is not declared at all, but it still exists. For a tagged type, it is possible to dispatch to an
inherited subprogram that is not declared at all.

For a private_extension_declaration, each inherited subprogram is declared immediately after the
private_extension_declaration if the corresponding declaration from the ancestor is visible at that
place. Otherwise, the inherited subprogram is not declared for the private extension, though it might
be for the full type.

The Class attribute is defined for tagged subtypes in 3.9. In addition, for every subtype S of an
untagged private type whose full view is tagged, the following attribute is defined:

S'Class Denotes the class-wide subtype corresponding to the full view of S. This attribute is
allowed only from the beginning of the private part in which the full view is declared,
until the declaration of the full view. After the full view, the Class attribute of the full
view can be used.

NOTES

9 Because a partial view and a full view are two different views of one and the same type, outside of the defining
package the characteristics of the type are those defined by the visible part. Within these outside program units the type
is just a private type or private extension, and any language rule that applies only to another class of types does not
apply. The fact that the full declaration might implement a private type with a type of a particular class (for example, as
an array type) is relevant only within the declarative region of the package itself including any child units.

The consequences of this actual implementation are, however, valid everywhere. For example: any default initialization
of components takes place; the attribute Size provides the size of the full view; finalization is still done for controlled
components of the full view; task dependence rules still apply to components that are task objects.

10 Partial views provide initialization, membership tests, selected components for the selection of discriminants and
inherited components, qualification, and explicit conversion. Nonlimited partial views also allow use of
assignment_statements.

11 For a subtype S of a partial view, S'Size is defined (see 13.3). For an object A of a partial view, the attributes A'Size
and A'Address are defined (see 13.3). The Position, First Bit, and Last Bit attributes are also defined for discriminants
and inherited components.

Examples

Example of a type with private operations:

package Key Manager is
type Key is private;
Null Key : constant Key; -- adeferred constant declaration (see 7.4)
procedure Get Key (K : out Key);
function "<" (X, Y : Key) return Boolean;

private
type Key is new Natural;
Null Key : constant Key := Key'First;

end Key Manager;

package body Key Manager is
Last_Key : Key := Null Key;
procedure Get Key (K : out Key) is

begin
Last_Key := Last_Key + 1;
K := Last_Key;

end Get Key;

function "<" (X, Y : Key) return Boolean is
begin
return Natural (X) < Natural (Y) ;

end "<";
end Key Manager;
NOTES
12 Notes on the example: Outside of the package Key Manager, the operations available for objects of type Key
include assignment, the comparison for equality or inequality, the procedure Get Key and the operator "<"; they do not
include other relational operators such as ">=", or arithmetic operators.

The explicitly declared operator "<" hides the predefined operator "<" implicitly declared by the full_type_declaration.
Within the body of the function, an explicit conversion of X and Y to the subtype Natural is necessary to invoke the "<"
operator of the parent type. Alternatively, the result of the function could be written as not (X >=Y), since the operator
">=" is not redefined.

205 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

The value of the variable Last Key, declared in the package body, remains unchanged between calls of the procedure
Get_Key. (See also the NOTES of 7.2.)

7.3.2 Type Invariants

For a private type, private extension, or interface, the following language-defined assertion aspects
may be specified with an aspect_specification (see 13.1.1):

Type Invariant
This aspect shall be specified by an expression, called an invariant expression.
Type Invariant may be specified on a private_type declaration, on a private_-
extension_declaration, or on a full_type declaration that declares the completion of a
private type or private extension.

Type Invariant'Class
This aspect shall be specified by an expression, called an invariant expression.
Type Invariant'Class may be specified on a private_type declaration, a private_-
extension_declaration, or a full_type_declaration for an interface type.
Type Invariant'Class determines a class-wide type invariant for a tagged type. The
Type Invariant'Class aspect is not inherited, but its effects are additive, as defined below.

Name Resolution Rules
The expected type for an invariant expression is any boolean type.

Within an invariant expression, the identifier of the first subtype of the associated type denotes the
current instance of the type. Within an invariant expression for the Type Invariant aspect of a type 7,
the type of this current instance is 7. Within an invariant expression for the Type Invariant'Class
aspect of a type 7, the type of this current instance is interpreted as though it had a (notional)
nonabstract type NT that is a visible formal derived type whose ancestor type is 7. The effect of this
interpretation is that the only operations that can be applied to this current instance are those defined
for such a formal derived type.

Legality Rules

The Type Invariant'Class aspect shall not be specified for an untagged type. The Type Invariant
aspect shall not be specified for an abstract type.

If a type extension occurs immediately within the visible part of a package specification, at a point
where a private operation of some ancestor is visible and inherited, and a Type Invariant'Class
expression applies to that ancestor, then the inherited operation shall be abstract or shall be
overridden.

Static Semantics
If the Type Invariant aspect is specified for a type 7, then the invariant expression applies to 7.

If the Type Invariant'Class aspect is specified for a tagged type 7, then a corresponding expression
also applies to each nonabstract descendant 77/ of T (including T itself if it is nonabstract). The
corresponding expression is constructed from the associated expression as follows:

e References to nondiscriminant components of 7 (or to 7 itself) are replaced with references to
the corresponding components of 7/ (or to 71 as a whole).

e References to discriminants of 7 are replaced with references to the corresponding
discriminant of 7/, or to the specified value for the discriminant, if the discriminant is
specified by the derived_type_ definition for some type that is an ancestor of 7/ and a
descendant of T (see 3.7).

For a nonabstract type 7, a callable entity is said to be a boundary entity for T if it is declared within
the immediate scope of T (or by an instance of a generic unit, and the generic is declared within the
immediate scope of type 7T), or is the Read or Input stream-oriented attribute of type 7, and either:

© ISO/IEC 2021 — All rights reserved 206

ISO/IEC 8652:DIS

e T is a private type or a private extension and the callable entity is visible outside the
immediate scope of type T or overrides an inherited operation that is visible outside the
immediate scope of T; or

e T is a record extension, and the callable entity is a primitive operation visible outside the
immediate scope of type T or overrides an inherited operation that is visible outside the
immediate scope of 7.

Dynamic Semantics

If one or more invariant expressions apply to a nonabstract type 7, then an invariant check is
performed at the following places, on the specified object(s):

e After successful initialization of an object of type 7 by default (see 3.3.1), the check is
performed on the new object unless the partial view of 7 has unknown discriminants;

e After successful explicit initialization of the completion of a deferred constant whose nominal
type has a part of type 7, if the completion is inside the immediate scope of the full view of 7,
and the deferred constant is visible outside the immediate scope of 7, the check is performed
on the part(s) of type T;

o After successful conversion to type 7, the check is performed on the result of the conversion;

e For a view conversion, outside the immediate scope of 7, that converts from a descendant of T
(including T itself) to an ancestor of type T (other than T itself), a check is performed on the
part of the object that is of type T

o after assigning to the view conversion; and

o after successful return from a call that passes the view conversion as an in out or out
parameter.

e Upon successful return from a call on any callable entity which is a boundary entity for 7, an
invariant check is performed on each object which is subject to an invariant check for 7. In
the case of a call to a protected operation, the check is performed before the end of the
protected action. In the case of a call to a task entry, the check is performed before the end of
the rendezvous. The following objects of a callable entity are subject to an invariant check for
T:

e aresult with a nominal type that has a part of type 7;
e an out or in out parameter whose nominal type has a part of type 7,

e an access-to-object parameter or result whose designated nominal type has a part of type
T; or

e for a procedure or entry, an in parameter whose nominal type has a part of type 7.

If the nominal type of a formal parameter (or the designated nominal type of an access-to-
object parameter or result) is incomplete at the point of the declaration of the callable entity,
and if the completion of that incomplete type does not occur in the same declaration list as the
incomplete declaration, then for purposes of the preceding rules the nominal type is
considered to have no parts of type 7.

e For a view conversion to a class-wide type occurring within the immediate scope of 7, from a
specific type that is a descendant of 7 (including T itself), a check is performed on the part of
the object that is of type T.

If performing checks is required by the Type Invariant or Type Invariant'Class assertion policies (see
11.4.2) in effect at the point of the corresponding aspect specification applicable to a given type, then
the respective invariant expression is considered enabled.

The invariant check consists of the evaluation of each enabled invariant expression that applies to 7,
on each of the objects specified above. If any of these evaluate to False, Assertions.Assertion_Error is
raised at the point of the object initialization, conversion, or call. If a given call requires more than
one evaluation of an invariant expression, either for multiple objects of a single type or for multiple

207 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

types with invariants, the evaluations are performed in an arbitrary order, and if one of them evaluates
to False, it is not specified whether the others are evaluated. Any invariant check is performed prior to
copying back any by-copy in out or out parameters. Invariant checks, any postcondition check, and
any constraint or predicate checks associated with in out or out parameters are performed in an
arbitrary order.

For an invariant check on a value of type 7/ based on a class-wide invariant expression inherited from
an ancestor type 7, any operations within the invariant expression that were resolved as primitive
operations of the (notional) formal derived type NT are bound to the corresponding operations of type
71 in the evaluation of the invariant expression for the check on 7.

The invariant checks performed on a call are determined by the subprogram or entry actually invoked,
whether directly, as part of a dispatching call, or as part of a call through an access-to-subprogram
value.

NOTES

13 For a call of a primitive subprogram of type N7 that is inherited from type 7, the specified checks of the specific
invariants of both the types NT and T are performed. For a call of a primitive subprogram of type NT that is overridden
for type NT, the specified checks of the specific invariants of only type NT are performed.

Examples

Example of a work scheduler where only urgent work can be scheduled for weekends:
package Work Orders is
- - See 3.5.1 for type declarations of Level, Day, and Weekday

type Work Order is private with
Type_Invariant => Day Scheduled (Work Order) in Weekday
or else Priority (Work Order) = Urgent;

function Schedule Work (Urgency : in Level;
To_Occur : in Day) return Work Order
with Pre => Urgency = Urgent or else To Occur in Weekday;

function Day Scheduled (Order : in Work Order) return Day;

function Priority (Order : in Work_ Order) return Level;

procedure Change Priority (Order : in out Work Order;
New Priority : in Level;
Changed : out Boolean)
with Post => Changed = (Day Scheduled(Order) in Weekday
or else Priority(Order) = Urgent) ;
private

type Work Order is record
Scheduled : Day;
Urgency : Level;

end record;

end Work Orders;
package body Work Orders is

function Schedule Work (Urgency : in Level;
To_Occur : in Day) return Work Order is
(Scheduled => To_Occur, Urgency => Urgency) ;

function Day Scheduled (Order : in Work Order) return Day is
(Order.Scheduled) ;

function Priority (Order : in Work Order) return Level is
(Order.Urgency) ;

© ISO/IEC 2021 — All rights reserved 208

ISO/IEC 8652:DIS

procedure Change Priority (Order : in out Work Order;
New Priority : in Level;
Changed : out Boolean) is
begin

- - Ensure type invariant is not violated
if Order.Urgency = Urgent or else (Order.Scheduled in Weekday) then

Changed := True;
Order.Urgency := New Priority;
else
Changed := False;
end if;

end Change Priority;

end Work Orders;

7.3.3 Default Initial Conditions

For a private type or private extension (including a generic formal type), the following language-
defined assertion aspect may be specified with an aspect_specification (see 13.1.1):

Default_Initial Condition
This aspect shall be specified by an expression, called a default initial condition
expression. Default Initial Condition may be specified on a private_type_declaration, a
private_extension_declaration, a formal_private type_definition, or a formal_derived_-
type_definition. The Default Initial Condition aspect is not inherited, but its effects are
additive, as defined below.

Name Resolution Rules
The expected type for a default initial condition expression is any boolean type.

Within a default initial condition expression associated with a declaration for a type T, a name that
denotes the declaration is interpreted as a current instance of a notional (nonabstract) formal derived
type NT with ancestor T, that has directly visible primitive operations.

Legality Rules

The Default Initial Condition aspect shall not be specified for a type whose partial view has
unknown discriminants, whether explicitly declared or inherited.

Static Semantics

If the Default Initial Condition aspect is specified for a type T, then the default initial condition
expression applies to T and to all descendants of T.

Dynamic Semantics

If one or more default initial condition expressions apply to a (nonabstract) type T, then a default
initial condition check is performed after successful initialization of an object of type T by default
(see 3.3.1). In the case of a controlled type, the check is performed after the call to the type's Initialize
procedure (see 7.6).

If performing checks is required by the Default Initial Condition assertion policy (see 11.4.2) in
effect at the point of the corresponding aspect_specification applicable to a given type, then the
respective default initial condition expression is considered enabled.

The default initial condition check consists of the evaluation of each enabled default initial condition
expression that applies to T. Any operations within such an expression that were resolved as primitive
operations of the (notional) formal derived type NT, are in the evaluation of the expression resolved
as for a formal derived type in an instance with T as the actual type for NT (see 12.5.1). These
evaluations, if there are more than one, are performed in an arbitrary order. If any of these evaluate to
False, Assertions.Assertion_Error is raised at the point of the object initialization.

209 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

For a generic formal type T, default initial condition checks performed are as determined by the actual
type, along with any default initial condition of the formal type itself.

Implementation Permissions

Implementations may extend the syntax or semantics of the Default Initial Condition aspect in an
implementation-defined manner.

NOTES
14 For an example of the use of this aspect, see the Vector container definition in A.18.2.

7.3.4 Stable Properties of a Type

Certain characteristics of an object of a given type are unchanged by most of the primitive operations
of the type. Such characteristics are called stable properties of the type.

Static Semantics

A property function of type T is a function with a single parameter of type T or of a class-wide type
that covers T.

A type property aspect definition is a list of names written in the syntax of a
positional_array_aggregate. A subprogram property aspect definition is a list of names, each
optionally preceded by reserved word mnot, also written in the syntax of a
positional_array _aggregate.

For a nonformal private type, nonformal private extension, or full type that does not have a partial
view, the following language-defined aspects may be specified with an aspect_specification (see
13.1.1):

Stable Properties
This aspect shall be specified by a type property aspect definition; each name shall
statically denote a single property function of the type. This aspect defines the specific
stable property functions of the associated type.

Stable Properties'Class
This aspect shall be specified by a type property aspect definition; each name shall
statically denote a single property function of the type. This aspect defines the class-wide
stable property functions of the associated type. Unlike most class-wide aspects,
Stable Properties'Class is not inherited by descendant types and subprograms, but the
enhanced class-wide postconditions are inherited in the normal manner.

The specific and class-wide stable properties of a type together comprise the stable properties of the
type.

For a primitive subprogram, the following language-defined aspects may be specified with an
aspect_specification (see 13.1.1):

Stable Properties
This aspect shall be specified by a subprogram property aspect definition; each name
shall statically denote a single property function of a type for which the associated
subprogram is primitive.

Stable Properties'Class
This aspect shall be specified by a subprogram property aspect definition; each name
shall statically denote a single property function of a tagged type for which the associated
subprogram is primitive. Unlike most class-wide aspects, Stable Properties'Class is not
inherited by descendant subprograms, but the enhanced class-wide postconditions are
inherited in the normal manner.

Legality Rules

A stable property function of a type 7 shall have a nonlimited return type and shall be:

© ISO/IEC 2021 — All rights reserved 210

ISO/IEC 8652:DIS

e aprimitive function with a single parameter of mode in of type T; or

e a function that is declared immediately within the declarative region in which an ancestor type
of T'is declared and has a single parameter of mode in of a class-wide type that covers 7.

In a subprogram property aspect definition for a subprogram S:
e all or none of the items shall be preceded by not;

e any property functions mentioned after not shall be a stable property function of a type for
which S is primitive.

If a subprogram_renaming_declaration declares a primitive subprogram of a type 7, then the
renamed callable entity shall also be a primitive subprogram of type 7 and the two primitive
subprograms shall have the same specific stable property functions and the same class-wide stable
property functions (see below).

Static Semantics

For a primitive subprogram S of a type T, the specific stable property functions of S for type T are:

e if S has an aspect Stable Properties specified that does not include not, those functions
denoted in the aspect Stable Properties for S that have a parameter of 7 or T'Class;

e if S has an aspect Stable Properties specified that includes not, those functions denoted in the
aspect Stable Properties for 7, excluding those denoted in the aspect Stable Properties for S;

e if § does not have an aspect Stable Properties, those functions denoted in the aspect
Stable Properties for 7, if any.

A similar definition applies for class-wide stable property functions by replacing aspect
Stable Properties with aspect Stable Properties'Class in the above definition.

The explicit specific postcondition expression for a subprogram S is the expression directly specified
for S with the Post aspect. Similarly, the explicit class-wide postcondition expression for a
subprogram S is the expression directly specified for S with the Post'Class aspect.

For a primitive subprogram S of a type T that has a parameter P of type 7, the parameter is excluded
from stable property checks if:

e Sis a stable property function of T;
e P has mode out;

o the Global aspect of S is null, and P has mode in and the mode is not overridden by a global
aspect.

For every primitive subprogram S of a type 7 that is not an abstract subprogram or null procedure, the
specific postcondition expression of S is modified to include expressions of the form F(P) =
F(P) '01d, all anded with each other and any explicit specific postcondition expression, with one
such equality included for each specific stable property function F of S for type T that does not occur
in the explicit specific postcondition expression of S, and P is each parameter of S that has type 7 and
is not excluded from stable property checks. The resulting specific postcondition expression of S is
used in place of the explicit specific postcondition expression of S when interpreting the meaning of
the postcondition as defined in 6.1.1.

For every primitive subprogram S of a type 7, the class-wide postcondition expression of § is
modified to include expressions of the form F(P) = F(P) '01d, all anded with each other and any
explicit class-wide postcondition expression, with one such equality included for each class-wide
stable property function F of S for type T that does not occur in any class-wide postcondition
expression that applies to S, and P is each parameter of S that has type 7T and is not excluded from
stable property checks. The resulting class-wide postcondition expression of S is used in place of the
explicit class-wide postcondition expression of S when interpreting the meaning of the postcondition
as defined in 6.1.1.

211 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

The equality operation that is used in the aforementioned equality expressions is as described in the
case of an individual membership test whose membership_choice is a choice _simple_expression
(see 4.5.2).

The Post expression additions described above are enabled or disabled depending on the Post
assertion policy that is in effect at the point of declaration of the subprogram S. A similar rule applies
to the Post'Class expression additions.

NOTES
15 For an example of the use of these aspects, see the Vector container definition in A.18.2.

7.4 Deferred Constants

Deferred constant declarations may be used to declare constants in the visible part of a package, but
with the value of the constant given in the private part. They may also be used to declare constants
imported from other languages (see Annex B).

Legality Rules

A deferred constant declaration is an object_declaration with the reserved word constant but no
initialization expression. The constant declared by a deferred constant declaration is called a deferred
constant. Unless the Import aspect (see B.1) is True for a deferred constant declaration, the deferred
constant declaration requires a completion, which shall be a full constant declaration (called the full
declaration of the deferred constant).

A deferred constant declaration that is completed by a full constant declaration shall occur
immediately within the visible part of a package specification. For this case, the following
additional rules apply to the corresponding full declaration:

e The full declaration shall occur immediately within the private part of the same package;

e The deferred and full constants shall have the same type, or shall have statically matching
anonymous access subtypes;

o [f the deferred constant declaration includes a subtype_indication S that defines a constrained
subtype, then the constraint defined by the subtype_indication in the full declaration shall
match the constraint defined by S statically. On the other hand, if the subtype of the deferred
constant is unconstrained, then the full declaration is still allowed to impose a constraint. The
constant itself will be constrained, like all constants;

o If the deferred constant declaration includes the reserved word aliased, then the full
declaration shall also;

e [f the subtype of the deferred constant declaration excludes null, the subtype of the full
declaration shall also exclude null.

A deferred constant declaration for which the Import aspect is True need not appear in the visible part
of a package_specification, and has no full constant declaration.

The completion of a deferred constant declaration shall occur before the constant is frozen (see
13.14).

Dynamic Semantics

The elaboration of a deferred constant declaration elaborates the subtype_indication,
access_definition, or (only allowed in the case of an imported constant) the array_type_definition.
NOTES
16 The full constant declaration for a deferred constant that is of a given private type or private extension is not

allowed before the corresponding full_type_declaration. This is a consequence of the freezing rules for types (see
13.14).

© ISO/IEC 2021 — All rights reserved 212

ISO/IEC 8652:DIS

Examples

Examples of deferred constant declarations:
Null Key : constant Key; --see7.3.1

CPU_Identifier : comstant String(1..8)
with Import => True, Convention => Assembler, Link Name => "CPU ID";
--seeB.1

7.5 Limited Types

A limited type is (a view of) a type for which copying (such as for an assignment_statement) is not
allowed. A nonlimited type is a (view of a) type for which copying is allowed.

Legality Rules

If a tagged record type has any limited components, then the reserved word limited shall appear in its
record_type_definition. If the reserved word limited appears in the definition of a
derived_type_definition, its parent type and any progenitor interfaces shall be limited.

In the following contexts, an expression of a limited type is permitted only if each of its operative
constituents is newly constructed (see 4.4):

the initialization expression of an object_declaration (see 3.3.1)

the default_expression of a component_declaration (see 3.8)
o the expression of a record_component_association (see 4.3.1)
o the expression for an ancestor_part of an extension_aggregate (see 4.3.2)

e an expression of a positional_array aggregate or the expression of an
array_component_association (see 4.3.3)

o the base expression of a record_delta_aggregate (see 4.3.4)
o the qualified_expression of an initialized allocator (see 4.8)

o the expression of a return statement (see 6.5)

o the return expression of an expression function (see 6.8)

o the default_expression or actual parameter for a formal object of mode in (see 12.4)

Static Semantics
A view of a type is limited if it is one of the following:
e atype with the reserved word limited, synchronized, task, or protected in its definition;
o aclass-wide type whose specific type is limited;
e acomposite type with a limited component;
e an incomplete view;
e aderived type whose parent is limited and is not an interface.
Otherwise, the type is nonlimited.
There are no predefined equality operators for a limited type.
A type is immutably limited if it is one of the following:
e An explicitly limited record type;
e A record extension with the reserved word limited;

e A nonformal limited private type that is tagged or has at least one access discriminant with a
default_expression;

e A task type, a protected type, or a synchronized interface;

213 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

e A type derived from an immutably limited type.

A descendant of a generic formal limited private type is presumed to be immutably limited except
within the body of a generic unit or a body declared within the declarative region of a generic unit, if
the formal type is declared within the formal part of the generic unit.

NOTES

17 While it is allowed to write initializations of limited objects, such initializations never copy a limited object. The
source of such an assignment operation must be an aggregate or function_call, and such aggregates and function_calls
must be built directly in the target object (see 7.6).

