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Foreword 

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical 

Commission) form the specialized system for worldwide standardization. National bodies that are members of 

ISO or IEC participate in the development of International Standards through technical committees established 

by the respective organization to deal with particular fields of technical activity. ISO and IEC technical 

committees collaborate in fields of mutual interest. Other international organizations, governmental and non-

governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO 

and IEC have established a joint technical committee, ISO/IEC JTC 1. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of the joint technical committee is to prepare International Standards. Draft International 

Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as 

an International Standard requires approval by at least 75 % of the national bodies casting a vote. 

In exceptional circumstances, when the joint technical committee has collected data of a different kind from 

that which is normally published as an International Standard (“state of the art”, for example), it may decide to 

publish a Technical Report.  A Technical Report is entirely informative in nature and shall be subject to review 

every five years in the same manner as an International Standard. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 

rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. 

ISO/IEC TR 24772, was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, 

Subcommittee SC 22, Programming languages, their environments and system software interfaces. 
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Introduction 

This document provides guidance for the programming language C, so that application developers 

considering or using C will be better able to avoid the programming constructs that lead to vulnerabilities 

and their attendant consequences. This guidance can also be used by developers to select source code 

evaluation tools that can discover and eliminate such constructs in their software, or the developers of such 

tools.  

This document is intended to be used with TR 24772–1, which discusses programming language 

vulnerabilities in a language independent fashion. 

It should be noted that this document is inherently incomplete. It is not possible to provide a complete list 

of programming language vulnerabilities because new weaknesses are discovered continually. Any such 

report can only describe those that have been found, characterized, and determined to have sufficient 

probability and consequence.



Technical Report ISO/IEC TR 24772:2015(E) 
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Information Technology — Programming Languages — Guidance to avoiding 

vulnerabilities in programming languages — Vulnerability descriptions for 

the programming language C 

1. Scope 

This document specifies software programming language vulnerabilities to be avoided in the development of 

systems where assured behaviour is required for security, safety, mission-critical and business-critical software. In 

general, this guidance is applicable to the software developed, reviewed, or maintained for any application. 

This document describes the way that the vulnerabilities listed in the language-independent TR 24772–1 are 

manifested or avoided in the C language. 

2. Normative references 

The following referenced documents are indispensable for the application of this document. For dated references, 

only the edition cited applies. For undated references, the latest edition of the referenced document (including 

any amendments) applies. 

ISO/IEC 24772-1 -  Information Technology — Programming languages — Guidance to avoiding vulnerabilities in 

programming languages 

ISO/IEC 9899:2011 — Programming Languages—C  

ISO/IEC TR 24731-1:2007 — Extensions to the C library — Part 1: Bounds-checking interfaces 

ISO/IEC TR 24731-2:2010 — Extensions to the C library — Part 2: Dynamic Allocation Functions 

ISO/IEC 9899:2011/Cor. 1:2012 — Programming languages —C 

ISO/IEC 9945:2009 -- Information Technology -- Portable Operating System Interface(POSIX) with TC 1:2013 

 

3. Terms and definitions, symbols and conventions 

3.1 Terms and definitions 

For the purposes of this document, the terms and definitions given in ISO/IEC 2382, in TR 24772–1, in 9899:2011 

and the following apply. Other terms are defined where they appear in italic type. 

The following terms are in alphabetical order, with general topics referencing the relevant specific terms. 

3.1.1 

 

access:  
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read or modify the value of an object 

 

Note: Modify includes the case where the new value being stored is the same as the previous value. 

Expressions that are not evaluated do not access objects 

 

3.1.2 

 

alignment  

requirement that objects of a particular type be located on storage boundaries with addresses that are particular 

multiples of a byte address 

 

3.1.3 

 

argument  

expression in the comma-separated list bounded by the parentheses in a function call expression, or a sequence 

of preprocessing tokens in the comma-separated list bounded by the parentheses in a function-like macro 

invocation 

 

Note 1: Also called actual argument 

Note 2: An argument replaces a formal parameter as the call is realized. 

