	Template for comments and secretariat observations
	Date: 2016-09-20
	Document: ISO/IEC TR 24772-2:201X(E)
	Project:

	MB/NC1
	Line number
	Clause/ Subclause
	Paragraph/ Figure/ Table/
	Type of comment2
	Comments
	Proposed change
	Observations of the editor(s)

	CA
	
	3.1
	
	Te
	Access to subprogram definition, its actually more than just a pointer to a subprogram. It can also contain context to the local state on the stack, for the case of nested subprograms, or the address of a protected object for access to protected subprograms, and possibly other meta data such as accessibility levels to provide safety dynamically at run time..
This differs from other languages such as C, where it really is just a pointer to a subprogram. I think it would be worthwhile to make that distinction here.
	Suggest changing definition to: "An access value that designates a subprogram which may implicitly include additional context needed to support a call to that subprogram, particularly in the case of nested subprograms and protected subprograms."
	Revised the definition of access value to include subprograms

	CA
	
	3.1
	
	Te
	Access Object definition: This really isn't a term in the RM, and I actually find it very confusing, because the RM does define access-to-object, which is different. The definition is unclear, is this the object that is designated by the access type, or the access value that designates the object?
Given that we already have the definition, "Access-to-subprogram", this should be consistent and have the term, "Access-to-object"
	Suggest changing term to "Access-to-object", and its definition to "A pointer to an object."
	Revised the definition of access object to be access-to-object

	CA
	
	3.1
	
	Te
	Access Type definition: There are two types of access types in Ada, access to objects, and access to subprograms. The current definition only mentions one of these.
	Suggest changing definition to:
"There are two kinds of access types in Ada;
 One defines a type that can designate objects and one defines a type that can
 designate subprograms."
	Revised the definition of Access type

	CA
	
	3.1
	
	Te
	 Access Value definition: Access values can also designate subprograms, which are not objects.
	Suggest:
"designates another object" => "designates an object or subprogram"
	Revised the definition of access value

	CA
	
	3.1
	
	Ed
	Partition definition: "may execute[s]" (Delete the 's')
 This is a fixed marked as Done from the original comments, but still not
	
	Done

	CA
	
	3.1
	
	Te
	A pointer is not synonymous with an access object
 (whatever that means), since it can also point to a subprogram, which is not an object, and it also can be a System.Address, which is not an access value, and in any case, it is an access value, not an access object.
	Suggest changing definition to:
"A pointer in Ada can either be an access value, or a value of the type System.Address."
	Revised definition of pointer excluding System.Address reference.

	CA
	
	6.3.2
	
	Ed
	 I think the sentence beginning with;
"Consider using the restriction No_Unchecked_Conversion" was intended to be a separate bullet, as it is unrelated to the previous sentence.
	
	Inserted a carriage return and replaced the “Consider using “ with “Use”

	CA
	
	6.3.2
	
	Te
	Also add a new bullet to this section; "Consider using the restriction No_Use_Of_Attribute(Address) to prevent unsafe manipulation of address
	
	Not appropriate for this section, may fit elsewhere.
No change

	CA
	
	6.13.2
	
	Te
	Add a bullet in the middle of the other two; "Write explicit checks for null values to avoid exceptions being raised".
	
	Done

	CA
	
	6.13.2
	
	Te
	Add a bullet,
"Avoid the use of access types in the public part of a package specification, to eliminate this vulnerability in client usage of the package. This also serves to localize the use within the private part of the package or in the body, where careful scrutiny can be more easily applied to verify that any potential problems have been eliminated."
	
	This is general advice for good software engineering, only marginally applicable to the issue at hand (null pointer dereference).
No change.