18 As illustrated in 7.3.1, an untagged limited type can become nonlimited under certain circumstances.
Examples

Example of a package with a limited type:

package IO Package is
type File Name is limited private;

procedure Open (F : in out File Name) ;
procedure Close(F : in out File Name) ;
procedure Read (F : in File Name; Item : out Integer)
procedure Write (F in File Name; Item : in Integer)
private
type File Name is
limited record
Internal Name : Integer := 0;
end record;
end IO Package;

7
7

package body IO Package is

Limit : comstant := 200;

type File Descriptor is record ... end record;

Directory : array (1 .. Limit) of File Descriptor;

procedure Open (F in out File Name) is ... end;

procedure Close (F in out File Name) is ... end;

procedure Read (F in File Name; Item : out Integer) is ... end;
procedure Write(F in File Name; Item : in Integer) is ... end;

begin

end IO Package;

NOTES

19 Notes on the example: In the example above, an outside subprogram making use of IO_Package may obtain a file
name by calling Open and later use it in calls to Read and Write. Thus, outside the package, a file name obtained from
Open acts as a kind of password; its internal properties (such as containing a numeric value) are not known and no
other operations (such as addition or comparison of internal names) can be performed on a file name. Most importantly,
clients of the package cannot make copies of objects of type File Name.

This example is characteristic of any case where complete control over the operations of a type is desired. Such
packages serve a dual purpose. They prevent a user from making use of the internal structure of the type. They also
implement the notion of an encapsulated data type where the only operations on the type are those given in the package
specification.

The fact that the full view of File Name is explicitly declared limited means that parameter passing will always be by
reference and function results will always be built directly in the result object (see 6.2 and 6.5).

7.6 Assignment and Finalization

Three kinds of actions are fundamental to the manipulation of objects: initialization, finalization, and
assignment. Every object is initialized, either explicitly or by default, after being created (for example,
by an object_declaration or allocator). Every object is finalized before being destroyed (for example,
by leaving a subprogram_body containing an object_declaration, or by a call to an instance of
Unchecked Deallocation). An assignment operation is used as part of assignment_statements,
explicit initialization, parameter passing, and other operations.

Default definitions for these three fundamental operations are provided by the language, but a
controlled type gives the user additional control over parts of these operations. In particular, the user
can define, for a controlled type, an Initialize procedure which is invoked immediately after the

© ISO/IEC 2021 — All rights reserved 214

ISO/IEC 8652:DIS

normal default initialization of a controlled object, a Finalize procedure which is invoked immediately
before finalization of any of the components of a controlled object, and an Adjust procedure which is
invoked as the last step of an assignment to a (nonlimited) controlled object.

Static Semantics

The following language-defined library package exists:

package Ada.Finalization
with Pure, Nonblocking => False is

type Controlled is abstract tagged private
with Preelaborable Initialization;

procedure Initialize (Object : in out Controlled) is null;
procedure Adjust (Object : in out Controlled) is null;
procedure Finalize (Object : in out Controlled) is null;

type Limited Controlled is abstract tagged limited private
with Preelaborable Initialization;

procedure Initialize (Object : in out Limited Controlled) is null;
procedure Finalize (Object : in out Limited Controlled) is null;
private

. - - not specified by the language
end Ada.Finalization;

A controlled type is a descendant of Controlled or Limited Controlled. The predefined "=" operator
of type Controlled always returns True, since this operator is incorporated into the implementation of
the predefined equality operator of types derived from Controlled, as explained in 4.5.2. The type
Limited Controlled is like Controlled, except that it is limited and it lacks the primitive subprogram
Adjust.

A type is said to need finalization if:
e it is a controlled type, a task type or a protected type; or
e it has a component whose type needs finalization; or
e it is a class-wide type; or
e it is a partial view whose full view needs finalization; or

e it is one of a number of language-defined types that are explicitly defined to need finalization.

Dynamic Semantics

During the elaboration or evaluation of a construct that causes an object to be initialized by default,
for every controlled subcomponent of the object that is not assigned an initial value (as defined in
3.3.1), Initialize is called on that subcomponent. Similarly, if the object that is initialized by default as
a whole is controlled, Initialize is called on the object.

For an extension_aggregate whose ancestor_part is a subtype_mark denoting a controlled subtype,
the Initialize procedure of the ancestor type is called, unless that Initialize procedure is abstract.

Initialize and other initialization operations are done in an arbitrary order, except as follows. Initialize
is applied to an object after initialization of its subcomponents, if any (including both implicit
initialization and Initialize calls). If an object has a component with an access discriminant
constrained by a per-object expression, Initialize is applied to this component after any components
that do not have such discriminants. For an object with several components with such a discriminant,
Initialize is applied to them in order of their component_declarations. For an allocator, any task
activations follow all calls on Initialize.

When a target object with any controlled parts is assigned a value, either when created or in a
subsequent assignment_statement, the assignment operation proceeds as follows:

e The value of the target becomes the assigned value.

e The value of the target is adjusted.

215 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

To adjust the value of a composite object, the values of the components of the object are first adjusted
in an arbitrary order, and then, if the object is nonlimited controlled, Adjust is called. Adjusting the
value of an elementary object has no effect, nor does adjusting the value of a composite object with no
controlled parts.

For an assignment_statement, after the name and expression have been evaluated, and any
conversion (including constraint checking) has been done, an anonymous object is created, and the
value is assigned into it; that is, the assignment operation is applied. (Assignment includes value
adjustment.) The target of the assignment_statement is then finalized. The value of the anonymous
object is then assigned into the target of the assignment_statement. Finally, the anonymous object is
finalized. As explained below, the implementation may eliminate the intermediate anonymous object,
so this description subsumes the one given in 5.2, “Assignment Statements”.

When a function call or aggregate is used to initialize an object, the result of the function call or
aggregate is an anonymous object, which is assigned into the newly-created object. For such an
assignment, the anonymous object might be built in place, in which case the assignment does not
involve any copying. Under certain circumstances, the anonymous object is required to be built in
place. In particular:

e [f the full type of any part of the object is immutably limited, the anonymous object is built in
place.

e In the case of an aggregate, if the full type of any part of the newly-created object is
controlled, the anonymous object is built in place.

¢ In other cases, it is unspecified whether the anonymous object is built in place.
Notwithstanding what this International Standard says elsewhere, if an object is built in place:

e Upon successful completion of the return statement or aggregate, the anonymous object
mutates into the newly-created object; that is, the anonymous object ceases to exist, and the
newly-created object appears in its place.

¢ Finalization is not performed on the anonymous object.
¢ Adjustment is not performed on the newly-created object.

e All access values that designate parts of the anonymous object now designate the
corresponding parts of the newly-created object.

e All renamings of parts of the anonymous object now denote views of the corresponding parts
of the newly-created object.

e Coextensions of the anonymous object become coextensions of the newly-created object.

Implementation Permissions

An implementation is allowed to relax the above rules for assignment_statements in the following
ways:

e If an object is assigned the value of that same object, the implementation need not do
anything.

e For assignment of a noncontrolled type, the implementation may finalize and assign each
component of the variable separately (rather than finalizing the entire variable and assigning
the entire new value) unless a discriminant of the variable is changed by the assignment.

e The implementation need not create an anonymous object if the value being assigned is the
result of evaluating a name denoting an object (the source object) whose storage cannot
overlap with the target. If the source object might overlap with the target object, then the
implementation can avoid the need for an intermediary anonymous object by exercising one
of the above permissions and perform the assignment one component at a time (for an
overlapping array assignment), or not at all (for an assignment where the target and the source
of the assignment are the same object).

© ISO/IEC 2021 — All rights reserved 216

ISO/IEC 8652:DIS

Furthermore, an implementation is permitted to omit implicit Initialize, Adjust, and Finalize calls and
associated assignment operations on an object of a nonlimited controlled type provided that:

e any omitted Initialize call is not a call on a user-defined Initialize procedure, and

e any usage of the value of the object after the implicit Initialize or Adjust call and before any
subsequent Finalize call on the object does not change the external effect of the program, and

e after the omission of such calls and operations, any execution of the program that executes an
Initialize or Adjust call on an object or initializes an object by an aggregate will also later
execute a Finalize call on the object and will always do so prior to assigning a new value to
the object, and

o the assignment operations associated with omitted Adjust calls are also omitted.

This permission applies to Adjust and Finalize calls even if the implicit calls have additional external
effects.

7.6.1 Completion and Finalization

This subclause defines completion and leaving of the execution of constructs and entities. A master is
the execution of a construct that includes finalization of local objects after it is complete (and after
waiting for any local tasks — see 9.3), but before leaving. Other constructs and entities are left
immediately upon completion.

Dynamic Semantics

The execution of a construct or entity is complete when the end of that execution has been reached, or
when a transfer of control (see 5.1) causes it to be abandoned. Completion due to reaching the end of
execution, or due to the transfer of control of an exit_statement, return statement, goto_statement, or
requeue_statement or of the selection of a terminate_alternative is normal completion. Completion
is abnormal otherwise — when control is transferred out of a construct due to abort or the raising of
an exception.

After execution of a construct or entity is complete, it is left, meaning that execution continues with
the next action, as defined for the execution that is taking place. Leaving an execution happens
immediately after its completion, except in the case of the execution of a master construct: a body
other than a package_body; a statement; or an expression, function_call, or range that is not part of
an enclosing expression, function_call, range, or simple_statement other than a simple_return_-
statement. The term master by itself refers to the execution of a master construct. A master is
finalized after it is complete, and before it is left.

For the finalization of a master, dependent tasks are first awaited, as explained in 9.3. Then each
object whose accessibility level is the same as that of the master is finalized if the object was
successfully initialized and still exists. These actions are performed whether the master is left by
reaching the last statement or via a transfer of control. When a transfer of control causes completion
of an execution, each included master is finalized in order, from innermost outward.

For the finalization of an object:
o If the full type of the object is an elementary type, finalization has no effect;

o [f the full type of the object is a tagged type, and the tag of the object identifies a controlled
type, the Finalize procedure of that controlled type is called,

o If the full type of the object is a protected type, or if the full type of the object is a tagged type
and the tag of the object identifies a protected type, the actions defined in 9.4 are performed;

o If the full type of the object is a composite type, then after performing the above actions, if
any, every component of the object is finalized in an arbitrary order, except as follows: if the
object has a component with an access discriminant constrained by a per-object expression,
this component is finalized before any components that do not have such discriminants; for an

217 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

object with several components with such a discriminant, they are finalized in the reverse of
the order of their component_declarations;

e If the object has coextensions (see 3.10.2), each coextension is finalized after the object
whose access discriminant designates it.

Immediately before an instance of Unchecked Deallocation reclaims the storage of an object, the
object is finalized. If an instance of Unchecked Deallocation is never applied to an object created by
an allocator, the object will still exist when the corresponding master completes, and it will be
finalized then.

The finalization of a master performs finalization of objects created by declarations in the master in
the reverse order of their creation. After the finalization of a master is complete, the objects finalized
as part of its finalization cease to exist, as do any types and subtypes defined and created within the
master.

Each nonderived access type T has an associated collection, which is the set of objects created by
allocators of T, or of types derived from 7. Unchecked Deallocation removes an object from its
collection. Finalization of a collection consists of finalization of each object in the collection, in an
arbitrary order. The collection of an access type is an object implicitly declared at the following place:

e For a named access type, the first freezing point (see 13.14) of the type.
e For the type of an access parameter, the call that contains the allocator.
e For the type of an access result, within the master of the call (see 3.10.2).

e For any other anonymous access type, the first freezing point of the innermost enclosing
declaration.

The target of an assignment_statement is finalized before copying in the new value, as explained in
7.6.

The master of an object is the master enclosing its creation whose accessibility level (see 3.10.2) is
equal to that of the object, except in the case of an anonymous object representing the result of an
aggregate or function call. If such an anonymous object is part of the result of evaluating the actual
parameter expression for an explicitly aliased parameter of a function call, the master of the object is
the innermost master enclosing the evaluation of the aggregate or function call, excluding the
aggregate or function call itself. Otherwise, the master of such an anonymous object is the innermost
master enclosing the evaluation of the aggregate or function call, which may be the aggregate or
function call itself.

In the case of an expression that is a master, finalization of any (anonymous) objects occurs after
completing evaluation of the expression and all use of the objects, prior to starting the execution of
any subsequent construct.

Bounded (Run-Time) Errors

It is a bounded error for a call on Finalize or Adjust that occurs as part of object finalization or
assignment to propagate an exception. The possible consequences depend on what action invoked the
Finalize or Adjust operation:

e For a Finalize invoked as part of an assignment_statement, Program_Error is raised at that
point.

e For an Adjust invoked as part of assignment operations other than those invoked as part of an
assignment_statement, other adjustments due to be performed might or might not be
performed, and then Program Error is raised. During its propagation, finalization might or
might not be applied to objects whose Adjust failed. For an Adjust invoked as part of an
assignment_statement, any other adjustments due to be performed are performed, and then
Program_Error is raised.

e For a Finalize invoked as part of a call on an instance of Unchecked Deallocation, any other
finalizations due to be performed are performed, and then Program_Error is raised.

© ISO/IEC 2021 — All rights reserved 218

ISO/IEC 8652:DIS

For a Finalize invoked due to reaching the end of the execution of a master, any other
finalizations associated with the master are performed, and Program Error is raised
immediately after leaving the master.

For a Finalize invoked by the transfer of control of an exit_statement, return statement,
goto_statement, or requeue_statement, Program_Error is raised no earlier than after the
finalization of the master being finalized when the exception occurred, and no later than the
point where normal execution would have continued. Any other finalizations due to be
performed up to that point are performed before raising Program_Error.

For a Finalize invoked by a transfer of control that is due to raising an exception, any other
finalizations due to be performed for the same master are performed; Program_Error is raised
immediately after leaving the master.

For a Finalize invoked by a transfer of control due to an abort or selection of a terminate
alternative, the exception is ignored; any other finalizations due to be performed are
performed.

Implementation Permissions

If the execution of an allocator propagates an exception, any parts of the allocated object that were
successfully initialized may be finalized as part of the finalization of the innermost master enclosing
the allocator.

The

implementation may finalize objects created by allocators for an access type whose storage pool

supports subpools (see 13.11.4) as if the objects were created (in an arbitrary order) at the point where
the storage pool was elaborated instead of at the first freezing point of the access type.

219

NOTES

20 The rules of Clause 10 imply that immediately prior to partition termination, Finalize operations are applied to
library-level controlled objects (including those created by allocators of library-level access types, except those already
finalized). This occurs after waiting for library-level tasks to terminate.

21 A constant is only constant between its initialization and finalization. Both initialization and finalization are
allowed to change the value of a constant.

22 Abort is deferred during certain operations related to controlled types, as explained in 9.8. Those rules prevent an
abort from causing a controlled object to be left in an ill-defined state.

23 The Finalize procedure is called upon finalization of a controlled object, even if Finalize was called earlier, either
explicitly or as part of an assignment; hence, if a controlled type is visibly controlled (implying that its Finalize
primitive is directly callable), or is nonlimited (implying that assignment is allowed), its Finalize procedure should be
designed to have no ill effect if it is applied a second time to the same object.

© ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

8 Visibility Rules

The rules defining the scope of declarations and the rules defining which identifiers,
character_literals, and operator_symbols are visible at (or from) various places in the text of the
program are described in this clause. The formulation of these rules uses the notion of a declarative
region.

As explained in Clause 3, a declaration declares a view of an entity and associates a defining name
with that view. The view comprises an identification of the viewed entity, and possibly additional
properties. A usage name denotes a declaration. It also denotes the view declared by that declaration,
and denotes the entity of that view. Thus, two different usage names might denote two different views
of the same entity; in this case they denote the same entity.

8.1 Declarative Region

Static Semantics

For each of the following constructs, there is a portion of the program text called its declarative
region, within which nested declarations can occur:

e any declaration, other than that of an enumeration type, that is not a completion of a previous
declaration;

e an access_definition;

e an iterated_component_association;
e an iterated_element_association;

e a quantified_expression;

e adeclare_expression;

e ablock_statement;

e aloop_statement;

e an extended_return_statement;

e an accept_statement;

e an exception_handler.

The declarative region includes the text of the construct together with additional text determined
(recursively), as follows:

e If a declaration is included, so is its completion, if any.

e If the declaration of a library unit (including Standard — see 10.1.1) is included, so are the
declarations of any child units (and their completions, by the previous rule). The child
declarations occur after the declaration.

e Ifabody_stub is included, so is the corresponding subunit.

e If a type declaration is included, then so is a corresponding record_representation_clause,
if any.
The declarative region of a declaration is also called the declarative region of any view or entity
declared by the declaration.

A declaration occurs immediately within a declarative region if this region is the innermost declarative
region that encloses the declaration (the immediately enclosing declarative region), not counting the
declarative region (if any) associated with the declaration itself.

221 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

A declaration is local to a declarative region if the declaration occurs immediately within the
declarative region. An entity is local to a declarative region if the entity is declared by a declaration
that is local to the declarative region.

A declaration is global to a declarative region if the declaration occurs immediately within another
declarative region that encloses the declarative region. An entity is global to a declarative region if the
entity is declared by a declaration that is global to the declarative region.

NOTES

1 The children of a parent library unit are inside the parent's declarative region, even though they do not occur inside

the parent's declaration or body. This implies that one can use (for example) "P.Q" to refer to a child of P whose
defining name is Q, and that after "use P;" Q can refer (directly) to that child.

2 As explained above and in 10.1.1, “Compilation Units - Library Units”, all library units are descendants of Standard,
and so are contained in the declarative region of Standard. They are not inside the declaration or body of Standard, but
they are inside its declarative region.

3 For a declarative region that comes in multiple parts, the text of the declarative region does not contain any text that
might appear between the parts. Thus, when a portion of a declarative region is said to extend from one place to another
in the declarative region, the portion does not contain any text that might appear between the parts of the declarative
region.

8.2 Scope of Declarations

For each declaration, the language rules define a certain portion of the program text called the scope
of the declaration. The scope of a declaration is also called the scope of any view or entity declared by
the declaration. Within the scope of an entity, and only there, there are places where it is legal to refer
to the declared entity. These places are defined by the rules of visibility and overloading.

Static Semantics

The immediate scope of a declaration is a portion of the declarative region immediately enclosing the
declaration. The immediate scope starts at the beginning of the declaration, except in the case of an
overloadable declaration, in which case the immediate scope starts just after the place where the
profile of the callable entity is determined (which is at the end of the _specification for the callable
entity, or at the end of the generic_instantiation if an instance). The immediate scope extends to the
end of the declarative region, with the following exceptions:

e The immediate scope of a library_item includes only its semantic dependents.

e The immediate scope of a declaration in the private part of a library unit does not include the
visible part of any public descendant of that library unit.

The visible part of (a view of) an entity is a portion of the text of its declaration containing
declarations that are visible from outside. The private part of (a view of) an entity that has a visible
part contains all declarations within the declaration of (the view of) the entity, except those in the
visible part; these are not visible from outside. Visible and private parts are defined only for these
kinds of entities: callable entities, other program units, and composite types.

e The visible part of a view of a callable entity is its profile.

e The visible part of a composite type other than a task or protected type consists of the
declarations of all components declared (explicitly or implicitly) within the type_declaration.

e The visible part of a generic unit includes the generic_formal_part. For a generic package, it
also includes the first list of basic_declarative_items of the package_specification. For a
generic subprogram, it also includes the profile.

e The visible part of a package, task unit, or protected unit consists of declarations in the
program unit's declaration other than those following the reserved word private, if any; see
7.1 and 12.7 for packages, 9.1 for task units, and 9.4 for protected units.

The scope of a declaration always contains the immediate scope of the declaration. In addition, for a
given declaration that occurs immediately within the visible part of an outer declaration, or is a public

© ISO/IEC 2021 — All rights reserved 222

ISO/IEC 8652:DIS

child of an outer declaration, the scope of the given declaration extends to the end of the scope of the
outer declaration, except that the scope of a library_item includes only its semantic dependents.

The scope of an attribute_definition_clause is identical to the scope of a declaration that would occur
at the point of the attribute definition_clause. The scope of an aspect_specification is identical to
the scope of the associated declaration.

The immediate scope of a declaration is also the immediate scope of the entity or view declared by the
declaration. Similarly, the scope of a declaration is also the scope of the entity or view declared by the
declaration.

The immediate scope of a pragma that is not used as a configuration pragma is defined to be the
region extending from immediately after the pragma to the end of the declarative region immediately
enclosing the pragma.

NOTES

4 There are notations for denoting visible declarations that are not directly visible. For example, parameter_-

specifications are in the visible part of a subprogram_declaration so that they can be used in named-notation calls

appearing outside the called subprogram. For another example, declarations of the visible part of a package can be
denoted by expanded names appearing outside the package, and can be made directly visible by a use_clause.

8.3 Visibility
The visibility rules, given below, determine which declarations are visible and directly visible at each
place within a program. The visibility rules apply to both explicit and implicit declarations.

Static Semantics

A declaration is defined to be directly visible at places where a name consisting of only an identifier
or operator_symbol is sufficient to denote the declaration; that is, no selected _component notation
or special context (such as preceding => in a named association) is necessary to denote the
declaration. A declaration is defined to be visible wherever it is directly visible, as well as at other
places where some name (such as a selected_component) can denote the declaration.

The syntactic category direct_name is used to indicate contexts where direct visibility is required.
The syntactic category selector_name is used to indicate contexts where visibility, but not direct
visibility, is required.

There are two kinds of direct visibility: immediate visibility and use-visibility. A declaration is
immediately visible at a place if it is directly visible because the place is within its immediate scope.
A declaration is use-visible if it is directly visible because of a use_clause (see 8.4). Both conditions

can apply.

A declaration can be hidden, either from direct visibility, or from all visibility, within certain parts of
its scope. Where hidden from all visibility, it is not visible at all (neither using a direct_name nor a
selector_name). Where hidden from direct visibility, only direct visibility is lost; visibility using a
selector_name is still possible.

Two or more declarations are overloaded if they all have the same defining name and there is a place
where they are all directly visible.

The declarations of callable entities (including enumeration literals) are overloadable, meaning that
overloading is allowed for them.

Two declarations are homographs if they have the same defining name, and, if both are overloadable,
their profiles are type conformant. An inner declaration hides any outer homograph from direct
visibility.

Two homographs are not generally allowed immediately within the same declarative region unless

one overrides the other (see Legality Rules below). The only declarations that are overridable are the
implicit declarations for predefined operators and inherited primitive subprograms. A declaration

223 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

overrides another homograph that occurs immediately within the same declarative region in the
following cases:

e A declaration that is not overridable overrides one that is overridable, regardless of which
declaration occurs first;

e The implicit declaration of an inherited operator overrides that of a predefined operator;

e An implicit declaration of an inherited subprogram overrides a previous implicit declaration
of an inherited subprogram.

e If two or more homographs are implicitly declared at the same place:

o If at least one is a subprogram that is neither a null procedure nor an abstract subprogram,
and does not require overriding (see 3.9.3), then they override those that are null
procedures, abstract subprograms, or require overriding. If more than one such
homograph remains that is not thus overridden, then they are all hidden from all visibility.

o Otherwise (all are null procedures, abstract subprograms, or require overriding), then any
null procedure overrides all abstract subprograms and all subprograms that require
overriding; if more than one such homograph remains that is not thus overridden, then if
the profiles of the remaining homographs are all fully conformant with one another, one
is chosen arbitrarily; if not, they are all hidden from all visibility.

e For an implicit declaration of a primitive subprogram in a generic unit, there is a copy of this
declaration in an instance. However, a whole new set of primitive subprograms is implicitly
declared for each type declared within the visible part of the instance. These new declarations
occur immediately after the type declaration, and override the copied ones. The copied ones
can be called only from within the instance; the new ones can be called only from outside the
instance, although for tagged types, the body of a new one can be executed by a call to an old
one.