 

3.1.4 

 

behaviour  

external appearance or action 

 

Note:  See: implementation-defined behaviour, locale-specific behaviour, undefined behaviour, unspecified 

behaviour 

 

3.1.5 

 

bit 

unit of data storage in the execution environment large enough to hold an object that may have one of two 

values 

 

Note: It need not be possible to express the address of each individual bit of an object 

 

3.1.6 

 

byte  

addressable unit of data storage large enough to hold any member of the basic character set of the execution 

environment  
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Note: It is possible to express the address of each individual byte of an object uniquely. A byte is composed of a 

contiguous sequence of bits, the number of which is implementation-defined. The least significant bit is called 

the low-order bit; the most significant bit is called the high-order bit. 

 

3.1.7 

 

character  

 abstract member of a set of elements used for the organization, control, or representation of data 

 

Note: See: single-byte character, multibyte character , wide character 

 

3.1.8 

 

correctly rounded result:  

representation in the result format that is nearest in value, subject to the current rounding mode, to what the 

result would be given unlimited range and precision 

 

3.1.9 

 

diagnostic message:  

message belonging to an implementation-defined subset of the implementation’s message output 

 

Note: The C Standard requires diagnostic messages for all constraint violations. 

 

3.1.10 

 

formal parameter:  

object declared as part of a function declaration or definition that acquires a value on entry to the function, or an 

identifier from the comma-separated list bounded by the parentheses immediately following the macro name in a 

function-like macro definition 

 

3.1.11 

 

implementation:  

particular set of software, running in a particular translation environment under particular control options, that 

performs translation of programs for, and supports execution of functions in, a particular execution environment 

 

3.1.12 

 

implementation-defined behaviour:   

behaviour where multiple options are permitted by the standard and where each implementation documents 

how the choice is made 
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Note: An example of implementation-defined behaviour is the propagation of the high-order bit when a 

signed integer is shifted right. 

 

3.1.13 

 

implementation-defined value:  

value not specified in the standard where each implementation documents how the choice for the value is 

selected 

 

3.1.14 

 

implementation limit:  

restriction imposed upon the program by the implementation 

 

3.1.15 

 

indeterminate value:  

unspecified value or a trap representation 

 

3.1.16 

 

locale-specific behaviour: 

behaviour that depends on local conventions of nationality, culture, and language that each implementation 

documents  

 

Note: An example, locale-specific behaviour is whether the islower() function returns true for characters 

other than the 26 lower case Latin letters 

 

3.1.17 

 

memory location:    

object of scalar1 type, or a maximal sequence of adjacent bit-fields all having nonzero width  

 

3.1.18 

 

multibyte character:  

sequence of one or more bytes representing a member of the extended character set of either the source or the 

execution environment, where the extended character set is a superset of the basic character set 

 

3.1.19 

 

                                                             

1 Integer types, Floating types and Pointer types are collectively called scalar types in the C Standard 
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object:  

region of data storage in the execution environment, the contents of which can represent values 

 

3.1.20 

 

parameter:  

actual argument, argument, or formal parameter 

 

3.1.21 

 

recommended practice:  

specification that is strongly recommended as being in keeping with the intent of the C Standard, but that may be 

impractical for some implementations 

 

3.1.22 

 

runtime-constraint:  

requirement on a program when calling a library function 

 

3.1.23 

 

Sequence point:  

 

point in the language syntax where the compiler guarantees that all calculations and assignments required by the 

code preceding the sequence point are completed, before those following it are started 

 

Note: The comma operator is a sequence point. Hence in  A, B;  all calculations and assignments required 

by sub-expression A are completed before any required by B are started. 

 

3.1.24 

 

single-byte character:  

bit representation that fits in a byte 

 

3.1.25 

 

trap representation:  

object representation that need not represent a value of the object type 

 

3.1.26 

 

undefined behaviour:  

use of a non-portable or erroneous program construct or of erroneous data, for which the C standard imposes no 

requirements 
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Note: Undefined behaviour ranges from ignoring the situation completely with unpredictable results, to 

behaving during translation or program execution in a documented manner characteristic of the 

environment (with or without the issuance of a diagnostic message), to terminating a translation or 

execution (with the issuance of a diagnostic message). An example of, undefined behaviour is the behaviour 

on integer overflow. 