	CA
	
	6.14.1
	
	Te
	Ada provides a model in which whole collections of heap‐allocated objects can be deallocated safely, automatically and collectively when the scope of the root access type ends.
This is actually not completely true. Ada does require the objects to be finalized, but does not require the storage for the objects to be reclaimed for this case.
Such storage reclamation is implementation defined. See AARM 13.11 (2.a).
	Change to :"Ada provides a model in which whole collections of heap‐allocated objects can be {safely finalized}[deallocated safely], automatically and collectively when the scope of the root access type ends{, however it is implementation defined whether the storage for those objects is reclamed unless the access type is associated with a specific non-default storage pool}."
	This vulnerability is about dangling references, so this change does not apply. The vulnerability does not exist regardless of actual deallocation.
No Change.

	CA
	
	6.14.1
	
	Te
	Should also mention subpools and recommend their use, as subpools allows collections of objects to be more safely freed without having to use Unchecked_Deallocation. Also, for global objects, Unchecked_Deallocation can be avoided by using a storage pool that support subpools.
	Add after paragraph 2,

"Ada provides storage pool capabilities, which can provide better control of memory allocation, including providing automatic storage reclamation, when scope of the storage pool object ends. Ada also provides a framework for creating user-defined storage pools that can finalize and reclaim a subpool collection of heap-allocated objects in a single call of the subprogram Ada.Unchecked_Deallocate_Subpool.
While Unchecked_Deallocate_Subpool has the possibility of dangling references to subpool handles, it is thought to be considerably safer than the problem of dangling references to objects, and the need for multiple subpool handles designating the same subpool is typically much less than the need for multiple references to an object. There is also the possibility of creating user defined storage pools with subpool support that rely on the scoping of subpool handle declarations, rather than calls to Unchecked_Deallocate_Subpool, to provide an even safer interface."

Ada provides storage pool capabilities, which can provide better control of memory allocation, including providing automatic storage reclamation, when scope of the storage pool object ends

[E.g. See Deepend Subpool storage pools at deepend.sourceforge.net]
	Changed the sentence in paragraph 2 to include associated storage pool objects.

	CA
	
	6.14.1
	
	Te
	The last paragraph is incorrect. It isn't the *only* way, and safer alternatives do exist.
	Change the last paragraph;
"For global access types, {unless storage pool subpools are used} allocated
 objects can only be deallocated through an instantiation of the generic procedure Unchecked_Deallocation.
	Done

	CA
	
	6.14.2
	
	Te
	Add another bullet
"Use the Default_Storage_Pool pragma to specify that all access types that are not associated with a specific pool will use the specified storage pool to ensure that storage will be reclaimed when the scope of the access type ends.
Default_Storage_Pool may be used with restrictions No_Coextensions and No_Access_Parameter_Allocators (see H.4) to ensure that all allocators use the
 default pool."
	
	Added one bullet, Consider the use of storage pools and subpools.

	CA
	
	6.14.2
	
	te
	Add another bullet
"Use storage pools for all user defined access types, and localize the
 declaration of the pool if possible to allow automatic finalization and reclamation of
 the objects allocated to the pool, when the scope of the pool ends."
	
	Added one bullet, Consider the use of storage pools and subpools.

	CA
	
	6.14.2
	
	Te
	Add another bullet;
Use Storage Pools that support subpools, and allocate objects to subpools, so that the collection of the objects in the subpool can be reclaimed as a whole when they are no longer needed by calling the Ada.Unchecked_Deallocate_Subpool
 subprogram, or when the scope of the subpool ends, if the subpool library supports that capability.
	
	Added one bullet, Consider the use of storage pools and subpools.

	CA
	
	6.14.2
	
	Te
	Add another bullet;
"Avoid the use of access types in the public part of a package specification, to eliminate dangling references in client usage of the package. This also serves to localize the use within the private part of the package or in the body, where careful scrutiny can be more easily applied to verify that any potential problems have been eliminated."
	
	General software engineering encapsulation advice. No change.

	CA
	
	6.14.2
	
	Te
	Add another bullet;
Consider applying the Restriction No_Allocators to generally prevent this vulnerability, or the Restriction No_Task_Allocators or No_Protected_Type_Allocators to prevent this vulnerability specifically for task objects and protected objects.
Consider applying the Restriction
No_Standard_Allocators_After_Elaboration to prevent dangling references once the application has completed elaboration and started.
	