A declaration is visible within its scope, except where hidden from all visibility, as follows:

e An overridden declaration is hidden from all visibility within the scope of the overriding
declaration.

e A declaration is hidden from all visibility until the end of the declaration, except:

o For a record type or record extension, the declaration is hidden from all visibility only
until the reserved word record,;

o For a package_declaration, generic_package declaration, subprogram_body, or
expression_function_declaration, the declaration is hidden from all visibility only until
the reserved word is of the declaration;

o For a task declaration or protected declaration, the declaration is hidden from all visibility
only until the reserved word with of the declaration if there is one, or the reserved word is
of the declaration if there is no with.

e [f the completion of a declaration is a declaration, then within the scope of the completion, the
first declaration is hidden from all visibility. Similarly, a discriminant_specification or
parameter_specification is hidden within the scope of a corresponding discriminant_-
specification or parameter_specification of a corresponding completion, or of a
corresponding accept_statement.

e The declaration of a library unit (including a library_unit_renaming_declaration) is hidden
from all visibility at places outside its declarative region that are not within the scope of a
nonlimited_with_clause that mentions it. The limited view of a library package is hidden
from all visibility at places that are not within the scope of a limited_with_clause that
mentions it; in addition, the limited view is hidden from all visibility within the declarative
region of the package, as well as within the scope of any nonlimited_with_clause that
mentions the package. Where the declaration of the limited view of a package is visible, any
name that denotes the package denotes the limited view, including those provided by a
package renaming.

© ISO/IEC 2021 — All rights reserved 224

ISO/IEC 8652:DIS

e For each declaration or renaming of a generic unit as a child of some parent generic package,
there is a corresponding declaration nested immediately within each instance of the parent.
Such a nested declaration is hidden from all visibility except at places that are within the
scope of a with_clause that mentions the child.

A declaration with a defining_identifier or defining_operator_symbol is immediately visible (and
hence directly visible) within its immediate scope except where hidden from direct visibility, as
follows:

e A declaration is hidden from direct visibility within the immediate scope of a homograph of
the declaration, if the homograph occurs within an inner declarative region;

e A declaration is also hidden from direct visibility where hidden from all visibility.

An attribute_definition_clause or an aspect_specification is visible everywhere within its scope.

Name Resolution Rules

A direct_name shall resolve to denote a directly visible declaration whose defining name is the same
as the direct_name. A selector_name shall resolve to denote a visible declaration whose defining
name is the same as the selector_name.

These rules on visibility and direct visibility do not apply in a context_clause, a parent_unit_name,
or a pragma that appears at the place of a compilation_unit. For those contexts, see the rules in
10.1.6, “Environment-Level Visibility Rules”.

Legality Rules

A nonoverridable declaration is illegal if there is a homograph occurring immediately within the same
declarative region that is visible at the place of the declaration, and is not hidden from all visibility by
the nonoverridable declaration. In addition, a type extension is illegal if somewhere within its
immediate scope it has two visible components with the same name. Similarly, the context_clause for
a compilation unit is illegal if it mentions (in a with_clause) some library unit, and there is a
homograph of the library unit that is visible at the place of the compilation unit, and the homograph
and the mentioned library unit are both declared immediately within the same declarative region.
These rules also apply to dispatching operations declared in the visible part of an instance of a generic
unit. However, they do not apply to other overloadable declarations in an instance; such declarations
may have type conformant profiles in the instance, so long as the corresponding declarations in the
generic were not type conformant.
NOTES

5 Visibility for compilation units follows from the definition of the environment in 10.1.4, except that it is necessary to
apply a with_clause to obtain visibility to a library_unit_declaration or library_unit_renaming_declaration.

6 In addition to the visibility rules given above, the meaning of the occurrence of a direct_name or selector_name at
a given place in the text can depend on the overloading rules (see 8.6).

7 Not all contexts where an identifier, character_literal, or operator_symbol are allowed require visibility of a
corresponding declaration. Contexts where visibility is not required are identified by using one of these three syntactic
categories directly in a syntax rule, rather than using direct_name or selector_name.

8.3.1 Overriding Indicators

An overriding_indicator is used to declare that an operation is intended to override (or not override)
an inherited operation.

Syntax
overriding_indicator ::= [not] overriding
Legality Rules

If an abstract subprogram_declaration, null_procedure_declaration, expression_function_-
declaration, subprogram_body, subprogram_body stub, subprogram_renaming_declaration,

225 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

generic_instantiation of a subprogram, or subprogram_declaration other than a protected
subprogram has an overriding_indicator, then:

o the operation shall be a primitive operation for some type;

o if the overriding_indicator is overriding, then the operation shall override a homograph at the
place of the declaration or body;

e if the overriding_indicator is not overriding, then the operation shall not override any
homograph (at any place).

In addition to the places where Legality Rules normally apply, these rules also apply in the private
part of an instance of a generic unit.

NOTES
8 Rules for overriding_indicators of task and protected entries and of protected subprograms are found in 9.5.2 and
9.4, respectively.

Examples

Example of use of an overriding indicator when declaring a security queue derived from the Queue
interface of 3.9.4:

type Security Queue is new Queue with record ...;

overriding
procedure Append(Q : in out Security Queue; Person : in Person Name) ;

overriding
procedure Remove First(Q : in out Security Queue; Person : out Person Name) ;

overriding
function Cur Count (Q : in Security Queue) return Natural;

overriding
function Max Count (Q : in Security Queue) return Natural;

not overriding
procedure Arrest(Q : in out Security Queue; Person : in Person Name) ;

The first four subprogram declarations guarantee that these subprograms will override the four
subprograms inherited from the Queue interface. A misspelling in one of these subprograms will be
detected at compile time by the implementation. Conversely, the declaration of Arrest guarantees that
this is a new operation.

8.4 Use Clauses

A use_package_clause achieves direct visibility of declarations that appear in the visible part of a
package; a use_type_clause achieves direct visibility of the primitive operators of a type.

Syntax
use_clause ::= use_package_clause | use_type_clause
use_package_clause ::= use package name {, package name};

use_type clause ::= use [all] type subtype _mark {, subtype mark};

Legality Rules

A package name of a use_package_clause shall denote a nonlimited view of a package.

Static Semantics

For each use_clause, there is a certain region of text called the scope of the use_clause. For a
use_clause within a context _clause of a library unit_declaration or library unit_renaming_-
declaration, the scope is the entire declarative region of the declaration. For a use_clause within a
context_clause of a body, the scope is the entire body and any subunits (including multiply nested
subunits). The scope does not include context_clauses themselves.

© ISO/IEC 2021 — All rights reserved 226

ISO/IEC 8652:DIS

For a use_clause immediately within a declarative region, the scope is the portion of the declarative
region starting just after the use_clause and extending to the end of the declarative region. However,
the scope of a use_clause in the private part of a library unit does not include the visible part of any
public descendant of that library unit.

A package is named in a use_package_clause if it is denoted by a package name of that clause. A
type is named in a use_type_clause if it is determined by a subtype_mark of that clause.

For each package named in a use_package_clause whose scope encloses a place, each declaration
that occurs immediately within the declarative region of the package is potentially use-visible at this
place if the declaration is visible at this place. For each type T or 7'Class named in a use_type_clause
whose scope encloses a place, the declaration of each primitive operator of type 7T is potentially use-
visible at this place if its declaration is visible at this place. If a use_type clause whose scope
encloses a place includes the reserved word all, then the following entities are also potentially use-
visible at this place if the declaration of the entity is visible at this place:

e Each primitive subprogram of 7 including each enumeration literal (if any);

e FEach subprogram that is declared immediately within the declarative region in which an
ancestor type of 7 is declared and that operates on a class-wide type that covers 7.

Certain implicit declarations may become potentially use-visible in certain contexts as described in
12.6.
A declaration is use-visible if it is potentially use-visible, except in these naming-conflict cases:

e A potentially use-visible declaration is not use-visible if the place considered is within the
immediate scope of a homograph of the declaration.

e Potentially use-visible declarations that have the same identifier are not use-visible unless
each of them is an overloadable declaration.

Dynamic Semantics

The elaboration of a use_clause has no effect.

Examples

Example of a use clause in a context clause:

with Ada.Calendar; use Ada;

Example of a use type clause:

use type Rational Numbers.Rational; --see7.l
Two_Thirds: Rational Numbers.Rational := 2/3;

8.5 Renaming Declarations

A renaming_declaration declares another name for an entity, such as an object, exception, package,
subprogram, entry, or generic unit. Alternatively, a subprogram_renaming_declaration can be the
completion of a previous subprogram_declaration.

Syntax

renaming_declaration ::=
object_renaming_declaration
| exception_renaming_declaration
| package_renaming_declaration
| subprogram_renaming_declaration
| generic_renaming_declaration

227 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

Dynamic Semantics

The elaboration of a renaming_declaration evaluates the name that follows the reserved word
renames and thereby determines the view and entity denoted by this name (the renamed view and
renamed entity). A name that denotes the renaming_declaration denotes (a new view of) the
renamed entity.

NOTES

9 Renaming may be used to resolve name conflicts and to act as a shorthand. Renaming with a different identifier or
operator_symbol does not hide the old name; the new name and the old name need not be visible at the same places.

10 A subtype defined without any additional constraint can be used to achieve the effect of renaming another subtype
(including a task or protected subtype) as in

subtype Mode is Ada.Text_IO.File_ Mode;

8.5.1 Object Renaming Declarations

An object_renaming_declaration is used to rename an object or value.

Syntax

object_renaming_declaration ::=
defining_identifier [: [null_exclusion] subtype_mark] renames object name
[aspect_specification];
| defining_identifier : access_definition renames object hame
[aspect_specification];

Name Resolution Rules

The type of the object_name shall resolve to the type determined by the subtype_mark, if present. If
no subtype_mark or access_definition is present, the expected type of the object name is any type.

In the case where the type is defined by an access_definition, the type of the object name shall
resolve to an anonymous access type. If the anonymous access type is an access-to-object type, the
type of the object name shall have the same designated type as that of the access_definition. If the
anonymous access type is an access-to-subprogram type, the type of the object name shall have a
designated profile that is type conformant with that of the access_definition.

Legality Rules
The renamed entity shall be an object or value.

In the case where the type is defined by an access_definition, the type of the renamed entity and the
type defined by the access_definition:

o shall both be access-to-object types with statically matching designated subtypes and with
both or neither being access-to-constant types; or

o shall both be access-to-subprogram types with subtype conformant designated profiles.

For an object renaming_declaration with a null_exclusion or an access_definition that has a
null_exclusion, the subtype of the object name shall exclude null. In addition, if the
object_renaming_declaration occurs within the body of a generic unit G or within the body of a
generic unit declared within the declarative region of generic unit G, then:

o if the object name statically denotes a generic formal object of mode in out of G, then the
declaration of that object shall have a null_exclusion;

e if the object name statically denotes a call of a generic formal function of G, then the
declaration of the result of that function shall have a null_exclusion.

In the case where the object name is a qualified_expression with a nominal subtype S and whose
expression is a name that denotes an object QO:

e if Sis an elementary subtype, then:

© ISO/IEC 2021 — All rights reserved 228

ISO/IEC 8652:DIS

e (shall be a constant other than a dereference of an access type; or
¢ the nominal subtype of QO shall be statically compatible with S; or

e S shall statically match the base subtype of its type if scalar, or the first subtype of its type
if an access type.

e if S is a composite subtype, then Q shall be known to be constrained or S shall statically
match the first subtype of its type.

The renamed entity shall not be a subcomponent that depends on discriminants of an object whose
nominal subtype is unconstrained unless the object is known to be constrained. A slice of an array
shall not be renamed if this restriction disallows renaming of the array.

In addition to the places where Legality Rules normally apply (see 12.3), these rules also apply in the
private part of an instance of a generic unit.

Static Semantics

An object_renaming_declaration declares a new view of the renamed entity whose properties are
identical to those of the renamed view. Thus, the properties of the renamed entity are not affected by
the renaming_declaration. In particular, its nominal subtype, whether it is a value or an object, its
value if it is an object, and whether or not it is a constant, are unaffected; similarly, the constraints and
other properties of its nominal subtype are not affected by renaming (any constraint implied by the
subtype_mark or access_definition of the object_renaming_declaration is ignored).

Examples
Example of renaming an object:
declare
L : Person renames Leftmost Person; -- see3.10.]
begin
L.Age := L.Age + 1;
end;

Example of renaming a value:

Uno renames One; -- see3.3.2

8.5.2 Exception Renaming Declarations

An exception_renaming_declaration is used to rename an exception.

Syntax

exception_renaming_declaration ::= defining_identifier : exception renames exception_name
[aspect_specification];

Legality Rules

The renamed entity shall be an exception.

Static Semantics

An exception_renaming_declaration declares a new view of the renamed exception.

Examples

Example of renaming an exception:

EOF : exception renames Ada.IO_Exceptions.End Error; --seed.l3

8.5.3 Package Renaming Declarations

A package_renaming_declaration is used to rename a package.

229 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

Syntax

package renaming_declaration =
package defining_program_unit_name renames package hame
[aspect_specification];

Legality Rules
The renamed entity shall be a package.

If the package name of a package_renaming_declaration denotes a limited view of a package P,
then a name that denotes the package_renaming_declaration shall occur only within the immediate
scope of the renaming or the scope of a with_clause that mentions the package P or, if P is a nested
package, the innermost library package enclosing P.

Static Semantics
A package_renaming_declaration declares a new view of the renamed package.

At places where the declaration of the limited view of the renamed package is visible, a name that
denotes the package_renaming_declaration denotes a limited view of the package (see 10.1.1).

Examples

Example of renaming a package:

package TM renames Table Manager;

8.5.4 Subprogram Renaming Declarations

A subprogram_renaming_declaration can serve as the completion of a subprogram_declaration;
such a renaming_declaration is called a renaming-as-body. A subprogram_renaming_declaration
that is not a completion is called a renaming-as-declaration, and is used to rename a subprogram
(possibly an enumeration literal) or an entry.

Syntax

subprogram_renaming_declaration ::=
[overriding_indicator]
subprogram_specification renames callable_entity name
[aspect_specification];

Name Resolution Rules

The expected profile for the callable entity name is the profile given in the
subprogram_specification.

Legality Rules

The profile of a renaming-as-declaration shall be mode conformant with that of the renamed callable
entity.

For a parameter or result subtype of the subprogram_specification that has an explicit
null_exclusion:

o if the callable entity name statically denotes a generic formal subprogram of a generic unit
G, and the subprogram_renaming_declaration occurs within the body of a generic unit G or
within the body of a generic unit declared within the declarative region of the generic unit G,
then the corresponding parameter or result subtype of the formal subprogram of G shall have
a null_exclusion;

e otherwise, the subtype of the corresponding parameter or result type of the renamed callable
entity shall exclude null. In addition to the places where Legality Rules normally apply (see
12.3), this rule applies also in the private part of an instance of a generic unit.

© ISO/IEC 2021 — All rights reserved 230

ISO/IEC 8652:DIS

The profile of a renaming-as-body shall conform fully to that of the declaration it completes. If the
renaming-as-body completes that declaration before the subprogram it declares is frozen, the profile
shall be mode conformant with that of the renamed callable entity and the subprogram it declares
takes its convention from the renamed subprogram; otherwise, the profile shall be subtype conformant
with that of the renamed callable entity and the convention of the renamed subprogram shall not be
Intrinsic. A renaming-as-body is illegal if the declaration occurs before the subprogram whose
declaration it completes is frozen, and the renaming renames the subprogram itself, through one or
more subprogram renaming declarations, none of whose subprograms has been frozen.

The callable entity name of a renaming shall not denote a subprogram that requires overriding (see
3.9.3).

The callable_entity name of a renaming-as-body shall not denote an abstract subprogram.

If the callable entity name of a renaming is a prefixed view, the prefix of that view shall denote an
object for which renaming is allowed.

A name that denotes a formal parameter of the subprogram_specification is not allowed within the
callable entity name.

Static Semantics

A renaming-as-declaration declares a new view of the renamed entity. The profile of this new view
takes its subtypes, parameter modes, and calling convention from the original profile of the callable
entity, while taking the formal parameter names and default_expressions from the profile given in
the subprogram_renaming_declaration. The new view is a function or procedure, never an entry.

Dynamic Semantics

For a call to a subprogram whose body is given as a renaming-as-body, the execution of the
renaming-as-body is equivalent to the execution of a subprogram_body that simply calls the renamed
subprogram with its formal parameters as the actual parameters and, if it is a function, returns the
value of the call.

For a call on a renaming of a dispatching subprogram that is overridden, if the overriding occurred
before the renaming, then the body executed is that of the overriding declaration, even if the
overriding declaration is not visible at the place of the renaming; otherwise, the inherited or
predefined subprogram is called. A corresponding rule applies to a call on a renaming of a predefined
equality operator for an untagged record type.

Bounded (Run-Time) Errors

If a subprogram directly or indirectly renames itself, then it is a bounded error to call that subprogram.
Possible consequences are that Program Error or Storage Error is raised, or that the call results in
infinite recursion.

NOTES

11 A procedure can only be renamed as a procedure. A function whose defining_designator is either an identifier or an
operator_symbol can be renamed with either an identifier or an operator_symbol; for renaming as an operator, the
subprogram specification given in the renaming_declaration is subject to the rules given in 6.6 for operator
declarations. Enumeration literals can be renamed as functions; similarly, attribute_references that denote functions
(such as references to Succ and Pred) can be renamed as functions. An entry can only be renamed as a procedure; the
new name is only allowed to appear in contexts that allow a procedure name. An entry of a family can be renamed, but
an entry family cannot be renamed as a whole.

12 The operators of the root numeric types cannot be renamed because the types in the profile are anonymous, so the
corresponding specifications cannot be written; the same holds for certain attributes, such as Pos.

13 The primitiveness of a renaming-as-declaration is determined by its profile, and by where it occurs, as for any
declaration of (a view of) a subprogram; primitiveness is not determined by the renamed view. In order to perform a
dispatching call, the subprogram name has to denote a primitive subprogram, not a nonprimitive renaming of a
primitive subprogram.

231 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

Examples

Examples of subprogram renaming declarations:

procedure My Write(C : in Character) renames Pool (K) .Write; -- see4.l.3
function Real Plus(Left, Right : Real) return Real renames "+";
function Int Plus (Left, Right : Integer) return Integer renames "+";
function Rouge return Color renames Red; -- see3.S5.]

function Rot return Color renames Red;

function Rosso return Color renames Rouge;

function Next (X : Color) return Color renames Color'Succ; --see3.S5.1

Example of a subprogram renaming declaration with new parameter names:

function "*" (X,Y : Vector) return Real renames Dot Product; -- see6./

Example of a subprogram renaming declaration with a new default expression:

function Minimum(L : Link := Head) return Cell renames Min_Cell; --see6./

8.5.5 Generic Renaming Declarations

A generic_renaming_declaration is used to rename a generic unit.

Syntax
generic_renaming_declaration ::=
generic package defining_program_unit_name renames generic_package name
[aspect_specification];
| generic procedure defining_program_unit_name renames generic_procedure_name
[aspect_specification];
| generic function defining_program_unit_name renames generic_function_name
[aspect_specification];
Legality Rules

The renamed entity shall be a generic unit of the corresponding kind.

Static Semantics

A generic_renaming_declaration declares a new view of the renamed generic unit.

NOTES

14 Although the properties of the new view are the same as those of the renamed view, the place where the
generic_renaming_declaration occurs may affect the legality of subsequent renamings and instantiations that denote
the generic_renaming_declaration, in particular if the renamed generic unit is a library unit (see 10.1.1).

Examples

Example of renaming a generic unit:

generic package Enum IO renames Ada.Text IO.Enumeration IO; --seeA.10.10

8.6 The Context of Overload Resolution

Because declarations can be overloaded, it is possible for an occurrence of a usage name to have more
than one possible interpretation; in most cases, ambiguity is disallowed. This subclause describes how
the possible interpretations resolve to the actual interpretation.

Certain rules of the language (the Name Resolution Rules) are considered “overloading rules”. If a
possible interpretation violates an overloading rule, it is assumed not to be the intended interpretation;
some other possible interpretation is assumed to be the actual interpretation. On the other hand,
violations of nonoverloading rules do not affect which interpretation is chosen; instead, they cause the

© ISO/IEC 2021 — All rights reserved 232

ISO/IEC 8652:DIS

construct to be illegal. To be legal, there usually has to be exactly one acceptable interpretation of a
construct that is a “complete context”, not counting any nested complete contexts.

The syntax rules of the language and the visibility rules given in 8.3 determine the possible
interpretations. Most type checking rules (rules that require a particular type, or a particular class of
types, for example) are overloading rules. Various rules for the matching of formal and actual
parameters are overloading rules.

Name Resolution Rules

Overload resolution is applied separately to each complete context, not counting inner complete
contexts. Each of the following constructs is a complete context:

e A context_item.

e A declarative_item or declaration.

e A statement.

e A pragma_argument_association.

o The selecting expression of a case_statement or case_expression.

e The variable_name of an assignment_statement 4, if the expression of 4 contains one or
more target_names.

An (overall) interpretation of a complete context embodies its meaning, and includes the following
information about the constituents of the complete context, not including constituents of inner
complete contexts:

o for each constituent of the complete context, to which syntactic categories it belongs, and by
which syntax rules; and

e for each usage name, which declaration it denotes (and, therefore, which view and which
entity it denotes); and

e for a complete context that is a declarative_item, whether or not it is a completion of a
declaration, and (if so) which declaration it completes.

A possible interpretation is one that obeys the syntax rules and the visibility rules. An acceptable
interpretation is a possible interpretation that obeys the overloading rules, that is, those rules that
specify an expected type or expected profile, or specify how a construct shall resolve or be
interpreted.

The interpretation of a constituent of a complete context is determined from the overall interpretation
of the complete context as a whole. Thus, for example, “interpreted as a function_call”, means that the
construct's interpretation says that it belongs to the syntactic category function_call.

Each occurrence of a usage name denotes the declaration determined by its interpretation. It also
denotes the view declared by its denoted declaration, except in the following cases:

o [f a usage name appears within the declarative region of a type_declaration and denotes that
same type_declaration, then it denotes the current instance of the type (rather than the type
itself); the current instance of a type is the object or value of the type that is associated with
the execution that evaluates the usage name. Similarly, if a usage name appears within the
declarative region of a subtype declaration and denotes that same subtype declaration,
then it denotes the current instance of the subtype. These rules do not apply if the usage name
appears within the subtype_mark of an access_definition for an access-to-object type, or
within the subtype of a parameter or result of an access-to-subprogram type.

Within an aspect_specification for a type or subtype, the current instance represents a value
of the type; it is not an object. Unless otherwise specified, the nominal subtype of this value is
given by the subtype itself (the first subtype in the case of a type_declaration), prior to
applying any predicate specified directly on the type or subtype. If the type or subtype is by-
reference, the associated object of the value is the object associated (see 6.2) with the
evaluation of the usage name.

233 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

e If a usage name appears within the declarative region of a generic_declaration (but not
within its generic_formal_part) and it denotes that same generic_declaration, then it denotes
the current instance of the generic unit (rather than the generic unit itself). See also 12.3.

A usage name that denotes a view also denotes the entity of that view.

The expected type for a given expression, name, or other construct determines, according to the #ype
resolution rules given below, the types considered for the construct during overload resolution. The
type resolution rules provide support for class-wide programming, universal literals, dispatching
operations, and anonymous access types:

e Ifa construct is expected to be of any type in a class of types, or of the universal or class-wide
type for a class, then the type of the construct shall resolve to a type in that class or to a
universal type that covers the class.

o If the expected type for a construct is a specific type 7, then the type of the construct shall
resolve either to 7, or:

e to T'Class; or
o to a universal type that covers T; or

o when T is a specific anonymous access-to-object type (see 3.10) with designated type D,
to an access-to-object type whose designated type is D'Class or is covered by D; or

o when T is a named general access-to-object type (see 3.10) with designated type D, to an
anonymous access-to-object type whose designated type covers or is covered by D; or

e when 7 is an anonymous access-to-subprogram type (see 3.10), to an access-to-
subprogram type whose designated profile is type conformant with that of 7.

In certain contexts, such as in a subprogram_renaming_declaration, the Name Resolution Rules
define an expected profile for a given name; in such cases, the name shall resolve to the name of a
callable entity whose profile is type conformant with the expected profile.

Legality Rules

When a construct is one that requires that its expected type be a single type in a given class, the type
of the construct shall be determinable solely from the context in which the construct appears,
excluding the construct itself, but using the requirement that it be in the given class. Furthermore, the
context shall not be one that expects any type in some class that contains types of the given class; in
particular, the construct shall not be the operand of a type_conversion.

Other than for the tested simple_expression of a membership test, if the expected type for a name or
expression is not the same as the actual type of the name or expression, the actual type shall be
convertible to the expected type (see 4.6); further, if the expected type is a named access-to-object
type with designated type DI and the actual type is an anonymous access-to-object type with
designated type D2, then DI shall cover D2, and the name or expression shall denote a view with an
accessibility level for which the statically deeper relationship applies; in particular it shall not denote
an access parameter nor a stand-alone access object.

A complete context shall have at least one acceptable interpretation; if there is exactly one, then that
one is chosen.

There is a preference for the primitive operators (and ranges) of the root numeric types root_integer
and root_real. In particular, if two acceptable interpretations of a constituent of a complete context
differ only in that one is for a primitive operator (or range) of the type root_integer or root_real, and
the other is not, the interpretation using the primitive operator (or range) of the root numeric type is
preferred.

Similarly, there is a preference for the equality operators of the universal access type (see 4.5.2). If
two acceptable interpretations of a constituent of a complete context differ only in that one is for an

© ISO/IEC 2021 — All rights reserved 234

ISO/IEC 8652:DIS

equality operator of the umiversal access type, and the other is not, the interpretation using the
equality operator of the universal access type is preferred.

For a complete context, if there is exactly one overall acceptable interpretation where each
constituent's interpretation is the same as or preferred (in the above sense) over those in all other
overall acceptable interpretations, then that one overall acceptable interpretation is chosen. Otherwise,
the complete context is ambiguous.

A complete context other than a pragma_argument_association shall not be ambiguous.

A complete context that is a pragma_argument_association is allowed to be ambiguous (unless
otherwise specified for the particular pragma), but only if every acceptable interpretation of the
pragma argument is as a name that statically denotes a callable entity. Such a name denotes all of the
declarations determined by its interpretations, and all of the views declared by these declarations.
NOTES
15 If a usage name has only one acceptable interpretation, then it denotes the corresponding entity. However, this does
not mean that the usage name is necessarily legal since other requirements exist which are not considered for overload

resolution; for example, the fact that an expression is static, whether an object is constant, mode and subtype
conformance rules, freezing rules, order of elaboration, and so on.

Similarly, subtypes are not considered for overload resolution (the violation of a constraint does not make a program
illegal but raises an exception during program execution).

235 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

9 Tasks and Synchronization

The execution of an Ada program consists of the execution of one or more tasks. Each task represents
a separable activity that proceeds independently and concurrently between the points where it
interacts with other tasks. A single task, when within the context of a parallel construct, can represent
multiple logical threads of control which can proceed in parallel; in other contexts, each task
represents one logical thread of control.

The various forms of task interaction are described in this clause, and include:

e the activation and termination of a task;

e a call on a protected subprogram of a protected object, providing exclusive read-write access,
or concurrent read-only access to shared data;

e a call on an entry, either of another task, allowing for synchronous communication with that
task, or of a protected object, allowing for asynchronous communication with one or more
other tasks using that same protected object;

e a timed operation, including a simple delay statement, a timed entry call or accept, or a timed
asynchronous select statement (see next item);

e an asynchronous transfer of control as part of an asynchronous select statement, where a task
stops what it is doing and begins execution at a different point in response to the completion
of an entry call or the expiration of a delay;

e an abort statement, allowing one task to cause the termination of another task.

In addition, tasks can communicate indirectly by reading and updating (unprotected) shared variables,
presuming the access is properly synchronized through some other kind of task interaction.

Static Semantics

The properties of a task are defined by a corresponding task declaration and task_body, which
together define a program unit called a fask unit.

Dynamic Semantics

Over time, tasks proceed through various states. A task is initially inactive; upon activation, and prior
to its termination it is either blocked (as part of some task interaction) or ready to run. While ready, a
task competes for the available execution resources that it requires to run. In the context of a parallel
construct, a single task can utilize multiple processing resources simultaneously.

NOTES

1 Concurrent task execution may be implemented on multicomputers, multiprocessors, or with interleaved execution

on a single physical processor. On the other hand, whenever an implementation can determine that the required

semantic effects can be achieved when parts of the execution of a single logical thread of control are performed by
different physical processors acting in parallel, it may choose to perform them in this way.

9.1 Task Units and Task Objects

A task unit is declared by a task declaration, which has a corresponding task body. A task
declaration may be a task_type_declaration, in which case it declares a named task type;
alternatively, it may be a single_task_declaration, in which case it defines an anonymous task type,
as well as declaring a named task object of that type.

Syntax

task_type_declaration ::=
task type defining_identifier [known_discriminant_part]
[aspect_specification] [is
[new interface_list with]
task_definition];

237 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

single_task_declaration ::=
task defining_identifier
[aspect_specification][is
[new interface_list with]
task_definition];

task_definition ::=
{task_item}
[private
{task_item}]
end [task_identifier]

task_item ::= entry_declaration | aspect_clause

task_body ::=
task body defining_identifier
[aspect_specification] is
declarative_part
begin
handled_sequence_of statements
end [fask_identifier];

If a task identifier appears at the end of a task_definition or task_body, it shall repeat the
defining_identifier.

Static Semantics

A task_definition defines a task type and its first subtype. The first list of task_items of a task_-
definition, together with the known_discriminant_part, if any, is called the visible part of the task
unit. The optional list of task_items after the reserved word private is called the private part of the
task unit.

For a task declaration without a task_definition, a task_definition without task_items is assumed.

For a task declaration with an interface_list, the task type inherits user-defined primitive subprograms
from each progenitor type (see 3.9.4), in the same way that a derived type inherits user-defined
primitive subprograms from its progenitor types (see 3.4). If the first parameter of a primitive
inherited subprogram is of the task type or an access parameter designating the task type, and there is
an entry_declaration for a single entry with the same identifier within the task declaration, whose
profile is type conformant with the prefixed view profile of the inherited subprogram, the inherited
subprogram is said to be implemented by the conforming task entry using an implicitly declared
nonabstract subprogram which has the same profile as the inherited subprogram and which overrides
it.

Legality Rules

A task declaration requires a completion, which shall be a task_body, and every task_body shall be
the completion of some task declaration.

Each interface_subtype_mark of an interface_list appearing within a task declaration shall denote a
limited interface type that is not a protected interface.

The prefixed view profile of an explicitly declared primitive subprogram of a tagged task type shall
not be type conformant with any entry of the task type, if the subprogram has the same defining name
as the entry and the first parameter of the subprogram is of the task type or is an access parameter
designating the task type.

For each primitive subprogram inherited by the type declared by a task declaration, at most one of the
following shall apply:

© ISO/IEC 2021 — All rights reserved 238

ISO/IEC 8652:DIS

o the inherited subprogram is overridden with a primitive subprogram of the task type, in which
case the overriding subprogram shall be subtype conformant with the inherited subprogram
and not abstract; or

e the inherited subprogram is implemented by a single entry of the task type; in which case its
prefixed view profile shall be subtype conformant with that of the task entry.

If neither applies, the inherited subprogram shall be a null procedure. In addition to the places where
Legality Rules normally apply (see 12.3), these rules also apply in the private part of an instance of a
generic unit.

Dynamic Semantics

The elaboration of a task declaration elaborates the task definition. The elaboration of a single -
task_declaration also creates an object of an (anonymous) task type.

The elaboration of a task_definition creates the task type and its first subtype; it also includes the
elaboration of the entry_declarations in the given order.

As part of the initialization of a task object, any aspect_clauses and any per-object constraints
associated with entry_declarations of the corresponding task_definition are elaborated in the given
order.

The elaboration of a task_body has no effect other than to establish that tasks of the type can from
then on be activated without failing the Elaboration_Check.

The execution of a task_body is invoked by the activation of a task of the corresponding type (see
9.2).

The content of a task object of a given task type includes:
e The values of the discriminants of the task object, if any;
¢ An entry queue for each entry of the task object;

e A representation of the state of the associated task.

NOTES

2 Other than in an access_definition, the name of a task unit within the declaration or body of the task unit denotes the
current instance of the unit (see 8.6), rather than the first subtype of the corresponding task type (and thus the name
cannot be used as a subtype_mark).

3 The notation of a selected_component can be used to denote a discriminant of a task (see 4.1.3). Within a task unit,
the name of a discriminant of the task type denotes the corresponding discriminant of the current instance of the unit.

4 A task type is a limited type (see 7.5), and hence precludes use of assignment_statements and predefined equality
operators. If an application needs to store and exchange task identities, it can do so by defining an access type
designating the corresponding task objects and by using access values for identification purposes. Assignment is
available for such an access type as for any access type. Alternatively, if the implementation supports the Systems
Programming Annex, the Identity attribute can be used for task identification (see C.7.1).

Examples

Examples of declarations of task types:

task type Server is
entry Next Work Item(WI : in Work Item);
entry Shut Down;

end Server;

task type Keyboard Driver (ID : Keyboard ID := New_ ID) is
new Serial Device with --see3.9.4
entry Read (C : out Character);
entry Write(C : in Character);
end Keyboard Driver;

Examples of declarations of single tasks:

task Controller is
entry Request (Level) (D : Item); -- afamily of entries
end Controller;

239 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

task Parser is
entry Next Lexeme (L : in Lexical Element) ;
entry Next Action(A : out Parser Action);
end;

task User; -- has no entries

Examples of task objects:

Agent : Server;
Teletype : Keyboard Driver (TTY ID);
Pool : array(l .. 10) of Keyboard Driver;

Example of access type designating task objects:

type Keyboard is access Keyboard Driver;
Terminal : Keyboard := new Keyboard Driver (Term_ ID) ;

9.2 Task Execution - Task Activation

Dynamic Semantics

The execution of a task of a given task type consists of the execution of the corresponding task_body.
The initial part of this execution is called the activation of the task; it consists of the elaboration of the
declarative_part of the task_body. Should an exception be propagated by the elaboration of its
declarative_part, the activation of the task is defined to have failed, and it becomes a completed task.

A task object (which represents one task) can be a part of a stand-alone object, of an object created by
an allocator, or of an anonymous object of a limited type, or a coextension of one of these. All tasks
that are part or coextensions of any of the stand-alone objects created by the elaboration of object_-
declarations (or generic_associations of formal objects of mode in) of a single declarative region are
activated together. All tasks that are part or coextensions of a single object that is not a stand-alone
object are activated together.

For the tasks of a given declarative region, the activations are initiated within the context of the
handled_sequence_of_statements (and its associated exception_handlers if any — see 11.2), just
prior to executing the statements of the handled_sequence_of_statements. For a package without
an explicit body or an explicit handled_sequence_of_statements, an implicit body or an implicit
null_statement is assumed, as defined in 7.2.

For tasks that are part or coextensions of a single object that is not a stand-alone object, activations are
initiated after completing any initialization of the outermost object enclosing these tasks, prior to
performing any other operation on the outermost object. In particular, for tasks that are part or
coextensions of the object created by the evaluation of an allocator, the activations are initiated as the
last step of evaluating the allocator, prior to returning the new access value. For tasks that are part or
coextensions of an object that is the result of a function call, the activations are not initiated until after
the function returns.

The task that created the new tasks and initiated their activations (the activator) is blocked until all of
these activations complete (successfully or not). Once all of these activations are complete, if the
activation of any of the tasks has failed (due to the propagation of an exception), Tasking Error is
raised in the activator, at the place at which it initiated the activations. Otherwise, the activator
proceeds with its execution normally. Any tasks that are aborted prior to completing their activation
are ignored when determining whether to raise Tasking_Error.

If the master that directly encloses the point where the activation of a task 7 would be initiated,
completes before the activation of T is initiated, 7 becomes terminated and is never activated.
Furthermore, if a return statement is left such that the return object is not returned to the caller, any
task that was created as a part of the return object or one of its coextensions immediately becomes
terminated and is never activated.

© ISO/IEC 2021 — All rights reserved 240

ISO/IEC 8652:DIS

NOTES
5 An entry of a task can be called before the task has been activated.

6 If several tasks are activated together, the execution of any of these tasks need not await the end of the activation of
the other tasks.

7 A task can become completed during its activation either because of an exception or because it is aborted (see 9.8).

Examples
Example of task activation:
procedure P is
A, B : Server; - - elaborate the task objects A, B
C : Server; -~ elaborate the task object C

begin
-~ the tasks A, B, C are activated together before the first statement

end;

9.3 Task Dependence - Termination of Tasks

Dynamic Semantics

Each task (other than an environment task — see 10.2) depends on one or more masters (see 7.6.1), as
follows:

e [f the task is created by the evaluation of an allocator for a given named access type, it
depends on each master that includes the elaboration of the declaration of the ultimate
ancestor of the given access type.

o If the task is created by the elaboration of an object_declaration, it depends on each master
that includes this elaboration.

e Otherwise, the task depends on the master of the outermost object of which it is a part (as
determined by the accessibility level of that object — see 3.10.2 and 7.6.1), as well as on any
master whose execution includes that of the master of the outermost object.

Furthermore, if a task depends on a given master, it is defined to depend on the task that executes the
master, and (recursively) on any master of that task.

A task is said to be completed when the execution of its corresponding task_body is completed. A
task is said to be terminated when any finalization of the task_body has been performed (see 7.6.1).
The first step of finalizing a master (including a task_body) is to wait for the termination of any tasks
dependent on the master. The task executing the master is blocked until all the dependents have
terminated. Any remaining finalization is then performed and the master is left.

Completion of a task (and the corresponding task_body) can occur when the task is blocked at a
select_statement with an open terminate_alternative (see 9.7.1); the open terminate_alternative is
selected if and only if the following conditions are satisfied:

e The task depends on some completed master; and

e FEach task that depends on the master considered is either already terminated or similarly
blocked at a select_statement with an open terminate_alternative.

When both conditions are satisfied, the task considered becomes completed, together with all tasks
that depend on the master considered that are not yet completed.
NOTES

8 The full view of a limited private type can be a task type, or can have subcomponents of a task type. Creation of an
object of such a type creates dependences according to the full type.

9 An object_renaming_declaration defines a new view of an existing entity and hence creates no further dependence.

10 The rules given for the collective completion of a group of tasks all blocked on select_statements with open
terminate_alternatives ensure that the collective completion can occur only when there are no remaining active tasks
that could call one of the tasks being collectively completed.

241 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

11 If two or more tasks are blocked on select_statements with open terminate_alternatives, and become completed
collectively, their finalization actions proceed concurrently.

12 The completion of a task can occur due to any of the following:
o the raising of an exception during the elaboration of the declarative_part of the corresponding task_body;
e the completion of the handled_sequence_of statements of the corresponding task_body;
e the selection of an open terminate_alternative of a select_statement in the corresponding task_body;
o the abort of the task.

Examples

Example of task dependence:

declare
type Global is access Server; -- see 9.1
A, B : Server;
G : Global;
begin
- - activation of A and B
declare
type Local is access Server;
X : Global new Server; -- activation of X.all
L : Local new Server; -- activation of L.all
C : Server;
begin
- - activation of C
G := X; -- both Gand X designate the same task object

end; -- await termination of C and L.all (but not X.all)

end; -- await termination of A, B, and G.all

9.4 Protected Units and Protected Objects

A protected object provides coordinated access to shared data, through calls on its visible protected
operations, which can be protected subprograms or protected entries. A protected unit is declared by
a protected declaration, which has a corresponding protected_body. A protected declaration may be
a protected_type_declaration, in which case it declares a named protected type; alternatively, it may
be a single_protected_declaration, in which case it defines an anonymous protected type, as well as
declaring a named protected object of that type.

Syntax

protected_type declaration ::=
protected type defining_identifier [known_discriminant_part]
[aspect_specification] is
[new interface_list with]
protected_definition;

single_protected_declaration ::=
protected defining_identifier
[aspect_specification] is
[new interface_list with]
protected_definition;

protected_definition ::=
{ protected_operation_declaration }
[private
{ protected_element_declaration }]
end [protected_identifier]

protected_operation_declaration ::= subprogram_declaration
| entry_declaration

© ISO/IEC 2021 — All rights reserved 242

ISO/IEC 8652:DIS

| aspect_clause

protected_element_declaration ::= protected_operation_declaration
| component_declaration

protected_body ::=
protected body defining_identifier
[aspect_specification] is
{ protected_operation_item }
end [protected_identifier];

protected_operation_item ::= subprogram_declaration
| subprogram_body
| null_procedure_declaration
| expression_function_declaration
| entry_body
| aspect_clause

If a protected identifier appears at the end of a protected_definition or protected_body, it shall
repeat the defining_identifier.

Static Semantics

A protected_definition defines a protected type and its first subtype. The list of protected_-
operation_declarations of a protected_definition, together with the known_discriminant_part, if
any, is called the visible part of the protected unit. The optional list of protected_element_-
declarations after the reserved word private is called the private part of the protected unit.

For a protected declaration with an interface_list, the protected type inherits user-defined primitive
subprograms from each progenitor type (see 3.9.4), in the same way that a derived type inherits user-
defined primitive subprograms from its progenitor types (see 3.4). If the first parameter of a primitive
inherited subprogram is of the protected type or an access parameter designating the protected type,
and there is a protected_operation_declaration for a protected subprogram or single entry with the
same identifier within the protected declaration, whose profile is type conformant with the prefixed
view profile of the inherited subprogram, the inherited subprogram is said to be implemented by the
conforming protected subprogram or entry using an implicitly declared nonabstract subprogram which
has the same profile as the inherited subprogram and which overrides it.

Legality Rules

A protected declaration requires a completion, which shall be a protected_body, and every
protected_body shall be the completion of some protected declaration.

Each interface _subtype_mark of an interface_list appearing within a protected declaration shall
denote a limited interface type that is not a task interface.

The prefixed view profile of an explicitly declared primitive subprogram of a tagged protected type
shall not be type conformant with any protected operation of the protected type, if the subprogram has
the same defining name as the protected operation and the first parameter of the subprogram is of the
protected type or is an access parameter designating the protected type.

For each primitive subprogram inherited by the type declared by a protected declaration, at most one
of the following shall apply:
o the inherited subprogram is overridden with a primitive subprogram of the protected type, in

which case the overriding subprogram shall be subtype conformant with the inherited
subprogram and not abstract; or

e the inherited subprogram is implemented by a protected subprogram or single entry of the
protected type, in which case its prefixed view profile shall be subtype conformant with that
of the protected subprogram or entry.

243 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

If neither applies, the inherited subprogram shall be a null procedure. In addition to the places where
Legality Rules normally apply (see 12.3), these rules also apply in the private part of an instance of a
generic unit.

If an inherited subprogram is implemented by a protected procedure or an entry, then the first
parameter of the inherited subprogram shall be of mode out or in out, or an access-to-variable
parameter. If an inherited subprogram is implemented by a protected function, then the first parameter
of the inherited subprogram shall be of mode in, but not an access-to-variable parameter.

If a protected subprogram declaration has an overriding_indicator, then at the point of the declaration:

o if the overriding_indicator is overriding, then the subprogram shall implement an inherited
subprogram;

o if the overriding_indicator is not overriding, then the subprogram shall not implement any
inherited subprogram.

In addition to the places where Legality Rules normally apply (see 12.3), these rules also apply in the
private part of an instance of a generic unit.

Dynamic Semantics

The elaboration of a protected declaration elaborates the protected_definition. The elaboration of a
single_protected_declaration also creates an object of an (anonymous) protected type.

The elaboration of a protected_definition creates the protected type and its first subtype; it also
includes the elaboration of the component_declarations and protected_operation_declarations in
the given order.

As part of the initialization of a protected object, any per-object constraints (see 3.8) are elaborated.

The elaboration of a protected_body has no other effect than to establish that protected operations of
the type can from then on be called without failing the Elaboration Check.

The content of an object of a given protected type includes:

e The values of the components of the protected object, including (implicitly) an entry queue
for each entry declared for the protected object;

e A representation of the state of the execution resource associated with the protected object
(one such resource is associated with each protected object).

The execution resource associated with a protected object has to be acquired to read or update any
components of the protected object; it can be acquired (as part of a protected action — see 9.5.1)
either for concurrent read-only access, or for exclusive read-write access.

As the first step of the finalization of a protected object, each call remaining on any entry queue of the
object is removed from its queue and Program Error is raised at the place of the corresponding
entry_call_statement.

Bounded (Run-Time) Errors

It is a bounded error to call an entry or subprogram of a protected object after that object is finalized.
If the error is detected, Program_Error is raised. Otherwise, the call proceeds normally, which may
leave a task queued forever.

NOTES

13 Within the declaration or body of a protected unit other than in an access_definition, the name of the protected unit

denotes the current instance of the unit (see 8.6), rather than the first subtype of the corresponding protected type (and
thus the name cannot be used as a subtype_mark).

14 A selected_component can be used to denote a discriminant of a protected object (see 4.1.3). Within a protected
unit, the name of a discriminant of the protected type denotes the corresponding discriminant of the current instance of
the unit.

15 A protected type is a limited type (see 7.5), and hence precludes use of assignment_statements and predefined
equality operators.