	This advice is too far reaching, no allocators alone does not prevent dangling references, ‘Address can lead to dangling references. No change.

	CA
	
	6.17.1
	
	Te
	Mixed casing states no confusion can arise.
How about:

declare
 ITEM : Integer :=0;
begin
 declare
 item : Integer := 0;
 begin
 item := item + 1;
 ITEM := ITEM + 2; // Reader might get confused about which item
 // is being updated here, thinking that the outer
 // declaration is being updated, when in fact it is
 // the inner declaration.
 end;
end;
	Suggest changing the sentence that begins with
 "Thus no confusion can arise ..." to say

"Thus no confusion can arise through an attempt to use Item and ITEM as distinct
 identifiers with different meanings {unless one declaration hides the other,
 and the case of the usage matches the case of the hidden declaration}."
	Changed the sentence to “Confusion may arise ..”

	CA
	
	6.17.2
	
	Te
	Add bullet
"Use a compiler that detects and generates warnings for declaration hiding, or use a static analysis tool that detects the same issue."
	
	See the vulnerability for hiding. No change.

	CA
	
	6.19.2
	
	Ed
	This section is about unused variables, not dead stores. It is not a dead store if it is unused. There are two cut and paste errors in this section.
	Use Ada compilers that detect and generate compiler warnings for {unused variables}[dead stores]
Use static analysis tools to detect {unused variables}[dead stores].
	Replaced dead stores with unused variables

	CA
	
	6.22.1
	
	Te
	 It is not accurate to say that this vulnerability does not apply to pointer variables, because variables of the type System.Address are pointer variables.
Instead, we should be speaking of access types, for which the statement would then be accurate.
	Change:
"The vulnerability does not exist for {access type}[pointer] variables (or constants). {Access Type}[Pointer] variables are initialized to null by default, and every dereference of a{n} {Access value}[pointer] that is not null‐excluding is checked for a null value."
	This has been resolved with the updates to the definition of pointer.
No change.

	CA
	
	6.23.1
	
	Ed
	Missing period in second bullet.
"Mixed logical operators are not allowed without parentheses, for example, "A or B or C" is valid, as well as "A and B and C", but "A and B or C" is not{.} {The}[the] user must write"
	
	Inserted to a ; as these sentence fragments belong together.

	CA
	
	6.24.1
	
	Te
	Ada allows the implementation to choose the order of evaluation of expressions with operands of the same precedence level, the order of association is left‐to‐right.
	This sentence doesn't make sense to me. If the implementation can choose the order of evaluation, how can the order of association be defined as being left-to-right?
We just said it is implementation defined.
	Need to recognize the difference between the order of evaluation and the order of association. No change.

	CA
	
	6.33.1
	
	Te
	In Ada, the attribute 'Address yields a value of some system‐specific type that is not equivalent to a pointer. The attribute 'Access provides an access value (what other languages call a pointer).
I would say that 'Address actually *does* yield something that is more equivalent of what other languages call a pointer, a system address of the target. Even if you look up "Pointer" in the index of the RM, you will see a reference to System.Address, as well aspect Access types.
An Access value is more than a pointer, it can include stack context, and other meta data, such as accessibility values for preventing dangling references. Other languages do not have this. I don't think we should be describing access values as pointers, except perhaps "smart" or "fat"
pointers.
	"In Ada, the attribute 'Address yields a value
 [of some system‐specific type that is not]{that can be considered to be} equivalent to what other languages call a pointer. The attribute 'Access provides an access value {that other languages might call a "smart" pointer, that has numerous benefits over the use of 'Address and is therefore preferred for use in Ada.}[(what other languages call a pointer)]."
	No change - Ada does not consider 'Address a pointer

	CA
	
	6.33.1
	
	Te
	Suggest generally throughout that we speak of designating objects rather than obtaining a pointer to an object.
For example, in the second paragraph of 6.33.1 "Most commonly, programs use 'Access to [provide pointers to] {designate} objects and subprograms"
	
	Done

	CA
	
	6.33.1
	
	Te
	Add as last sentence to this section.
"Unchecked_Access is not allowed to be applied to subprograms."
	