© ISO/IEC 2021 — All rights reserved 244

ISO/IEC 8652:DIS

16 The bodies of the protected operations given in the protected_body define the actions that take place upon calls to
the protected operations.

17 The declarations in the private part are only visible within the private part and the body of the protected unit.

Examples

Example of declaration of protected type and corresponding body:

protected type Resource is

entry Seize;

procedure Release;
private

Busy : Boolean := False;
end Resource;

protected body Resource is
entry Seize when not Busy is
begin
Busy := True;
end Seize;

procedure Release is
begin
Busy := False;
end Release;
end Resource;

Example of a single protected declaration and corresponding body:

protected Shared Array is
-- Index, Item, and Item_Array are global types

function Component (N : in Index) return Item;

procedure Set Component (N : in Index; E : in Item);
private

Table : Item Array(Index) := (others => Null Item);

end Shared Array;

protected body Shared Array is
function Component (N : in Index) return Item is
begin
return Table (N) ;
end Component;

procedure Set Component (N : in Index; E : in Item) is
begin
Table (N) := E;
end Set Component;
end Shared Array;

Examples of protected objects:

Control : Resource;
Flags : array(l .. 100) of Resource;

9.5 Intertask Communication

The primary means for intertask communication is provided by calls on entries and protected
subprograms. Calls on protected subprograms allow coordinated access to shared data objects. Entry
calls allow for blocking the caller until a given condition is satisfied (namely, that the corresponding
entry is open — see 9.5.3), and then communicating data or control information directly with another
task or indirectly via a shared protected object.

Static Semantics

When a name or prefix denotes an entry, protected subprogram, or a prefixed view of a primitive
subprogram of a limited interface whose first parameter is a controlling parameter, the name or prefix
determines a target object, as follows:

e If it is a direct name or expanded name that denotes the declaration (or body) of the
operation, then the target object is implicitly specified to be the current instance of the task or

245 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

protected unit immediately enclosing the operation; a call using such a name is defined to be
an internal call,

e If it is a selected_component that is not an expanded name, then the target object is
explicitly specified to be the object denoted by the prefix of the name; a call using such a
name is defined to be an external call;

e If the name or prefix is a dereference (implicit or explicit) of an access-to-protected-
subprogram value, then the target object is determined by the prefix of the Access
attribute_reference that produced the access value originally; a call using such a name is
defined to be an external call;

o If the name or prefix denotes a subprogram_renaming_declaration, then the target object is
as determined by the name of the renamed entity.

A call on an entry or a protected subprogram either uses a name or prefix that determines a target
object implicitly, as above, or is a call on (a non-prefixed view of) a primitive subprogram of a limited
interface whose first parameter is a controlling parameter, in which case the target object is identified
explicitly by the first parameter. This latter case is an external call.

A corresponding definition of target object applies to a requeue_statement (see 9.5.4), with a
corresponding distinction between an internal requeue and an external requeue.

Legality Rules

If a name or prefix determines a target object, and the name denotes a protected entry or procedure,
then the target object shall be a variable, unless the prefix is for an attribute_reference to the Count
attribute (see 9.9).

An internal call on a protected function shall not occur within a precondition expression (see 6.1.1) of
a protected operation nor within a default_expression of a parameter_specification of a protected
operation.

Dynamic Semantics

Within the body of a protected operation, the current instance (see 8.6) of the immediately enclosing
protected unit is determined by the target object specified (implicitly or explicitly) in the call (or
requeue) on the protected operation.

Any call on a protected procedure or entry of a target protected object is defined to be an update to the
object, as is a requeue on such an entry.
Syntax

synchronization_kind ::= By Entry | By Protected Procedure | Optional

Static Semantics

For the declaration of a primitive procedure of a synchronized tagged type the following language-
defined representation aspect may be specified with an aspect_specification (see 13.1.1):

Synchronization
If specified, the aspect definition shall be a synchronization_kind.

Inherited subprograms inherit the Synchronization aspect, if any, from the corresponding subprogram
of the parent or progenitor type. If an overriding operation does not have a directly specified
Synchronization aspect then the Synchronization aspect of the inherited operation is inherited by the
overriding operation.

Legality Rules

The synchronization_kind By Protected Procedure shall not be applied to a primitive procedure of a
task interface.

© ISO/IEC 2021 — All rights reserved 246

ISO/IEC 8652:DIS

A procedure for which the specified synchronization_kind is By Entry shall be implemented by an
entry. A procedure for which the specified synchronization_kind is By Protected Procedure shall be
implemented by a protected procedure. A procedure for which the specified synchronization_kind is
Optional may be implemented by an entry or by a procedure (including a protected procedure).

If a primitive procedure overrides an inherited operation for which the Synchronization aspect has
been specified to be By Entry or By Protected Procedure, then any specification of the aspect
Synchronization applied to the overriding operation shall have the same synchronization_kind.

In addition to the places where Legality Rules normally apply (see 12.3), these rules also apply in the
private part of an instance of a generic unit.

Static Semantics

For a program unit, task entry, formal package, formal subprogram, formal object of an anonymous
access-to-subprogram type, enumeration literal, and for a subtype (including a formal subtype), the
following language-defined operational aspect is defined:

Nonblocking
This aspect specifies the blocking restriction for the entity; it shall be specified by a static
Boolean expression. The aspect_definition can be omitted from the specification of this
aspect; in that case, the aspect for the entity is True.

The Nonblocking aspect may be specified for all entities for which it is defined, except
for protected operations and task entries. In particular, Nonblocking may be specified for
generic formal parameters.

When aspect Nonblocking is False for an entity, the entity might contain a potentially
blocking operation; such an entity allows blocking. If the aspect is True for an entity, the
entity is said to be nonblocking.

For a generic instantiation and entities declared within such an instance, the aspect is
determined by the Nonblocking aspect for the corresponding entity of the generic unit,
anded with the Nonblocking aspects of the actual generic parameters used by the entity.
If the aspect is directly specified for an instance, the specified expression shall have the
same value as the Nonblocking aspect of the instance (after anding with the aspects of the
used actual parameters). In the absence of a Use Formal aspect, all actual generic
parameters are presumed to be used by an entity (see H.7.1).

For a (protected or task) entry, the Nonblocking aspect is False.
For an enumeration literal, the Nonblocking aspect is True.

For a predefined operator of an elementary type, the Nonblocking aspect is True. For a
predefined operator of a composite type, the Nonblocking aspect of the operator is the
same as the Nonblocking aspect for the type.

For a dereference of an access-to-subprogram type, the Nonblocking aspect of the
designated subprogram is that of the access-to-subprogram type.

For the base subtype of a scalar (sub)type, the Nonblocking aspect is True.

For an inherited primitive dispatching subprogram that is null or abstract, the subprogram
is nonblocking if and only if a corresponding subprogram of at least one ancestor is
nonblocking. For any other inherited subprogram, it is nonblocking if and only if the
corresponding subprogram of the parent is nonblocking.

Unless directly specified, overridings of dispatching operations inherit this aspect.

Unless directly specified, for a formal subtype, formal package, or formal subprogram,
the Nonblocking aspect is that of the actual subtype, package, or subprogram.

Unless directly specified, for a non-first subtype S, the Nonblocking aspect is that of the
subtype identified in the subtype indication defining S; unless directly specified for the
first subtype of a derived type, the Nonblocking aspect is that of the ancestor subtype.

247 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

Unless directly specified, for any other program unit, first subtype, or formal object, the
Nonblocking aspect of the entity is determined by the Nonblocking aspect for the
innermost program unit enclosing the entity.

If not specified for a library unit, the Nonblocking aspect is True if the library unit is
declared pure, or False otherwise.

The following are defined to be potentially blocking operations:
e aselect_statement;
e an accept_statement;
e an entry_call_statement, or a call on a procedure that renames or is implemented by an entry;
e adelay_statement;
e an abort_statement;
o task creation or activation;

e during a protected action, an external call on a protected subprogram (or an external requeue)
with the same target object as that of the protected action.

If a language-defined subprogram allows blocking, then a call on the subprogram is a potentially
blocking operation.

Legality Rules

A portion of program text is called a nonblocking region if it is anywhere within a parallel construct,
or if the innermost enclosing program unit is nonblocking. A nonblocking region shall not contain any
of the following:

e aselect_statement;

e an accept_statement;

e adelay_statement;

e an abort_statement;

e task creation or activation.

Furthermore, a parallel construct shall neither contain a call on a callable entity for which the
Nonblocking aspect is False, nor shall it contain a call on a callable entity declared within a generic
unit that uses a generic formal parameter with Nonblocking aspect False (see Use Formal aspect in
H.7.1).

Finally, a nonblocking region that is outside of a parallel construct shall not contain a call on a
callable entity for which the Nonblocking aspect is False, unless the region is within a generic unit
and the callable entity is associated with a generic formal parameter of the generic unit, or the call is
within the aspect_definition of an assertion aspect for an entity that allows blocking.

For the purposes of the above rules, an entry_body is considered nonblocking if the immediately
enclosing protected unit is nonblocking.

For a subtype for which aspect Nonblocking is True, any predicate expression that applies to the
subtype shall only contain constructs that are allowed immediately within a nonblocking program
unit.

A subprogram shall be nonblocking if it overrides a nonblocking dispatching operation. An entry shall
not implement a nonblocking procedure. If an inherited dispatching subprogram allows blocking, then
the corresponding subprogram of each ancestor shall allow blocking.

It is illegal to directly specify aspect Nonblocking for the first subtype of the full view of a type that
has a partial view. If the Nonblocking aspect of the full view is inherited, it shall have the same value
as that of the partial view, or have the value True.

© ISO/IEC 2021 — All rights reserved 248

ISO/IEC 8652:DIS

Aspect Nonblocking shall be directly specified for the first subtype of a derived type only if it has the
same value as the Nonblocking aspect of the ancestor subtype or if it is specified True. Aspect
Nonblocking shall be directly specified for a nonfirst subtype S only if it has the same value as the
Nonblocking aspect of the subtype identified in the subtype_indication defining S or if it is specified
True.

For an access-to-object type that is nonblocking, the Allocate, Deallocate, and Storage Size
operations on its storage pool shall be nonblocking.
For a composite type that is nonblocking:

e All component subtypes shall be nonblocking;

e For a record type or extension, every call in the default_expression of a component
(including discriminants) shall call an operation that is nonblocking;

e For a controlled type, the Initialize, Finalize, and Adjust (if any) subprograms shall be
nonblocking.

The predefined equality operator for a composite type, unless it is for a record type or record
extension and the operator is overridden by a primitive equality operator, is illegal if it is nonblocking
and:

o for a record type or record extension, the parent primitive allows blocking; or
e some component is of a type 7, and:
e Tis arecord type or record extension that has a primitive "=" that allows blocking; or

e T is neither a record type nor a record extension, and 7 has a predefined "=" that allows
blocking.

In a generic instantiation:

e the actual subprogram corresponding to a nonblocking formal subprogram shall be
nonblocking (an actual that is an entry is not permitted in this case);

o the actual subtype corresponding to a nonblocking formal subtype shall be nonblocking;

o the actual object corresponding to a formal object of a nonblocking access-to-subprogram
type shall be of a nonblocking access-to-subprogram type;

o the actual instance corresponding to a nonblocking formal package shall be nonblocking.
In addition to the places where Legality Rules normally apply (see 12.3), the above rules also apply in
the private part of an instance of a generic unit.

NOTES
18 The synchronization_kind By Protected Procedure implies that the operation will not block.

9.5.1 Protected Subprograms and Protected Actions

A protected subprogram is a subprogram declared immediately within a protected_definition.
Protected procedures provide exclusive read-write access to the data of a protected object; protected
functions provide concurrent read-only access to the data.

Static Semantics

Within the body of a protected function (or a function declared immediately within a
protected_body), the current instance of the enclosing protected unit is defined to be a constant (that
is, its subcomponents may be read but not updated). Within the body of a protected procedure (or a
procedure declared immediately within a protected_body), and within an entry_body, the current
instance is defined to be a variable (updating is permitted).

249 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

For a type declared by a protected_type_declaration or for the anonymous type of an object declared
by a single_protected_declaration, the following language-defined type-related representation aspect
may be specified:

Exclusive_Functions
The type of aspect Exclusive Functions is Boolean. If not specified (including by
inheritance), the aspect is False.

A value of True for this aspect indicates that protected functions behave in the same way
as protected procedures with respect to mutual exclusion and queue servicing (see below).

A protected procedure or entry is an exclusive protected operation. A protected function of a protected
type P is an exclusive protected operation if the Exclusive Functions aspect of P is True.

Dynamic Semantics

For the execution of a call on a protected subprogram, the evaluation of the name or prefix and of the
parameter associations, and any assigning back of in out or out parameters, proceeds as for a normal
subprogram call (see 6.4). If the call is an internal call (see 9.5), the body of the subprogram is
executed as for a normal subprogram call. If the call is an external call, then the body of the
subprogram is executed as part of a new protected action on the target protected object; the protected
action completes after the body of the subprogram is executed. A protected action can also be started
by an entry call (see 9.5.3).

A new protected action is not started on a protected object while another protected action on the same
protected object is underway, unless both actions are the result of a call on a nonexclusive protected
function. This rule is expressible in terms of the execution resource associated with the protected
object:

e Starting a protected action on a protected object corresponds to acquiring the execution
resource associated with the protected object, either for exclusive read-write access if the
protected action is for a call on an exclusive protected operation, or for concurrent read-only
access otherwise;

e Completing the protected action corresponds to releasing the associated execution resource.

After performing an exclusive protected operation on a protected object, but prior to completing the
associated protected action, the entry queues (if any) of the protected object are serviced (see 9.5.3).

If a parallel construct occurs within a protected action, no new logical threads of control are created.
Instead, each element of the parallel construct that would have become a separate logical thread of
control executes on the logical thread of control that is performing the protected action. If there are
multiple such elements initiated at the same point, they execute in an arbitrary order.

Bounded (Run-Time) Errors

During a protected action, it is a bounded error to invoke an operation that is potentially blocking (see
9.5).

If the bounded error is detected, Program_Error is raised. If not detected, the bounded error might
result in deadlock or a (nested) protected action on the same target object.

During a protected action, a call on a subprogram whose body contains a potentially blocking
operation is a bounded error. If the bounded error is detected, Program_Error is raised; otherwise, the
call proceeds normally.

NOTES

19 If two tasks both try to start a protected action on a protected object, and at most one is calling a protected
nonexclusive function, then only one of the tasks can proceed. Although the other task cannot proceed, it is not
considered blocked, and it might be consuming processing resources while it awaits its turn. Unless there is an
admission policy (see D.4.1) in effect, there is no language-defined ordering or queuing presumed for tasks competing
to start a protected action — on a multiprocessor such tasks might use busy-waiting; for further monoprocessor and
multiprocessor considerations, see D.3, “Priority Ceiling Locking”.

© ISO/IEC 2021 — All rights reserved 250

ISO/IEC 8652:DIS

20 The body of a protected unit may contain declarations and bodies for local subprograms. These are not visible
outside the protected unit.

21 The body of a protected function can contain internal calls on other protected functions, but not protected
procedures, because the current instance is a constant. On the other hand, the body of a protected procedure can contain
internal calls on both protected functions and procedures.

22 From within a protected action, an internal call on a protected subprogram, or an external call on a protected
subprogram with a different target object is not considered a potentially blocking operation.

23 The aspect Nonblocking can be specified True on the definition of a protected unit in order to reject most attempts
to use potentially blocking operations within the protected unit (see 9.5). The pragma Detect Blocking may be used to
ensure that any remaining executions of potentially blocking operations during a protected action raise Program_Error.
See H.5.

Examples

Examples of protected subprogram calls (see 9.4):

Shared Array.Set Component (N, E);
E := Shared Array.Component (M) ;
Control .Release;

9.5.2 Entries and Accept Statements

Entry_declarations, with the corresponding entry_bodies or accept_statements, are used to define
potentially queued operations on tasks and protected objects.

Syntax

entry_declaration ::=
[overriding_indicator]
entry defining_identifier [(discrete_subtype_definition)] parameter_profile
[aspect_specification];

accept_statement ::=
accept entry_direct_name [(entry_index)] parameter_profile [do
handled_sequence_of statements
end [entry_identifier]];

entry_index ::= expression

entry_body ::=

entry defining_identifier entry_body_formal_part
[aspect_specification]

entry_barrier is
declarative_part

begin
handled_sequence_of statements

end [entry_identifier];

entry_body_formal_part ::= [(entry_index_specification)] parameter_profile
entry_barrier ::= when condition

entry_index_specification =
for defining_identifier in discrete_subtype_definition [aspect_specification]

If an entry_identifier appears at the end of an accept_statement, it shall repeat the entry direct_-
name. If an entry identifier appears at the end of an entry_body, it shall repeat the defining_-
identifier.

An entry_declaration is allowed only in a protected or task declaration.

An overriding_indicator is not allowed in an entry_declaration that includes a
discrete_subtype_definition.

251 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

Name Resolution Rules

In an accept_statement, the expected profile for the entry direct_name is that of the entry -
declaration; the expected type for an entry index is that of the subtype defined by the discrete -
subtype_definition of the corresponding entry_declaration.

Within the handled_sequence of statements of an accept_statement, if a selected _component
has a prefix that denotes the corresponding entry_declaration, then the entity denoted by the prefix is
the accept_statement, and the selected_component is interpreted as an expanded name (see 4.1.3);
the selector_name of the selected_component has to be the identifier for some formal parameter of
the accept_statement.

Legality Rules

An entry_declaration in a task declaration shall not contain a specification for an access parameter
(see 3.10).

If an entry_declaration has an overriding_indicator, then at the point of the declaration:

e if the overriding_indicator is overriding, then the entry shall implement an inherited
subprogram;

¢ if the overriding_indicator is not overriding, then the entry shall not implement any inherited
subprogram.

In addition to the places where Legality Rules normally apply (see 12.3), these rules also apply in the
private part of an instance of a generic unit.

For an accept_statement, the innermost enclosing body shall be a task_body, and the entry direct_-
name shall denote an entry_declaration in the corresponding task declaration; the profile of the
accept_statement shall conform fully to that of the corresponding entry declaration. An accept_-
statement shall have a parenthesized entry_index if and only if the corresponding entry_declaration
has a discrete_subtype_definition.

An accept_statement shall not be within another accept_statement that corresponds to the same
entry_declaration, nor within an asynchronous_select inner to the enclosing task_body.

An entry_declaration of a protected unit requires a completion, which shall be an entry_body, and
every entry_body shall be the completion of an entry_declaration of a protected unit. The profile of
the entry_body shall conform fully to that of the corresponding declaration.

An entry_body_formal_part shall have an entry_index_specification if and only if the corresponding
entry_declaration has a discrete_subtype_definition. In this case, the discrete_subtype definitions
of the entry declaration and the entry_index_specification shall fully conform to one another (see
6.3.1).

A name that denotes a formal parameter of an entry_body is not allowed within the entry_barrier of
the entry_body.

Static Semantics

The parameter modes defined for parameters in the parameter_profile of an entry_declaration are the
same as for a subprogram_declaration and have the same meaning (see 6.2).

An entry_declaration with a discrete_subtype_definition (see 3.6) declares a family of distinct
entries having the same profile, with one such entry for each value of the entry index subtype defined
by the discrete_subtype_ definition. A name for an entry of a family takes the form of an
indexed_component, where the prefix denotes the entry_declaration for the family, and the index
value identifies the entry within the family. The term single entry is used to refer to any entry other
than an entry of an entry family.

© ISO/IEC 2021 — All rights reserved 252

ISO/IEC 8652:DIS

In the entry_body for an entry family, the entry_index_specification declares a named constant
whose subtype is the entry index subtype defined by the corresponding entry_declaration; the value
of the named entry index identifies which entry of the family was called.

Dynamic Semantics

The elaboration of an entry_declaration for an entry family consists of the elaboration of the
discrete_subtype_definition, as described in 3.8. The elaboration of an entry declaration for a single
entry has no effect.

The actions to be performed when an entry is called are specified by the corresponding accept_-
statements (if any) for an entry of a task unit, and by the corresponding entry_body for an entry of a
protected unit.

The interaction between a task that calls an entry and an accepting task is called a rendezvous.

For the execution of an accept_statement, the entry_index, if any, is first evaluated and converted to
the entry index subtype; this index value identifies which entry of the family is to be accepted. Further
execution of the accept_statement is then blocked until a caller of the corresponding entry is selected
(see 9.5.3), whereupon the handled_sequence_of statements, if any, of the accept_statement is
executed, with the formal parameters associated with the corresponding actual parameters of the
selected entry call. Execution of the rendezvous consists of the execution of the
handled_sequence_of_statements, performance of any postcondition or type invariant checks
associated with the entry, and any initialization or finalization associated with these checks, as
described in 6.1.1 and 7.3.2. After execution of the rendezvous, the accept_statement completes and
is left. The two tasks then proceed independently. When an exception is propagated from the
handled_sequence_of statements of an accept_statement, the same exception is also raised by the
execution of the corresponding entry call_statement.

An entry_body is executed when the condition of the entry_barrier evaluates to True and a caller of
the corresponding single entry, or entry of the corresponding entry family, has been selected (see
9.5.3). For the execution of the entry_body, the declarative_part of the entry_body is elaborated, and
the handled_sequence_of statements of the body is executed, as for the execution of a
subprogram_body. The value of the named entry index, if any, is determined by the value of the
entry index specified in the entry name of the selected entry call (or intermediate requeue_-
statement — see 9.5.4).
NOTES

24 A task entry has corresponding accept statements (zero or more), whereas a protected entry has a corresponding
entry_body (exactly one).

25 A consequence of the rule regarding the allowed placements of accept_statements is that a task can execute
accept_statements only for its own entries.

26 A return statement (see 6.5) or a requeue_statement (see 9.5.4) may be used to complete the execution of an
accept_statement or an entry_body.

27 The condition in the entry_barrier may reference anything visible except the formal parameters of the entry. This
includes the entry index (if any), the components (including discriminants) of the protected object, the Count attribute
of an entry of that protected object, and data global to the protected unit.

The restriction against referencing the formal parameters within an entry_barrier ensures that all calls of the same entry
see the same barrier value. If it is necessary to look at the parameters of an entry call before deciding whether to handle
it, the entry_barrier can be “when True” and the caller can be requeued (on some private entry) when its parameters
indicate that it cannot be handled immediately.

Examples
Examples of entry declarations:
entry Read(V : out Item);
entry Seize;
entry Request (Level) (D : Item); -- afamily of entries

253 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

Examples of accept statements:
accept Shut Down;

accept Read(V : out Item) do
V := Local Item;
end Read;

accept Request (Low) (D : Item) do

end Request;

9.5.3 Entry Calls

An entry_call_statement (an entry call) can appear in various contexts. A simple entry call is a stand-
alone statement that represents an unconditional call on an entry of a target task or a protected object.
Entry calls can also appear as part of select_statements (see 9.7).

Syntax

entry_call_statement ::= entry_name [actual_parameter_part];

Name Resolution Rules

The entry_name given in an entry_call_statement shall resolve to denote an entry. The rules for
parameter associations are the same as for subprogram calls (see 6.4 and 6.4.1).

Static Semantics

The entry_name of an entry_call_statement specifies (explicitly or implicitly) the target object of the
call, the entry or entry family, and the entry index, if any (see 9.5).

Dynamic Semantics

Under certain circumstances (detailed below), an entry of a task or protected object is checked to see
whether it is open or closed:

e An entry of a task is open if the task is blocked on an accept_statement that corresponds to
the entry (see 9.5.2), or on a selective_accept (see 9.7.1) with an open accept_alternative
that corresponds to the entry; otherwise, it is closed.

e An entry of a protected object is open if the condition of the entry_barrier of the
corresponding entry_body evaluates to True; otherwise, it is closed. If the evaluation of the
condition propagates an exception, the exception Program_Error is propagated to all current
callers of all entries of the protected object.

For the execution of an entry call_statement, evaluation of the name and of the parameter
associations is as for a subprogram call (see 6.4). The entry call is then issued: For a call on an entry
of a protected object, a new protected action is started on the object (see 9.5.1). The named entry is
checked to see if it is open; if open, the entry call is said to be selected immediately, and the execution
of the call proceeds as follows:
e For a call on an open entry of a task, the accepting task becomes ready and continues the
execution of the corresponding accept_statement (see 9.5.2).

e For a call on an open entry of a protected object, the corresponding entry body is executed
(see 9.5.2) as part of the protected action.

If the accept_statement or entry_body completes other than by a requeue (see 9.5.4), return is made
to the caller (after servicing the entry queues — see below); any necessary assigning back of formal to
actual parameters occurs, as for a subprogram call (see 6.4.1); such assignments take place outside of
any protected action.

If the named entry is closed, the entry call is added to an entry queue (as part of the protected action,
for a call on a protected entry), and the call remains queued until it is selected or cancelled; there is a

© ISO/IEC 2021 — All rights reserved 254

ISO/IEC 8652:DIS

separate (logical) entry queue for each entry of a given task or protected object (including each entry
of an entry family).

When a queued call is selected, it is removed from its entry queue. Selecting a queued call from a
particular entry queue is called servicing the entry queue. An entry with queued calls can be serviced
under the following circumstances:

e When the associated task reaches a corresponding accept_statement, or a selective_accept
with a corresponding open accept_alternative;

e If after performing, as part of a protected action on the associated protected object, an
exclusive protected operation on the object, the entry is checked and found to be open.

If there is at least one call on a queue corresponding to an open entry, then one such call is selected
according to the entry queuing policy in effect (see below), and the corresponding accept_statement
or entry_body is executed as above for an entry call that is selected immediately.

The entry queuing policy controls selection among queued calls both for task and protected entry
queues. The default entry queuing policy is to select calls on a given entry queue in order of arrival. If
calls from two or more queues are simultaneously eligible for selection, the default entry queuing
policy does not specify which queue is serviced first. Other entry queuing policies can be specified by
pragmas (see D.4).

For a protected object, the above servicing of entry queues continues until there are no open entries
with queued calls, at which point the protected action completes.

For an entry call that is added to a queue, and that is not the triggering_statement of an
asynchronous_select (see 9.7.4), the calling task is blocked until the call is cancelled, or the call is
selected and a corresponding accept_statement or entry_body completes without requeuing. In
addition, the calling task is blocked during a rendezvous.

An attempt can be made to cancel an entry call upon an abort (see 9.8) and as part of certain forms of
select_statement (see 9.7.2, 9.7.3, and 9.7.4). The cancellation does not take place until a point (if
any) when the call is on some entry queue, and not protected from cancellation as part of a requeue
(see 9.5.4); at such a point, the call is removed from the entry queue and the call completes due to the
cancellation. The cancellation of a call on an entry of a protected object is a protected action, and as
such cannot take place while any other protected action is occurring on the protected object. Like any
protected action, it includes servicing of the entry queues (in case some entry barrier depends on a
Count attribute).

A call on an entry of a task that has already completed its execution raises the exception
Tasking Error at the point of the call; similarly, this exception is raised at the point of the call if the
called task completes its execution or becomes abnormal before accepting the call or completing the
rendezvous (see 9.8). This applies equally to a simple entry call and to an entry call as part of a
select_statement.

Implementation Permissions

An implementation may perform the sequence of steps of a protected action using any thread of
control; it need not be that of the task that started the protected action. If an entry _body completes
without requeuing, then the corresponding calling task may be made ready without waiting for the
entire protected action to complete.

When the entry of a protected object is checked to see whether it is open, the implementation need not
reevaluate the condition of the corresponding entry_barrier if no variable or attribute referenced by
the condition (directly or indirectly) has been altered by the execution (or cancellation) of a call to an
exclusive protected operation of the object since the condition was last evaluated.

An implementation may evaluate the conditions of all entry_barriers of a given protected object any
time any entry of the object is checked to see if it is open.

255 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

When an attempt is made to cancel an entry call, the implementation need not make the attempt using
the thread of control of the task (or interrupt) that initiated the cancellation; in particular, it may use
the thread of control of the caller itself to attempt the cancellation, even if this might allow the entry
call to be selected in the interim.

NOTES
28 If an exception is raised during the execution of an entry_body, it is propagated to the corresponding caller (see
11.4).

29 For a call on a protected entry, the entry is checked to see if it is open prior to queuing the call, and again thereafter
if its Count attribute (see 9.9) is referenced in some entry barrier.

30 In addition to simple entry calls, the language permits timed, conditional, and asynchronous entry calls (see 9.7.2,
9.7.3, and see 9.7.4).

31 The condition of an entry_barrier is allowed to be evaluated by an implementation more often than strictly
necessary, even if the evaluation might have side effects. On the other hand, an implementation need not reevaluate the
condition if nothing it references was updated by an intervening protected action on the protected object, even if the
condition references some global variable that might have been updated by an action performed from outside of a
protected action.

Examples
Examples of entry calls:
Agent .Shut Down; -- see 9.1
Parser.Next Lexeme (E) ; -- see 9.1
Pool (5) .Read (Next_Char) ; -- see9.1
Controller.Request (Low) (Some Item) ; -- see9.]
Flags(3) .Seize; -- see 9.4

9.5.4 Requeue Statements

A requeue_statement can be used to complete an accept statement or entry body, while
redirecting the corresponding entry call to a new (or the same) entry queue. Such a requeue can be
performed with or without allowing an intermediate cancellation of the call, due to an abort or the
expiration of a delay.

Syntax

requeue_statement ::= requeue procedure or_entry_name [with abort];

Name Resolution Rules

The procedure _or entry name of a requeue_statement shall resolve to denote a procedure or an
entry (the requeue target). The profile of the entry, or the profile or prefixed profile of the procedure,
shall either have no parameters, or be type conformant (see 6.3.1) with the profile of the innermost
enclosing entry _body or accept_statement.

Legality Rules

A requeue_statement shall be within a callable construct that is either an entry_body or an
accept_statement, and this construct shall be the innermost enclosing body or callable construct.

If the requeue target has parameters, then its (prefixed) profile shall be subtype conformant with the
profile of the innermost enclosing callable construct.

Given a requeue_statement where the innermost enclosing callable construct is for an entry £/, for
every specific or class-wide postcondition expression P/ that applies to E/, there shall exist a
postcondition expression P2 that applies to the requeue target £2 such that

e PI is fully conformant with the expression produced by replacing each reference in P2 to a
formal parameter of £2 with a reference to the corresponding formal paramter of £/; and

e if P/ is enabled, then P2 is also enabled.

© ISO/IEC 2021 — All rights reserved 256

ISO/IEC 8652:DIS

The requeue target shall not have an applicable specific or class-wide postcondition that includes an
Old or Index attribute_reference.

If the requeue target is declared immediately within the task_definition of a named task type or the
protected_definition of a named protected type, and if the requeue statement occurs within the body
of that type, and if the requeue is an external requeue, then the requeue target shall not have a specific
or class-wide postcondition which includes a name denoting either the current instance of that type or
any entity declared within the declaration of that type.

If the target is a procedure, the name shall denote a renaming of an entry, or shall denote a view or a
prefixed view of a primitive subprogram of a synchronized interface, where the first parameter of the
unprefixed view of the primitive subprogram shall be a controlling parameter, and the
Synchronization aspect shall be specified with synchronization_kind By Entry for the primitive
subprogram.

In a requeue_statement of an accept_statement of some task unit, either the target object shall be a
part of a formal parameter of the accept_statement, or the accessibility level of the target object shall
not be equal to or statically deeper than any enclosing accept_statement of the task unit. In a
requeue_statement of an entry_body of some protected unit, either the target object shall be a part
of a formal parameter of the entry_body, or the accessibility level of the target object shall not be
statically deeper than that of the entry_declaration for the entry_body.

Dynamic Semantics

The execution of a requeue_statement begins with the following sequence of steps:

1. The procedure or entry name is evaluated. This includes evaluation of the prefix (if any)
identifying the target task or protected object and of the expression (if any) identifying the
entry within an entry family.

2. If the target object is not a part of a formal parameter of the innermost enclosing callable
construct, a check is made that the accessibility level of the target object is not equal to or
deeper than the level of the innermost enclosing callable construct. If this check fails,
Program_Error is raised.

3. Precondition checks are performed as for a call to the requeue target.

4. The entry_body or accept_statement enclosing the requeue_statement is then completed,
finalized, and left (see 7.6.1).

For the execution of a requeue on an entry of a target task, after leaving the enclosing callable
construct, the named entry is checked to see if it is open and the requeued call is either selected
immediately or queued, as for a normal entry call (see 9.5.3).

For the execution of a requeue on an entry of a target protected object, after leaving the enclosing
callable construct:

e if the requeue is an internal requeue (that is, the requeue is back on an entry of the same
protected object — see 9.5), the call is added to the queue of the named entry and the ongoing
protected action continues (see 9.5.1);

o if the requeue is an external requeue (that is, the target protected object is not implicitly the
same as the current object — see 9.5), a protected action is started on the target object and
proceeds as for a normal entry call (see 9.5.3).

If the requeue target named in the requeue_statement has formal parameters, then during the
execution of the accept_statement or entry_body corresponding to the new entry and during the
checking of any preconditions of the new entry, the formal parameters denote the same objects as did
the corresponding formal parameters of the callable construct completed by the requeue. In any case,
no parameters are specified in a requeue_statement; any parameter passing is implicit.

If the requeue_statement includes the reserved words with abort (it is a requeue-with-abort), then:

257 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

e if the original entry call has been aborted (see 9.8), then the requeue acts as an abort
completion point for the call, and the call is cancelled and no requeue is performed;

e if the original entry call was timed (or conditional), then the original expiration time is the
expiration time for the requeued call.

If the reserved words with abort do not appear, then the call remains protected against cancellation
while queued as the result of the requeue_statement.

NOTES

32 A requeue is permitted from a single entry to an entry of an entry family, or vice versa. The entry index, if any,
plays no part in the subtype conformance check between the profiles of the two entries; an entry index is part of the
entry_name for an entry of a family.

Examples

Examples of requeue statements:

requeue Request (Medium) with abort;
- - requeue on a member of an entry family of the current task, see 9.1

requeue Flags(I) .Seize;
- - requeue on an entry of an array component, see 9.4

9.6 Delay Statements, Duration, and Time

A delay_statement is used to block further execution until a specified expiration time is reached. The
expiration time can be specified either as a particular point in time (in a delay_until_statement), or in
seconds from the current time (in a delay_relative_statement). The language-defined package
Calendar provides definitions for a type Time and associated operations, including a function Clock
that returns the current time.
Syntax
delay_statement ::= delay_until_statement | delay_relative_statement
delay_until_statement ::= delay until delay expression;

delay_relative_statement ::= delay delay expression;

Name Resolution Rules

The expected type for the delay expression in a delay_relative_statement is the predefined type
Duration. The delay _expression in a delay_until_statement is expected to be of any nonlimited type.

Legality Rules

There can be multiple time bases, each with a corresponding clock, and a corresponding time type.
The type of the delay _expression in a delay_until_statement shall be a time type — either the type
Time defined in the language-defined package Calendar (see below), the type Time in the package
Real Time (see D.8), or some other implementation-defined time type.

Static Semantics

There is a predefined fixed point type named Duration, declared in the visible part of package
Standard; a value of type Duration is used to represent the length of an interval of time, expressed in
seconds. The type Duration is not specific to a particular time base, but can be used with any time
base.

A value of the type Time in package Calendar, or of some other time type, represents a time as
reported by a corresponding clock.

© ISO/IEC 2021 — All rights reserved 258

ISO/IEC 8652:DIS

The following language-defined library package exists:

package Ada.Calendar
with Nonblocking, Global => in out synchronized is
type Time is private;

subtype Year Number is Integer range 1901 .. 2399;
subtype Month Number is Integer range 1 .. 12;

subtype Day Number is Integer range 1 .. 31;

subtype Day Duration is Duration range 0.0 .. 86 _400.0;

function Clock return Time;

function Year (Date : Time) return Year Number;
function Month (Date : Time) return Month Number;
function Day (Date : Time) return Day_ Number;

()
(

function Seconds (Date : Time) return Day_Duration;

procedure Split (Date : in Time;
Year : out Year Number;
Month : out Month Number;
Day : out Day Number;
Seconds : out Day Duration);
function Time Of (Year : Year Number;
Month : Month Number;
Day : Day_ Number;
Seconds : Day_Duration := 0.0)
return Time;
function "+" (Left : Time; Right : Duration) return Time;
function "+" (Left : Duration; Right : Time) return Time;
function "-" (Left : Time; Right : Duration) return Time;

function "<"
function "<="
function ">"
function ">="

Left, Right : Time)
Left, Right : Time) return Boolean;
Left, Right : Time) return Boolean;
Left, Right : Time)

(
(
(
function "-" (Left : Time; Right : Time) return Duration;
(return Boolean;
(
(
(return Boolean;
Time Error : exception;

private
. - - not specified by the language
end Ada.Calendar;

Dynamic Semantics

For the execution of a delay statement, the delay expression is first evaluated. For a
delay_until_statement, the expiration time for the delay is the value of the delay expression, in the
time base associated with the type of the expression. For a delay_relative_statement, the expiration
time is defined as the current time, in the time base associated with relative delays, plus the value of
the delay expression converted to the type Duration, and then rounded up to the next clock tick. The
time base associated with relative delays is as defined in D.9, “Delay Accuracy” or is implementation
defined.

The task executing a delay_statement is blocked until the expiration time is reached, at which point it
becomes ready again. If the expiration time has already passed, the task is not blocked.

If an attempt is made to cancel the delay_statement (as part of an asynchronous_select or abort —
see 9.7.4 and 9.8), the statement is cancelled if the expiration time has not yet passed, thereby
completing the delay_statement.

The time base associated with the type Time of package Calendar is implementation defined. The
function Clock of package Calendar returns a value representing the current time for this time base.
The implementation-defined value of the named number System.Tick (see 13.7) is an approximation
of the length of the real-time interval during which the value of Calendar.Clock remains constant.

The functions Year, Month, Day, and Seconds return the corresponding values for a given value of
the type Time, as appropriate to an implementation-defined time zone; the procedure Split returns all
four corresponding values. Conversely, the function Time Of combines a year number, a month

259 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

number, a day number, and a duration, into a value of type Time. The operators "+" and "-" for
addition and subtraction of times and durations, and the relational operators for times, have the
conventional meaning.

If Time Of is called with a seconds value of 86 400.0, the value returned is equal to the value of
Time_Of for the next day with a seconds value of 0.0. The value returned by the function Seconds or
through the Seconds parameter of the procedure Split is always less than 86_400.0.

The exception Time Error is raised by the function Time Of if the actual parameters do not form a
proper date. This exception is also raised by the operators "+" and "-" if the result is not representable
in the type Time or Duration, as appropriate. This exception is also raised by the functions Year,
Month, Day, and Seconds and the procedure Split if the year number of the given date is outside of
the range of the subtype Year Number.

Implementation Requirements

The implementation of the type Duration shall allow representation of time intervals (both positive
and negative) up to at least 86400 seconds (one day); Duration'Small shall not be greater than twenty
milliseconds. The implementation of the type Time shall allow representation of all dates with year
numbers in the range of Year Number; it may allow representation of other dates as well (both earlier
and later).

Implementation Permissions
An implementation may define additional time types.

An implementation may raise Time Error if the value of a delay expression in a
delay_until_statement of a select_statement represents a time more than 90 days past the current
time. The actual limit, if any, is implementation-defined.

Implementation Advice

Whenever possible in an implementation, the value of Duration'Small should be no greater than 100
microseconds.

The time base for delay_relative_statements should be monotonic; it need not be the same time base
as used for Calendar.Clock.

NOTES
33 A delay_relative_statement with a negative value of the delay_expression is equivalent to one with a zero value.

34 A delay_statement may be executed by the environment task; consequently delay_statements may be executed as
part of the elaboration of a library_item or the execution of the main subprogram. Such statements delay the
environment task (see 10.2).

35 A delay_statement is an abort completion point and a potentially blocking operation, even if the task is not
actually blocked.

36 There is no necessary relationship between System.Tick (the resolution of the clock of package Calendar) and
Duration'Small (the small of type Duration).

37 Additional requirements associated with delay_statements are given in D.9, “Delay Accuracy”.

Examples

Example of a relative delay statement:
delay 3.0; -- delay 3.0 seconds

© ISO/IEC 2021 — All rights reserved 260

ISO/IEC 8652:DIS

Example of a periodic task:

declare
use Ada.Calendar;
Next Time : Time := Clock + Period;
- - Period is a global constant of type Duration
begin
loop - - repeated every Period seconds

delay until Next Time;
. - - perform some actions
Next_ Time := Next Time + Period;
end loop;
end;

9.6.1 Formatting, Time Zones, and other operations for Time

Static Semantics

The following language-defined library packages exist:

package Ada.Calendar.Time_ Zones
with Nonblocking, Global => in out synchronized is

-- Time zone manipulation:

type Time Offset is range -28*60 .. 28%60;

Unknown_Zone_ Error : exception;

function Local Time Offset (Date : Time := Clock) return Time Offset;
function UTC Time Offset (Date : Time := Clock) return Time Offset

renames Local Time Offset;

end Ada.Calendar.Time Zones;

package Ada.Calendar.Arithmetic
with Nonblocking, Global => in out synchronized is

-~ Arithmetic on days:
type Day Count is range
-366* (1+Year_ Number'Last - Year Number'First)

366* (1+Year Number'Last - Year Number'First);

subtype Leap Seconds Count is Integer range -2047 .. 2047;
procedure Difference (Left, Right : in Time;

Days : out Day Count;

Seconds : out Duration;

Leap Seconds : out Leap_Seconds_Count) ;

function "+" (Left : Time; Right : Day Count) return Time;
function "+" (Left : Day Count; Right : Time) return Time;
function "-" (Left : Time; Right : Day Count) return Time;
function "-" (Left, Right : Time) return Day Count;

end Ada.Calendar.Arithmetic;

with Ada.Calendar.Time_Zones;
package Ada.Calendar.Formatting
with Nonblocking, Global => in out synchronized is

-- Day of the week:

type Day Name is (Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday) ;

function Day of Week (Date : Time) return Day Name;

- - Hours:Minutes:Seconds access:

subtype Hour Number is Natural range 0 .. 23;
subtype Minute Number is Natural range 0 .. 59;
subtype Second Number is Natural range 0 .. 59;
subtype Second Duration is Day Duration range 0.0 .. 1.0;

261 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

function Year (Date : Time;
Time Zone : Time Zones.Time Offset := 0)
return Year Number;

function Month (Date : Time;
Time Zone : Time Zones.Time Offset := 0)
return Month Number;

function Day (Date : Time;
Time Zone : Time Zones.Time Offset := 0)
return Day Number;

function Hour (Date : Time;
Time Zone : Time Zones.Time Offset := 0)
return Hour_ Number;

function Minute (Date : Time;
Time Zone : Time Zones.Time Offset := 0)
return Minute Number;

function Second (Date : Time)
return Second Number;

function Sub Second (Date : Time)
return Second_Duration;

function Seconds_Of (Hour : Hour_ Number;
Minute : Minute Number;
Second : Second Number := 0;
Sub_Second : Second Duration := 0.0)

return Day Duration;

procedure Split (Seconds : in Day Duration;
Hour : out Hour Number;
Minute : out Minute Number;
Second : out Second Number;

Sub_Second : out Second Duration) ;

function Time Of (Year : Year Number;
Month : Month Number;
Day : Day_ Number;
Hour : Hour Number;
Minute : Minute Number;
Second : Second_ Number;
Sub_Second : Second Duration := 0.0;
Leap_Second: Boolean := False;
Time_ Zone : Time_Zones.Time Offset := 0)

return Time;

function Time Of (Year : Year Number;
Month : Month Number;
Day : Day_ Number;
Seconds : Day Duration := 0.0;
Leap Second: Boolean := False;
Time Zone : Time_ Zones.Time Offset := 0)
return Time;
procedure Split (Date : in Time;
Year : out Year Number;
Month : out Month Number;
Day : out Day Number;
Hour : out Hour Number;
Minute : out Minute Number;
Second : out Second Number;
Sub_Second : out Second Duration;
Time Zone : in Time Zones.Time Offset := 0);
procedure Split (Date : in Time;
Year : out Year Number;
Month : out Month Number;
Day : out Day Number;
Hour : out Hour Number;
Minute : out Minute Number;
Second : out Second Number;
Sub_Second : out Second Duration;
Leap Second: out Boolean;
Time Zone : in Time Zones.Time Offset := 0);

© ISO/IEC 2021 — All rights reserved 262

ISO/IEC 8652:DIS

procedure Split (Date : in Time;
Year : out Year Number;
Month : out Month Number;
Day : out Day Number;
Seconds : out Day Duration;
Leap_Second: out Boolean;
Time Zone : in Time Zones.Time Offset := 0);

-- Simple image and value:
function Image (Date : Time;
Include_Time Fraction : Boolean := False;
Time Zone : Time Zones.Time Offset := 0) return String;

function Local Image (Date : Time;
Include_Time_ Fraction : Boolean := False)
return String is
(Image (Date, Include Time Fraction,
Time_ Zones.Local Time Offset (Date)));

function Value (Date : String;
Time_Zone : Time Zones.Time Offset := 0) return Time;

function Image (Elapsed Time : Duration;
Include Time Fraction : Boolean := False) return String;

function Value (Elapsed Time : String) return Duration;

end Ada.Calendar.Formatting;

Type Time Offset represents for a given locality at a given moment the number of minutes the local
time is, at that moment, ahead (+) or behind (-) Coordinated Universal Time (abbreviated UTC). The
Time_Offset for UTC is zero.

function Local_Time Offset (Date : Time := Clock) return Time_ Offset;

Returns, as a number of minutes, the Time Offset of the implementation-defined time zone of
Calendar, at the time Date. If the time zone of the Calendar implementation is unknown, then
Unknown_Zone Error is raised.

procedure Difference (Left, Right : in Time;

Days : out Day Count;

Seconds : out Duration;

Leap_Seconds : out Leap Seconds_Count) ;
Returns the difference between Left and Right. Days is the number of days of difference,
Seconds is the remainder seconds of difference excluding leap seconds, and Leap Seconds is
the number of leap seconds. If Left < Right, then Seconds <= 0.0, Days <= 0, and
Leap Seconds <= 0. Otherwise, all values are nonnegative. The absolute value of Seconds is
always less than 86 400.0. For the returned values, if Days = 0, then Seconds +
Duration(Leap _Seconds) = Calendar."-" (Left, Right).

function "+" (Left : Time; Right : Day Count) return Time;
function "+" (Left : Day Count; Right : Time) return Time;

Adds a number of days to a time value. Time_Error is raised if the result is not representable
as a value of type Time.

function "-" (Left : Time; Right : Day Count) return Time;

Subtracts a number of days from a time value. Time Error is raised if the result is not
representable as a value of type Time.

function "-" (Left, Right : Time) return Day Count;

Subtracts two time values, and returns the number of days between them. This is the same
value that Difference would return in Days.

function Day of Week (Date : Time) return Day Name;

Returns the day of the week for Time. This is based on the Year, Month, and Day values of
Time.