	No change/does not address the vulnerability.

	CA
	
	6.34.1
	
	Te
	Should mention that Ada does not support variadic functions, which is a very common source of this vulnerability in other languages such as printf in C, where a format string is passed, and the number of variables passed after that have to match the format specifiers.
	Add after paragraph 1.

"Ada does not support variadic subprograms, which eliminates a common source for this vulnerability."
	Done

	CA
	
	6.34.2
	
	Te
	General comment throughout, should probably be using the term "aspect"
rather than pragma. The use of pragma for aspects such as Import and Export, are now in Annex J, and considered deprecated. We should not be mentioning deprecated features, when there exists current terminology that reflects the current state of the language.
	
	Attempted to address the problem with the NOTE in section 4. If we are going to move to aspects in this document, then the entire document needs to be edited to correct all of the pragma/aspect issues.

	CA
	
	6.35.2
	
	Te
	Add another bullet,
 "Consider applying the Restriction(No_Recursion), or
Restriction(No_Reentrancy)
 to eliminate this vulnerability."
	
	Done

	CA
	
	6.36.2
	
	Te
	Add another bullet,
32) "Consider using the call
Ada.Task_Termination.Set_Dependents_Fallback_Handler
to install an handler that will be invoked whenever a task terminates, including by an unhandled exception. The handler can determine if the task terminated abnormally or not, as well as examine any exception that may have been raised.
	
	Added the bullet, Consider using the call Ada.Task_Termination.Set_Dependents_Fallback_Handler to install a handler that will be invoked whenever a task terminates.

	CA
	
	6.38.1
	
	Ed
	Other languages do not have Unchecked_Conversion, though they might have something similar.
	Change to"Unchecked_Conversion can be used to bypass the type‐checking rules, and its use is thus unsafe, as {is its equivalent} in any other language."
	Done

	CA
	
	6.38.2
	
	Te
	Add bullet
Consider applying the restrictions; No_Use_Of_Pragma(Unchecked_Union),
No_Use_Of_Aspect(Unchecked_Union), No_Use_Of_Attribute(Address), No_Unchecked_Conversion, to ensure this vulnerability cannot arise.
	
	Done

	CA
	
	6.39.1
	
	Te
	Middle paragraph is incorrect. Storage reclamation is not guaranteed in Ada when an access type goes out of scope.
	Change:
"Ada ensures that objects designated by an access type declared in a nested scope are finalized [and storage reclaimed] when execution leaves the nested scope{, however it is implementation defined whether the storage for those objects is reclamed unless the access type is associated with a specific non-default storage pool}."
	Ada ensures that objects designated by an access type declared in a nested scope
 are finalized when execution leaves the nested scope, however, it is implementation defined whether storage is reclaimed for this case. Associating an access type with a storage pool can ensure that the storage reclamation takes place.

	CA
	
	6.39.2
	
	Te
	The middle paragraph is actually incorrect. While the objects are finalized, the storage for the objects is not guaranteed to be reclaimed. See AARM
13.11 (2.a).
This could amount to a very bad, non-obvious memory leak.
	Change: Ada ensures that objects designated by an access type declared in a nested scope
 are finalized [and storage
reclaimed] when execution leaves the nested scope{, however it is implementation defined whether storage is reclaimed for this case. Associating an access type with a storage pool can ensure that the storage reclamation takes place.}.
	Wrong section, see above.

	CA
	
	6.39.2
	
	Te
	Add another bullet,
"Use the Default_Storage_Pool pragma to specify that all access types that are not associated with a specific pool will use the specified storage pool to ensure that storage will be reclaimed when the scope of the access type ends.
Default_Storage_Pool may be used with restrictions No_Coextensions and No_Access_Parameter_Allocators (see ARM H.4) to ensure that all allocators use the
 default pool."
	
	This is captured in the first bullet to use storage pools. No change.