263 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

function Year (Date : Time;
Time Zone : Time Zones.Time Offset := 0)
return Year Number;

Returns the year for Date, as appropriate for the specified time zone offset.

function Month (Date : Time;
Time Zone : Time Zones.Time Offset := 0)
return Month Number;

Returns the month for Date, as appropriate for the specified time zone offset.

function Day (Date : Time;
Time_ Zone : Time_Zones.Time_ Offset := 0)
return Day_ Number;

Returns the day number for Date, as appropriate for the specified time zone offset.

function Hour (Date : Time;
Time Zone : Time Zones.Time Offset := 0)
return Hour Number;

Returns the hour for Date, as appropriate for the specified time zone offset.

function Minute (Date : Time;
Time Zone : Time_ Zones.Time Offset := 0)
return Minute Number;

Returns the minute within the hour for Date, as appropriate for the specified time zone offset.

function Second (Date : Time)
return Second_ Number;

Returns the second within the hour and minute for Date.

function Sub Second (Date : Time)
return Second Duration;

Returns the fraction of second for Date (this has the same accuracy as Day Duration). The
value returned is always less than 1.0.

function Seconds Of (Hour : Hour Number;
Minute : Minute Number;
Second : Second Number := 0;
Sub_Second : Second Duration := 0.0)

return Day Duration;

Returns a Day Duration value for the combination of the given Hour, Minute, Second, and
Sub_Second. This value can be used in Calendar.Time Of as well as the argument to
Calendar."+" and Calendar."-". If Seconds_Of is called with a Sub_Second value of 1.0, the
value returned is equal to the value of Seconds Of for the next second with a Sub_Second

value of 0.0.
procedure Split (Seconds : in Day Duration;
Hour : out Hour Number;
Minute : out Minute Number;
Second : out Second_ Number;

Sub_Second : out Second Duration) ;

Splits Seconds into Hour, Minute, Second and Sub_Second in such a way that the resulting
values all belong to their respective subtypes. The value returned in the Sub_ Second
parameter is always less than 1.0. If Seconds = 86400.0, Split propagates Time Error.

© ISO/IEC 2021 — All rights reserved 264

ISO/IEC 8652:DIS

function Time Of (Year : Year_Number;
Month : Month Number;
Day : Day Number;
Hour : Hour_ Number;
Minute : Minute Number;
Second : Second_ Number;
Sub Second : Second Duration := 0.0;
Leap_Second: Boolean := False;
Time_Zone : Time Zones.Time Offset := 0)

return Time;

If Leap Second is False, returns a Time built from the date and time values, relative to the
specified time zone offset. If Leap Second is True, returns the Time that represents the time
within the leap second that is one second later than the time specified by the other parameters.
Time Error is raised if the parameters do not form a proper date or time. If Time Of is called
with a Sub_Second value of 1.0, the value returned is equal to the value of Time Of for the
next second with a Sub_Second value of 0.0.

function Time Of (Year : Year Number;
Month : Month Number;
Day : Day Number;
Seconds : Day Duration := 0.0;
Leap Second: Boolean := False;
Time_Zone : Time Zones.Time Offset := 0)

return Time;

If Leap_Second is False, returns a Time built from the date and time values, relative to the
specified time zone offset. If Leap_Second is True, returns the Time that represents the time
within the leap second that is one second later than the time specified by the other parameters.
Time_Error is raised if the parameters do not form a proper date or time. If Time Of is called
with a Seconds value of 86_400.0, the value returned is equal to the value of Time Of for the
next day with a Seconds value of 0.0.

procedure Split (Date : in Time;
Year : out Year Number;
Month : out Month Number;
Day : out Day Number;
Hour : out Hour Number;
Minute : out Minute_ Number;
Second : out Second_ Number;

Sub Second : out Second Duration;

Leap_Second: out Boolean;

Time_Zone : in Time Zones.Time Offset := 0);
If Date does not represent a time within a leap second, splits Date into its constituent parts
(Year, Month, Day, Hour, Minute, Second, Sub_Second), relative to the specified time zone
offset, and sets Leap _Second to False. If Date represents a time within a leap second, set the
constituent parts to values corresponding to a time one second earlier than that given by Date,
relative to the specified time zone offset, and sets Leap_Seconds to True. The value returned
in the Sub_Second parameter is always less than 1.0.

procedure Split (Date : in Time;
Year : out Year Number;
Month : out Month Number;
Day : out Day Number;
Hour : out Hour Number;
Minute : out Minute Number;
Second : out Second_Number;
Sub_Second : out Second Duration;
Time_Zone : in Time_ Zones.Time Offset := 0);

Splits Date into its constituent parts (Year, Month, Day, Hour, Minute, Second, Sub_Second),
relative to the specified time zone offset. The value returned in the Sub_Second parameter is
always less than 1.0.

265 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

procedure Split (Date : in Time;
Year : out Year Number;
Month : out Month Number;
Day : out Day Number;
Seconds : out Day Duration;
Leap_Second: out Boolean;
Time Zone : in Time Zones.Time Offset := 0);

If Date does not represent a time within a leap second, splits Date into its constituent parts
(Year, Month, Day, Seconds), relative to the specified time zone offset, and sets Leap Second
to False. If Date represents a time within a leap second, set the constituent parts to values
corresponding to a time one second earlier than that given by Date, relative to the specified
time zone offset, and sets Leap Seconds to True. The value returned in the Seconds parameter
is always less than 86_400.0.

function Image (Date : Time;

Include Time Fraction : Boolean := False;

Time_ Zone : Time_Zones.Time Offset := 0) return String;
Returns a string form of the Date relative to the given Time Zone. The format is "Year-
Month-Day Hour:Minute:Second", where the Year is a 4-digit value, and all others are 2-digit
values, of the functions defined in Calendar and Calendar.Formatting, including a leading
zero, if needed. The separators between the values are a minus, another minus, a colon, and a
single space between the Day and Hour. If Include Time Fraction is True, the integer part of
Sub_Seconds*100 is suffixed to the string as a point followed by a 2-digit value.

function Value (Date : String;
Time_Zone : Time_Zones.Time Offset := 0) return Time;
Returns a Time value for the image given as Date, relative to the given time zone.
Constraint_Error is raised if the string is not formatted as described for Image, or the function
cannot interpret the given string as a Time value.

function Image (Elapsed Time : Duration;
Include Time Fraction : Boolean := False) return String;
Returns a string form of the Elapsed Time. The format is "Hour:Minute:Second", where all
values are 2-digit values, including a leading zero, if needed. The separators between the
values are colons. If Include Time Fraction is True, the integer part of Sub_Seconds*100 is
suffixed to the string as a point followed by a 2-digit value. If Elapsed Time < 0.0, the result
is Image (abs Elapsed Time, Include Time Fraction) prefixed with a minus sign. If abs
Elapsed Time represents 100 hours or more, the result is implementation-defined.

function Value (Elapsed Time : String) return Duration;

Returns a Duration value for the image given as Elapsed Time. Constraint_Error is raised if
the string is not formatted as described for Image, or the function cannot interpret the given
string as a Duration value.

Implementation Advice

An implementation should support leap seconds if the target system supports them. If leap seconds are
not supported, Difference should return zero for Leap Seconds, Split should return False for
Leap_Second, and Time_Of should raise Time Error if Leap Second is True.

NOTES

38 The implementation-defined time zone of package Calendar may, but need not, be the local time zone.
Local_Time_ Offset always returns the difference relative to the implementation-defined time zone of package
Calendar. If Local Time Offset does not raise Unknown Zone Error, UTC time can be safely calculated (within the
accuracy of the underlying time-base).

39 Calling Split on the results of subtracting Duration(Local Time Offset*60) from Clock provides the components
(hours, minutes, and so on) of the UTC time. In the United States, for example, Local Time Offset will generally be
negative.

© ISO/IEC 2021 — All rights reserved 266

ISO/IEC 8652:DIS

9.7 Select Statements

There are four forms of the select statement. One form provides a selective wait for one or more
select_alternatives. Two provide timed and conditional entry calls. The fourth provides asynchronous
transfer of control.

Syntax
select_statement ::=
selective_accept
| timed_entry_call
| conditional_entry_call
| asynchronous_select
Examples

Example of a select statement:

select
accept Driver_ Awake_Signal;
or
delay 30.0*Seconds;
Stop_The Train;
end select;

9.7.1 Selective Accept

This form of the select_statement allows a combination of waiting for, and selecting from, one or
more alternatives. The selection may depend on conditions associated with each alternative of the
selective_accept.

Syntax

selective_accept ::=
select
[guard]
select_alternative
{or
[guard]
select_alternative }
[else
sequence_of statements]
end select;

guard ::= when condition =>

select_alternative ::=
accept_alternative
| delay_alternative
| terminate_alternative

accept_alternative ::=
accept_statement [sequence_of_ statements]

delay_alternative ::=
delay_statement [sequence_of statements]

terminate_alternative ::= terminate;

A selective_accept shall contain at least one accept_alternative. In addition, it can contain:
¢ aterminate_alternative (only one); or

267 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

e one or more delay_alternatives; or
e an else part (the reserved word else followed by a sequence_of statements).

These three possibilities are mutually exclusive.

Legality Rules

If a selective_accept contains more than one delay_alternative, then all shall be delay_relative -
statements, or all shall be delay_until_statements for the same time type.

Dynamic Semantics

A select_alternative is said to be open if it is not immediately preceded by a guard, or if the
condition of its guard evaluates to True. It is said to be closed otherwise.

For the execution of a selective_accept, any guard conditions are evaluated; open alternatives are
thus determined. For an open delay_alternative, the delay expression is also evaluated. Similarly,
for an open accept_alternative for an entry of a family, the entry_index is also evaluated. These
evaluations are performed in an arbitrary order, except that a delay_expression or entry_index is not
evaluated until after evaluating the corresponding condition, if any. Selection and execution of one
open alternative, or of the else part, then completes the execution of the selective_accept; the rules
for this selection are described below.

Open accept_alternatives are first considered. Selection of one such alternative takes place
immediately if the corresponding entry already has queued calls. If several alternatives can thus be
selected, one of them is selected according to the entry queuing policy in effect (see 9.5.3 and D.4).
When such an alternative is selected, the selected call is removed from its entry queue and the
handled_sequence_of statements (if any) of the corresponding accept statement is executed;
after the rendezvous completes any subsequent sequence_of statements of the alternative is
executed. If no selection is immediately possible (in the above sense) and there is no else part, the task
blocks until an open alternative can be selected.

Selection of the other forms of alternative or of an else part is performed as follows:

e An open delay_alternative is selected when its expiration time is reached if no accept_-
alternative or other delay_alternative can be selected prior to the expiration time. If several
delay_alternatives have this same expiration time, one of them is selected according to the
queuing policy in effect (see D.4); the default queuing policy chooses arbitrarily among the
delay_alternatives whose expiration time has passed.

e The else part is selected and its sequence of statements is executed if no
accept_alternative can immediately be selected; in particular, if all alternatives are closed.

¢ An open terminate_alternative is selected if the conditions stated at the end of subclause 9.3
are satisfied.
The exception Program_Error is raised if all alternatives are closed and there is no else part.

NOTES
40 A selective_accept is allowed to have several open delay_alternatives. A selective_accept is allowed to have
several open accept_alternatives for the same entry.

© ISO/IEC 2021 — All rights reserved 268

ISO/IEC 8652:DIS

Examples

Example of a task body with a selective accept:

task body Server is
Current Work Item : Work Item;

begin
loop
select
accept Next Work Item(WI : in Work Item) do
Current_Work Item := WI;
end;
Process_Work Item(Current Work Item);
or
accept Shut Down;
exit; - - Premature shut down requested
or
terminate; -- Normal shutdown at end of scope
end select;
end loop;

end Server;

9.7.2 Timed Entry Calls

A timed_entry_call issues an entry call that is cancelled if the call (or a requeue-with-abort of the
call) is not selected before the expiration time is reached. A procedure call may appear rather than an
entry call for cases where the procedure might be implemented by an entry.

Syntax

timed_entry_call ::=
select
entry_call_alternative
or
delay_alternative
end select;

entry_call_alternative ::=
procedure_or_entry_call [sequence_of_statements]

procedure_or_entry_call ::=
procedure_call_statement | entry_call_statement

Legality Rules

If a procedure_call_statement is used for a procedure or_entry call, the procedure name or
procedure_prefix of the procedure_call_statement shall statically denote an entry renamed as a
procedure or (a view of) a primitive subprogram of a limited interface whose first parameter is a
controlling parameter (see 3.9.2).

Dynamic Semantics

For the execution of a timed_entry_call, the entry_name, procedure_name, or procedure_prefix, and
any actual parameters are evaluated, as for a simple entry call (see 9.5.3) or procedure call (see 6.4).
The expiration time (see 9.6) for the call is determined by evaluating the delay expression of the
delay_alternative. If the call is an entry call or a call on a procedure implemented by an entry, the
entry call is then issued. Otherwise, the call proceeds as described in 6.4 for a procedure call, followed
by the sequence_of statements of the entry_call_alternative; the sequence_of statements of the
delay_alternative is ignored.

If the call is queued (including due to a requeue-with-abort), and not selected before the expiration
time is reached, an attempt to cancel the call is made. If the call completes due to the cancellation, the
optional sequence_of_statements of the delay_alternative is executed; if the entry call completes
normally, the optional sequence_of_statements of the entry_call_alternative is executed.

269 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

Examples
Example of a timed entry call:
select
Controller.Request (Medium) (Some Item) ;
or
delay 45.0;

-~ controller too busy, try something else
end select;

9.7.3 Conditional Entry Calls

A conditional_entry_call issues an entry call that is then cancelled if it is not selected immediately (or
if a requeue-with-abort of the call is not selected immediately). A procedure call may appear rather
than an entry call for cases where the procedure might be implemented by an entry.

Syntax

conditional_entry_call ::=
select
entry_call_alternative
else
sequence_of statements
end select;

Dynamic Semantics

The execution of a conditional_entry call is defined to be equivalent to the execution of a timed_-
entry_call with a delay_alternative specifying an immediate expiration time and the same
sequence_of statements as given after the reserved word else.

NOTES
41 A conditional_entry_call may briefly increase the Count attribute of the entry, even if the conditional call is not
selected.
Examples
Example of a conditional entry call:
procedure Spin(R : in out Resource) is --see 9.4
begin
loop
select
R.Seize;
return;
else
null; -- busy waiting
end select;
end loop;
end;

9.7.4 Asynchronous Transfer of Control

An asynchronous select_statement provides asynchronous transfer of control upon completion of an
entry call or the expiration of a delay.

Syntax

asynchronous_select ::=
select
triggering_alternative
then abort
abortable_part
end select;

© ISO/IEC 2021 — All rights reserved 270

ISO/IEC 8652:DIS

triggering_alternative ::= triggering_statement [sequence_of statements]
triggering_statement ::= procedure_or_entry_call | delay_statement

abortable part ::= sequence_of_ statements

Dynamic Semantics

For the execution of an asynchronous_select whose triggering_statement is a
procedure_or_entry call, the entry name, procedure name, or procedure prefix, and actual
parameters are evaluated as for a simple entry call (see 9.5.3) or procedure call (see 6.4). If the call is
an entry call or a call on a procedure implemented by an entry, the entry call is issued. If the entry call
is queued (or requeued-with-abort), then the abortable part is executed. If the entry call is selected
immediately, and never requeued-with-abort, then the abortable _part is never started. If the call is on
a procedure that is not implemented by an entry, the call proceeds as described in 6.4, followed by the
sequence_of statements of the triggering_alternative; the abortable part is never started.

For the execution of an asynchronous_select whose triggering_statement is a delay_statement, the
delay expression is evaluated and the expiration time is determined, as for a normal
delay_statement. If the expiration time has not already passed, the abortable_part is executed.

If the abortable_part completes and is left prior to completion of the triggering_statement, an
attempt to cancel the triggering_statement is made. If the attempt to cancel succeeds (see 9.5.3 and
9.6), the asynchronous_select is complete.

If the triggering_statement completes other than due to cancellation, the abortable_part is aborted (if
started but not yet completed — see 9.8). If the triggering_statement completes normally, the
optional sequence_of statements of the triggering_alternative is executed after the abortable part
is left.

Examples

Example of a main command loop for a command interpreter:

loop
select
Terminal .Wait For Interrupt;
Put_Line ("Interrupted") ;
then abort
-~ This will be abandoned upon terminal interrupt
Put Line("-> ");
Get Line (Command, Last);
Process_Command (Command (1. .Last)) ;
end select;
end loop;

Example of a time-limited calculation:

select

delay 5.0;

Put Line("Calculation does not converge") ;
then abort

-~ This calculation should finish in 5.0 seconds;

-- ifnot, it is assumed to diverge.

Horribly Complicated Recursive Function (X, Y);
end select;

Note that these examples presume that there are abort completion points (see 9.8) within the execution
of the abortable_part.

9.8 Abort of a Task - Abort of a Sequence of Statements

An abort_statement causes one or more tasks to become abnormal, thus preventing any further
interaction with such tasks. The completion of the triggering_statement of an asynchronous_select
causes a sequence_of_statements to be aborted.

271 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

Syntax

abort_statement ::= abort rask_name {, task_name};

Name Resolution Rules

Each task_name is expected to be of any task type; they need not all be of the same task type.

Dynamic Semantics

For the execution of an abort_statement, the given fask_names are evaluated in an arbitrary order.
Each named task is then aborted, which consists of making the task abnormal and aborting the
execution of the corresponding task_body, unless it is already completed.

When the execution of a construct is aborted (including that of a task_body or of a sequence_of_-
statements), the execution of every construct included within the aborted execution is also aborted,
except for executions included within the execution of an abort-deferred operation; the execution of
an abort-deferred operation continues to completion without being affected by the abort; the following
are the abort-deferred operations:

e aprotected action;

e waiting for an entry call to complete (after having initiated the attempt to cancel it — see
below);

e waiting for the termination of dependent tasks;

e the execution of an Initialize procedure as the last step of the default initialization of a
controlled object;

o the execution of a Finalize procedure as part of the finalization of a controlled object;
e an assignment operation to an object with a controlled part.

The last three of these are discussed further in 7.6.

When a master is aborted, all tasks that depend on that master are aborted.

The order in which tasks become abnormal as the result of an abort_statement or the abort of a
sequence_of_statements is not specified by the language.

If the execution of an entry call is aborted, an immediate attempt is made to cancel the entry call (see
9.5.3). If the execution of a construct is aborted at a time when the execution is blocked, other than for
an entry call, at a point that is outside the execution of an abort-deferred operation, then the execution
of the construct completes immediately. For an abort due to an abort_statement, these immediate
effects occur before the execution of the abort_statement completes. Other than for these immediate
cases, the execution of a construct that is aborted does not necessarily complete before the
abort_statement completes. However, the execution of the aborted construct completes no later than
its next abort completion point (if any) that occurs outside of an abort-deferred operation; the
following are abort completion points for an execution:

o the point where the execution initiates the activation of another task;

o the end of the activation of a task;

e a point within a parallel construct where a new logical thread of control is created;
e the end of a parallel construct;

o the start or end of the execution of an entry call, accept_statement, delay statement, or
abort_statement;

o the start of the execution of a select_statement, or of the sequence_of statements of an
exception_handler.

© ISO/IEC 2021 — All rights reserved 272

ISO/IEC 8652:DIS

Bounded (Run-Time) Errors

An attempt to execute an asynchronous_select as part of the execution of an abort-deferred
operation is a bounded error. Similarly, an attempt to create a task that depends on a master that is
included entirely within the execution of an abort-deferred operation is a bounded error. In both cases,
Program_Error is raised if the error is detected by the implementation; otherwise, the operations
proceed as they would outside an abort-deferred operation, except that an abort of the abortable_part
or the created task might or might not have an effect.

Erroneous Execution

If an assignment operation completes prematurely due to an abort, the assignment is said to be
disrupted; the target of the assignment or its parts can become abnormal, and certain subsequent uses
of the object can be erroneous, as explained in 13.9.1.

NOTES

42 An abort_statement should be used only in situations requiring unconditional termination.

43 A task is allowed to abort any task it can name, including itself.

44 Additional requirements associated with abort are given in D.6, “Preemptive Abort”.

9.9 Task and Entry Attributes

Dynamic Semantics

For a prefix T that is of a task type (after any implicit dereference), the following attributes are
defined:

T'Callable Yields the value True when the task denoted by T is callable, and False otherwise; a task
is callable unless it is completed or abnormal. The value of this attribute is of the
predefined type Boolean.

T'Terminated
Yields the value True if the task denoted by T is terminated, and False otherwise. The
value of this attribute is of the predefined type Boolean.

For a prefix E that denotes an entry of a task or protected unit, the following attribute is defined. This
attribute is only allowed within the body of the task or protected unit, but excluding, in the case of an
entry of a task unit, within any program unit that is, itself, inner to the body of the task unit.

E'Count Yields the number of calls presently queued on the entry E of the current instance of the
unit. The value of this attribute is of the type universal integer.
NOTES

45 For the Count attribute, the entry can be either a single entry or an entry of a family. The name of the entry or entry
family can be either a direct_name or an expanded name.

46 Within task units, algorithms interrogating the attribute E'Count should take precautions to allow for the increase of
the value of this attribute for incoming entry calls, and its decrease, for example with timed_entry calls. Also, a
conditional_entry_call may briefly increase this value, even if the conditional call is not accepted.

47 Within protected units, algorithms interrogating the attribute E'Count in the entry_barrier for the entry E should
take precautions to allow for the evaluation of the condition of the barrier both before and after queuing a given caller.

9.10 Shared Variables

Static Semantics

If two different objects, including nonoverlapping parts of the same object, are independently
addressable, they can be manipulated concurrently by two different logical threads of control without
synchronization, unless both are subcomponents of the same full access object, and either is
nonatomic (see C.6). Any two nonoverlapping objects are independently addressable if either object is
specified as independently addressable (see C.6). Otherwise, two nonoverlapping objects are
independently addressable except when they are both parts of a composite object for which a

273 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

nonconfirming value is specified for any of the following representation aspects: (record) Layout,
Component_Size, Pack, Atomic, or Convention; in this case it is unspecified whether the parts are
independently addressable.

Dynamic Semantics

Separate logical threads of control normally proceed independently and concurrently with one
another. However, task interactions can be used to synchronize the actions of two or more logical
threads of control to allow, for example, meaningful communication by the direct updating and
reading of variables shared between them. The actions of two different logical threads of control are
synchronized in this sense when an action of one signals an action of the other; an action Al is
defined to signal an action A2 under the following circumstances:

e If Al and A2 are part of the execution of the same task, and the language rules require Al to
be performed before A2;

e If Al is the action of an activator that initiates the activation of a task, and A2 is part of the
execution of the task that is activated;

e If Al is part of the activation of a task, and A2 is the action of waiting for completion of the
activation;

e [f Al is part of the execution of a task, and A2 is the action of waiting for the termination of
the task;

e If Al is the termination of a task T, and A2 is either an evaluation of the expression
T'Terminated that results in True, or a call to Ada.Task Identification.Is_ Terminated with an
actual parameter that identifies T and a result of True (see C.7.1);

e If Al is the action of issuing an entry call, and A2 is part of the corresponding execution of
the appropriate entry_body or accept_statement;

e If Al is part of the execution of an accept_statement or entry_body, and A2 is the action of
returning from the corresponding entry call;

e If Al is part of the execution of a protected procedure body or entry body for a given
protected object, and A2 is part of a later execution of an entry_body for the same protected
object;

e If Al signals some action that in turn signals A2.

Action Al is defined to potentially signal action A2 if Al signals A2, if action Al and A2 occur as
part of the execution of the same logical thread of control, and the language rules permit action Al to
precede action A2, or if action Al potentially signals some action that in turn potentially signals A2.

Two actions are defined to be sequential if one of the following is true:
¢ One action signals the other;
e Both actions occur as part of the execution of the same logical thread of control;

¢ Both actions occur as part of protected actions on the same protected object, and at least one
of the actions is part of a call on an exclusive protected operation of the protected object.

Aspect Atomic or aspect Atomic_Components may also be specified to ensure that certain reads and
updates are sequential — see C.6.

Two actions that are not sequential are defined to be concurrent actions.

Two actions are defined to conflict if one action assigns to an object, and the other action reads or
assigns to a part of the same object (or of a neighboring object if the two are not independently
addressable). The action comprising a call on a subprogram or an entry is defined to potentially
conflict with another action if the Global aspect (or Global'Class aspect in the case of a dispatching
call) of the called subprogram or entry is such that a conflicting action would be possible during the
execution of the call. Similarly, two calls are considered to potentially conflict if they each have
Global (or Global'Class in the case of a dispatching call) aspects such that conflicting actions would

© ISO/IEC 2021 — All rights reserved 274

ISO/IEC 8652:DIS

be possible during the execution of the calls. Finally, two actions that conflict are also considered to
potentially conflict.

A synchronized object is an object of a task or protected type, an atomic object (see C.6), a suspension
object (see D.10), or a synchronous barrier (see D.10.1). Operations on such objects are necessarily
sequential with respect to one another, and hence are never considered to conflict.

Erroneous Execution

The execution of two concurrent actions is erroneous if the actions make conflicting uses of a shared
variable (or neighboring variables that are not independently addressable).

9.10.1 Conflict Check Policies

This subclause determines what checks are performed relating to possible concurrent conflicting
actions (see 9.10).

Syntax
The form of a pragma Conflict Check Policy is as follows:
pragma Conflict Check Policy (policy identifier[, policy_identifier]);

A pragma Conflict Check Policy is allowed only immediately within a declarative_part, a
package_specification, or as a configuration pragma.

Legality Rules

Each policy_identifier shall be one of No_Parallel Conflict Checks,
Known_Parallel Conflict Checks, All Parallel Conflict Checks, No Tasking Conflict Checks,
Known_Tasking Conflict Checks, All Tasking Conflict Checks, No_Conflict Checks,
Known_Conflict Checks, All Conflict Checks, or an implementation-defined conflict check policy.
If two policy_identifiers are given, one shall include the word Parallel and one shall include the word
Tasking. If only one policy_identifier is given, it shall not include the word Parallel or Tasking.

A pragma Conflict Check Policy given in a declarative part or immediately within a
package_specification applies from the place of the pragma to the end of the innermost enclosing
declarative region. The region for a pragma Conflict Check Policy given as a configuration pragma
is the declarative region for the entire compilation unit (or units) to which it applies.

If a pragma Conflict Check Policy applies to a generic_instantiation, then the pragma
Conflict Check Policy applies to the entire instance.

If multiple Conflict Check Policy pragmas apply to a given construct, the conflict check policy is
determined by the one in the innermost enclosing region. If no Conflict Check Policy pragma applies
to a construct, the policy is (All Parallel Conflict Checks, No_ Tasking Conflict Checks) (see
below).

Certain potentially conflicting actions are disallowed according to which conflict check policies apply
at the place where the action or actions occur, as follows:

No_Parallel Conflict Checks
This policy imposes no restrictions on concurrent actions arising from parallel constructs.

No_Tasking Conflict Checks
This policy imposes no restrictions on concurrent actions arising from tasking constructs.

Known_Parallel Conflict Checks
If this policy applies to two concurrent actions appearing within parallel constructs, they
are disallowed if they are known to denote the same object (see 6.4.1) with uses that
conflict. For the purposes of this check, any parallel loop may be presumed to involve
multiple concurrent iterations. Also, for the purposes of deciding whether two actions are

275 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

concurrent, it is enough for the logical threads of control in which they occur to be
concurrent at any point in their execution, unless all of the following are true:

e the shared object is volatile;

e the two logical threads of control are both known to also refer to a shared
synchronized object; and

e cach thread whose potentially conflicting action updates the shared volatile
object, also updates this shared synchronized object.

Known_Tasking Conflict Checks

If this policy applies to two concurrent actions appearing within the same compilation
unit, at least one of which appears within a task body but not within a parallel construct,
they are disallowed if they are known to denote the same object (see 6.4.1) with uses that
conflict, and neither potentially signals the other (see 9.10). For the purposes of this
check, any named task type may be presumed to have multiple instances. Also, for the
purposes of deciding whether two actions are concurrent, it is enough for the tasks in
which they occur to be concurrent at any point in their execution, unless all of the
following are true:

o the shared object is volatile;
o the two tasks are both known to also refer to a shared synchronized object; and

e cach task whose potentially conflicting action updates the shared volatile object,
also updates this shared synchronized object.

All_Parallel_Conflict Checks

This policy includes the restrictions imposed by the Known Parallel Conflict Checks
policy, and in addition disallows a parallel construct from reading or updating a variable
that is global to the construct, unless it is a synchronized object, or unless the construct is
a parallel loop, and the global variable is a part of a component of an array denoted by an
indexed component with at least one index expression that statically denotes the loop
parameter of the loop_parameter_specification or the chunk parameter of the parallel
loop.

All_Tasking_Conflict Checks
This policy includes the restrictions imposed by the Known_Tasking Conflict Checks
policy, and in addition disallows a task body from reading or updating a variable that is
global to the task body, unless it is a synchronized object.

No_Conflict_ Checks, Known Conflict Checks, All_Conflict Checks
These are shorthands for (No_Parallel Conflict Checks, No_ Tasking Conflict Checks),
(Known_Parallel Conflict Checks, Known_Tasking Conflict_Checks), and
(All_Parallel Conflict Checks, All Tasking Conflict Checks), respectively.

Static Semantics

For a subprogram, the following language-defined representation aspect may be specified:

Parallel Calls
The Parallel Calls aspect is of type Boolean. The specified value shall be static. The
Parallel Calls aspect of an inherited primitive subprogram is True if Parallel Calls is
True either for the corresponding subprogram of the progenitor type or for any other
inherited subprogram that it overrides. If not specified or inherited as True, the
Parallel Calls aspect of a subprogram is False.

Specifying the Parallel Calls aspect to be True for a subprogram indicates that the
subprogram can be safely called in parallel. Conflict checks (if required by the
Conflict Check Policy in effect) are made on the subprogram assuming that multiple
concurrent calls exist. Such checks need not be repeated at each call of the subprogram in
a parallel iteration context.

© ISO/IEC 2021 — All rights reserved 276

ISO/IEC 8652:DIS

Implementation Permissions

When the conflict check policy Known_ Parallel Conflict Checks or All Parallel Conflict Checks
applies, the implementation may disallow two concurrent actions appearing within parallel constructs
if the implementation can prove they will at run-time denote the same object with uses that conflict.
Similarly, =~ when the conflict check policy Known Tasking Conflict Checks or
All_Tasking_Conflict Checks applies, the implementation may disallow two concurrent actions, at
least one of which appears within a task body but not within a parallel construct, if the
implementation can prove they will at run-time denote the same object with uses that conflict.

9.11 Example of Tasking and Synchronization

Examples

The following example defines a buffer protected object to smooth variations between the speed of
output of a producing task and the speed of input of some consuming task. For instance, the producing
task might have the following structure:

task Producer;

task body Producer is
Person : Person_Name; --see3.10.1
begin
loop
. - - simulate arrival of the next customer
Buffer.Append Wait (Person) ;
exit when Person = null;
end loop;
end Producer;

and the consuming task might have the following structure:
task Consumer;

task body Consumer is
Person : Person Name;
begin
loop
Buffer.Remove First Wait (Person) ;
exit when Person = null;
. - - simulate serving a customer
end loop;
end Consumer;

The buffer object contains an internal array of person names managed in a round-robin fashion. The
array has two indices, an In_Index denoting the index for the next input person name and an
Out_Index denoting the index for the next output person name.

The Buffer is defined as an extension of the Synchronized Queue interface (see 3.9.4), and as such
promises to implement the abstraction defined by that interface. By doing so, the Buffer can be passed
to the Transfer class-wide operation defined for objects of a type covered by Queue'Class.

type Person Name Array is array (Positive range <>)
of Person Name; --see3.10.1

protected Buffer is new Synchronized Queue with -- see3.9.4
entry Append Wait (Person : in Person Name) ;
entry Remove First Wait (Person : out Person Name) ;
function Cur Count return Natural;
function Max Count return Natural;
procedure Append(Person : in Person Name) ;
procedure Remove First (Person : out Person Name) ;

private
Pool : Person Name Array(l .. 100);
Count : Natural := 0;
In Index, Out_Index : Positive := 1;

end Buffer;

277 © ISO/IEC 2021 — Al rights reserved

ISO/IEC 8652:DIS

protected body Buffer is
entry Append Wait (Person : in Person Name)
when Count < Pool'Length is
begin
Append (Person) ;
end Append Wait;

procedure Append(Person : in Person Name) is

begin
if Count = Pool'Length then
raise Queue Error with "Buffer Full"; --seell.3
end if;
Pool (In_Index) := Person;
In Index = (In_Index mod Pool'Length) + 1;
Count := Count + 1;
end Append;

entry Remove First Wait (Person : out Person_ Name)
when Count > 0 is

begin
Remove First (Person) ;

end Remove First Wait;

procedure Remove_ First (Person : out Person Name) is

begin
if Count = 0 then
raise Queue Error with "Buffer Empty"; --seell.3
end if;
Person := Pool (Out_Index) ;
Out_Index := (Out_Index mod Pool'Length) + 1;
Count := Count - 1;

end Remove First;

function Cur Count return Natural is
begin

return Buffer.Count;
end Cur_Count;

function Max Count return Natural is
begin
return Pool'Length;
end Max_ Count;
end Buffer;

© ISO/IEC 2021 — All rights reserved 278

ISO/IEC 8652:DIS

10 Program Structure and Compilation Issues

The overall structure of programs and the facilities for separate compilation are described in this
clause. A program is a set of partitions, each of which may execute in a separate address space,
possibly on a separate computer.

As explained below, a partition is constructed from /library units. Syntactically, the declaration of a
library unit is a library_item, as is the body of a library unit. An implementation may support a
concept of a program library (or simply, a “library”), which contains library_items and their subunits.
Library units may be organized into a hierarchy of children, grandchildren, and so on.

This clause has two subclauses: 10.1, “Separate Compilation” discusses compile-time issues related to
separate compilation. 10.2, “Program Execution” discusses issues related to what is traditionally
known as “link time” and “run time” — building and executing partitions.

10.1 Separate Compilation

A program unit is either a package, a task unit, a protected unit, a protected entry, a generic unit, or an
explicitly declared subprogram other than an enumeration literal. Certain kinds of program units can
be separately compiled. Alternatively, they can appear physically nested within other program units.

The text of a program can be submitted to the compiler in one or more compilations. Each
compilation is a succession of compilation_units. A compilation_unit contains either the declaration,
the body, or a renaming of a program unit. The representation for a compilation is implementation-
defined.

A library unit is a separately compiled program unit, and is a package, subprogram, or generic unit.
Library units may have other (logically nested) library units as children, and may have other program
units physically nested within them. A root library unit, together with its children and grandchildren
and so on, form a subsystem.

Implementation Permissions

An implementation may impose implementation-defined restrictions on compilations that contain
multiple compilation_units.

10.1.1 Compilation Units - Library Units

A library_item is a compilation unit that is the declaration, body, or renaming of a library unit. Each
library unit (except Standard) has a parent unit, which is a library package or generic library package.
A library unit is a child of its parent unit. The root library units are the children of the predefined
library package Standard.

Syntax
compilation ::= {compilation_unit}
compilation_unit ::=

context_clause library_item
| context_clause subunit

library_item ::= [private] library_unit_declaration
| library_unit_body
| [private] library_unit_renaming_declaration

library_unit_declaration ::=
subprogram_declaration | package_declaration
| generic_declaration | generic_instantiation

279 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

library_unit_renaming_declaration ::=
package_renaming_declaration

| generic_renaming_declaration

| subprogram_renaming_declaration

library_unit_body ::= subprogram_body | package body
parent_unit_name ::= name

An overriding_indicator is not allowed in a subprogram_declaration, generic_instantiation, or
subprogram_renaming_declaration that declares a library unit.

A library unit is a program unit that is declared by a library_item. When a program unit is a library
unit, the prefix “library” is used to refer to it (or “generic library” if generic), as well as to its
declaration and body, as in “library procedure”, “library package_body”, or “generic library
package”. The term compilation unit is used to refer to a compilation_unit. When the meaning is clear
from context, the term is also used to refer to the library_item of a compilation_unit or to the
proper_body of a subunit (that is, the compilation_unit without the context_clause and the separate
(parent_unit_name)).

The parent declaration of a library_item (and of the library unit) is the declaration denoted by the
parent_unit_name, if any, of the defining_program_unit_name of the library_item. If there is no
parent_unit_name, the parent declaration is the declaration of Standard, the library_item is a root
library_item, and the library unit (renaming) is a root library unit (renaming). The declaration and
body of Standard itself have no parent declaration. The parent unit of a library_item or library unit is
the library unit declared by its parent declaration.

The children of a library unit occur immediately within the declarative region of the declaration of the
library unit. The ancestors of a library unit are itself, its parent, its parent's parent, and so on.
(Standard is an ancestor of every library unit.) The descendant relation is the inverse of the ancestor
relation.

A library_unit_declaration or a library_unit_renaming_declaration is private if the declaration is
immediately preceded by the reserved word private; it is otherwise public. A library unit is private or
public according to its declaration. The public descendants of a library unit are the library unit itself,
and the public descendants of its public children. Its other descendants are private descendants.

For each library package_declaration in the environment, there is an implicit declaration of a limited
view of that library package. The limited view of a package contains:

e For each package_declaration occurring immediately within the visible part, a declaration of
the limited view of that package, with the same defining_program_unit_name.

e For each type declaration occurring immediately within the visible part that is not an
incomplete_type declaration, an incomplete view of the type with no discriminant_part; if
the type_declaration is tagged, then the view is a tagged incomplete view.

The limited view of a library package_declaration is private if that library package_declaration is
immediately preceded by the reserved word private.

There is no syntax for declaring limited views of packages, because they are always implicit. The
implicit declaration of a limited view of a library package is not the declaration of a library unit (the
library package_declaration is); nonetheless, it is a library_item. The implicit declaration of the
limited view of a library package forms an (implicit) compilation unit whose context_clause is
empty.

A library package_declaration is the completion of the declaration of its limited view.

Legality Rules

The parent unit of a library_item shall be a library package or generic library package.

© ISO/IEC 2021 — All rights reserved 280

ISO/IEC 8652:DIS

If a defining_program_unit_name of a given declaration or body has a parent_unit_name, then the
given declaration or body shall be a library_item. The body of a program unit shall be a library_item
if and only if the declaration of the program unit is a library_item. In a library_unit_renaming_-
declaration, the (old) name shall denote a library_item.

A parent_unit_name (which can be used within a defining_program_unit_name of a library_item
and in the separate clause of a subunit), and each of its prefixes, shall not denote a
renaming_declaration. On the other hand, a name that denotes a library _unit_renaming_declaration
is allowed in a nonlimited_with_clause and other places where the name of a library unit is allowed.

If a library package is an instance of a generic package, then every child of the library package shall
either be itself an instance or be a renaming of a library unit.

A child of a generic library package shall either be itself a generic unit or be a renaming of some other
child of the same generic unit.

A child of a parent generic package shall be instantiated or renamed only within the declarative region
of the parent generic.

For each child C of some parent generic package P, there is a corresponding declaration C nested
immediately within each instance of P. For the purposes of this rule, if a child C itself has a child D,
each corresponding declaration for C has a corresponding child D. The corresponding declaration for
a child within an instance is visible only within the scope of a with_clause that mentions the
(original) child generic unit.

A library subprogram shall not override a primitive subprogram.

The defining name of a function that is a compilation unit shall not be an operator_symbol.

Static Semantics

A subprogram_renaming_declaration that is a library_unit_renaming_declaration is a renaming-as-
declaration, not a renaming-as-body.

There are two kinds of dependences among compilation units:

e The semantic dependences (see below) are the ones needed to check the compile-time rules
across compilation unit boundaries; a compilation unit depends semantically on the other
compilation units needed to determine its legality. The visibility rules are based on the
semantic dependences.

e The elaboration dependences (see 10.2) determine the order of elaboration of library_items.

A library_item depends semantically upon its parent declaration. A subunit depends semantically
upon its parent body. A library_unit_body depends semantically upon the -corresponding
library_unit_declaration, if any. The declaration of the limited view of a library package depends
semantically upon the declaration of the limited view of its parent. The declaration of a library
package depends semantically upon the declaration of its limited view. A compilation unit depends
semantically upon each library_item mentioned in a with_clause of the compilation unit. In addition,
if a given compilation unit contains an attribute_reference of a type defined in another compilation
unit, then the given compilation unit depends semantically upon the other compilation unit. The
semantic dependence relationship is transitive.

Dynamic Semantics

The elaboration of the declaration of the limited view of a package has no effect.

NOTES
1 A simple program may consist of a single compilation unit. A compilation need not have any compilation units; for
example, its text can consist of pragmas.

2 The designator of a library function cannot be an operator_symbol, but a nonlibrary renaming_declaration is
allowed to rename a library function as an operator. Within a partition, two library subprograms are required to have
distinct names and hence cannot overload each other. However, renaming_declarations are allowed to define

281 © ISO/IEC 2021 — All rights reserved

ISO/IEC 8652:DIS

overloaded names for such subprograms, and a locally declared subprogram is allowed to overload a library
subprogram. The expanded name Standard.L can be used to denote a root library unit L (unless the declaration of
Standard is hidden) since root library unit declarations occur immediately within the declarative region of package

Standard.
Examples
Examples of library units:
package Rational Numbers.IO is -- public child of Rational_Numbers, see 7.1

procedure Put (R : in Rational);
procedure Get (R : out Rational) ;
end Rational_ Numbers.IO;

private procedure Rational Numbers.Reduce(R : in out Rational) ;
- - private child of Rational Numbers

with Rational Numbers.Reduce; - - refer to a private child
package body Rational Numbers is

end Rational_ Numbers;

with Rational Numbers.IO; use Rational Numbers;
with Ada.Text io; --seeA.10
procedure Main is - - a root library procedure
R : Rational;
begin
R := 5/3; - - construct a rational number, see 7.1
Ada.Text IO.Put("The answer is: ");
I0.Put (R);
Ada.Text IO.New Line;
end Main;

with Rational Numbers.IO;
package Rational IO renames Rational Numbers.IO;
- - a library unit renaming declaration

Each of the above library_items can be submitted to the compiler separately.

10.1.2 Context Clauses - With Clauses

A context_clause is used to specify the library_items whose names are needed within a compilation
unit.

Syntax
context_clause ::= {context_item}
context_item ::= with_clause | use_clause
with_clause ::= limited_with_clause | nonlimited_with_clause

limited_with_clause ::= limited [private] with library unit name {, library unit_ name};

nonlimited_with_clause ::= [private] with library _unit name {, library unit name};

Name Resolution Rules

The scope of a with_clause that appears on a library_unit_declaration or library_unit_renaming_-
declaration consists of the entire declarative region of the declaration, which includes all children and
subunits. The scope of a with_clause that appears on a body consists of the body, which includes all
subunits.

A library_item (and the corresponding library unit) is named in a with_clause if it is denoted by a
library unit name in the with_clause. A library_item (and the corresponding library unit) is
mentioned in a with_clause if it is named in the with_clause or if it is denoted by a prefix in the
with_clause.

© ISO/IEC 2021 — All rights reserved 282

ISO/IEC 8652:DIS

Outside its own declarative region, the declaration or renaming of a library unit can be visible only
within the scope of a with_clause that mentions it. The visibility of the declaration or renaming of a
library unit otherwise follows from its placement in the environment.

Legality Rules

If a with_clause of a given compilation_unit mentions a private child of some library unit, then the
given compilation_unit shall be one of:

o the declaration, body, or subunit of a private descendant of that library unit;

e the body or subunit of a public descendant of that library unit, but not a subprogram body
acting as a subprogram declaration (see 10.1.4); or

o the declaration of a public descendant of that library unit, in which case the with_clause shall
include the reserved word private.

A name denoting a library_item (or the corresponding declaration for a child of a generic within an
instance — see 10.1.1), if it is visible only due to being mentioned in one or more with_clauses of a
unit U that include the reserved word private, shall appear only within:

e aprivate part;

e a body of a public descendant of U, but not within the subprogram_specification of a body
of a subprogram that is a public descendant of U,

e a private descendant of U or its body; or
e apragma within a context clause.

A library_item mentioned in a limited_with_clause shall be the implicit declaration of the limited
view of a library package, not the declaration of a subprogram, generic unit, generic instance, or a
renaming.

A limited_with_clause shall not appear on a library_unit_body, subunit, or library_unit_renaming_-
declaration.

A limited_with_clause that names a library package shall not appear:

¢ in the context_clause for the explicit declaration of the named library package or any of its
descendants;

e within a context clause for a library_item that is within the scope of a
nonlimited_with_clause that mentions the same library package;