	CA
	
	6.39.2
	
	Te
	Add another bullet
"Use storage pools for all user defined access types, and localize the
 declaration of the pool if possible to allow automatic finalization and reclamation of
 the objects allocated to the pool, when the scope of the pool ends."
	
	This is captured in the first bullet to use storage pools. No change.

	CA
	
	6.39.2
	
	Te
	Delete the 3rd bullet, it doesnt ensure automatic reclamation, but that is covered by the preceding new bullets.
	
	Deleted the clause “to ensure automatic reclamation” from the 3rd bullet.

	CA
	
	6.39.2
	
	Te
	Use Storage Pools that support subpools, and allocate objects to subpools, so that the collection of the objects in the subpool can be reclaimed as a whole when they are no longer needed by calling the Ada.Unchecked_Deallocate_Subpool
 subprogram, or when the scope of the subpool ends, if the subpool library supports that capability.
	
	This is captured in the first bullet to use storage pools. No change.

	CA
	
	6.39.2
	
	Te
	Add another bullet;
"Avoid the use of access types in the public part of a package specification, to eliminate dangling references in client usage of the package. This also serves to localize the use within the private part of the package or in the body, where careful scrutiny can be more easily applied to verify that any potential problems have been eliminated."
	
	Dangling references is not the issue here. No change.

	CA
	
	6.39.2
	
	Te
	Add another bullet;
Consider applying the Restriction No_Allocators to generally prevent this vulnerability, or the Restriction No_Task_Allocators or No_Protected_Type_Allocators to prevent this vulnerability specifically for task objects and protected objects.
	Consider applying the Restriction
No_Standard_Allocators_After_Elaboration to prevent dangling references once the application has completed elaboration and started.
	Too much. No change.

	CA
	
	6.47.1
	2nd Paragraph
	E
	"If the library convention is to report error code[d]{s} "
	
	Done

	CA
	
	6.49.2
	
	Te
	Add another bullet,

"Consider applying the Restriction, No_Use_Of_Pragma(Suppress) to ensure that language defined checks are not disabled."
	
	

	CA
	
	6.51.1
	
	Te
	Double negative logic error, “requires a deeper understanding of control flow issues that some programmers {might} {may not} possess.
	
	Removed “may not”

	CA
	
	6.51.2
	
	Te
	 Add to the end of para1,
"The Restriction, No_Dependence is particularly useful for preventing the use of specific standard libraries, as well as user defined libraries that should not be used."
	
	Changed to a bulleted list.

Revised first bullet to say “Use pragma restrictions to prevent the use of obscure features of the language.

Added “The Restriction No_Dependence prevents the use of specified pre-defined or user-defined libraries.”

	CA
	
	6.51.2
	
	Te
	Add a sentence or bullet;
"Consider applying the restriction, Max_Tasks(0), if tasking and concurrency features are not desired. "
	
	Not appropriate for this section. No change.

	CA
	
	6.58.2
	
	Te
	Add a bullet;
"Consider applying the restriction, Max_Tasks(0), if tasking and concurrency features are not desired, thus preventing this vulnerability. "
	
	Not a good answer to deal with issues in concurrency. No change.

	CA
	
	6.60.2
	
	Te
	Add a second bullet
"For multicore, the previous scheme for single core processors can be applied by assigning all tasks that interact with each other to the same CPU, using the CPU aspect or pragma. Each core is effectively treated as a separate independent machine. This maintains the guarantee that deadlock cannot occur. Static analysis may be required to ensure that there is no task interaction across cores. For improved temporal and spacial isolation, also consider using the features of the package, System.Multiprocessors.Dispaching_Domains to create separate schedulers for each core.
	
	Added:
For multicore, consider assigning all interacting tasks to the same CPU then treat each such group as a separate independent entity.

	CA
	
	
	
	Te
	
	
	

1
MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2
Type of comment:
ge = general
te = technical
ed = editorial
page 12 of 12
ISO/IEC electronic balloting commenting template/version 2012-03