 

3.1.27 

 

unspecified behaviour:   

use of an unspecified value, or other behaviour where the C Standard provides two or more possibilities and 

imposes no further requirements on which is chosen in any instance 

 

Note: For example, unspecified behaviour is the order in which the arguments of a function are evaluated. 

 

3.1.28 

 

unspecified value:  

valid value of the relevant type where the C Standard imposes no requirements on which value is chosen in any 

instance   

 

Note: An unspecified value cannot be a trap representation. 

 

3.1.29 

 

value:  

meaning of the contents of an object when interpreted as having a specific type 

 

Note: See implementation-defined value, indeterminate value, unspecified value, trap representation 

 

3.1.30 

 

wide character:  

bit representation capable of representing any character in the current locale:: 

 

Note: The C Standard uses the name  wchar_t for objects of this type 

 

4. Language concepts 

The C programming language was developed in the early 1970’s at Bell Labs, in support of the development of the 

Unix operating system. Its first published specification was in 1978 in the book “The C programming language” 

[15]. The first ISO standard for C was published in 1990 and updated in 1999 and 2011. 
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C is an imperative language that supports structured programming and has a static type system. It has often been 

described as a ‘high-level assembler’, in that the semantic gap between a program and the executable code is 

small (as in a traditional assembler), but having the advantages of a high-level language: machine independence 

and structured programming control constructs.  

The small semantic gap between program and executable code means that the resulting executables are compact 

and fast, making C a popular language for developing operating systems and embedded applications. There is a 

desire to maintain this advantage of the language. Consequently as the language has developed there is a strategy 

of avoiding the addition of overheads that do not directly contribute to the behaviour of the application and to 

maintain backwards compatibility, as embedded systems in particular can be in development and maintenance 

for a very long time. This document proposes restrictions that should be imposed on development in an 

environment where run-time failure is unacceptable. 

 

Some key features of the language are: 

• Due to C being a ‘high-level assembler’ and having been around for longer than most other high-level 

languages, it has become a common exchange format between other languages. In particular, many 

languages implement the C function calling model (at least as a selectable option), so that third party 

libraries can be used in many language environments 

• C has a particularly close relationship with C++. Initially C++ was a strict superset of C, with only one 

exception of a feature in C not being in C++. Whilst over the years there has been some divergence, the 

relationship is still close 

• An unusual feature of C is the preprocessor. This allows textual manipulation of the code before the 

compiler considers the program. It is used to allow changes to the code to match specific implementation 

environments, implement in-line functions and implement code ‘short-cuts’ by allowing component 

statements to be constructed that would not be syntactically legal using a function definition 

• Since C11, the language has had a native threading model. Previously, parallelism could only be achieved 

using third-party libraries not included in the standard 

• Unlike some other languages, C uses the terms ‘pointer’ and ‘reference’ synonymously. Similarly, the 

terms ‘pass by reference’, ‘pass by pointer’ and ‘pass by address’ also have the same meaning 

 

 

5. Avoiding programming language vulnerabilities in C 

 

In addition to the generic programming rules from TR 24772-1 clause 5.4, additional rules from this section apply 

specifically to the C programming language. The recommendations of this section are restatements of 

recommendations from clause 6 of this document, but represent ones stated frequently, or that are considered as 

particularly noteworthy by the authors. Clause 6 of this document contains the full set of recommendations, as 

well as explanations of the problems that led to the recommendations being made. 

 

 

Index  Reference 

1 Use a macro to ensure that the size of memory allocated with malloc matches the 
intended type of the object  
 

[6.11 Pointer 
type 
conversions 
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[HFC] 

2 Use bounds checking interfaces from Annex K of C11[4] in favour of non-bounds 
checking interfaces, such as strcpy_s instead of strcpy.  

[6.8 Buffer 
boundary 
violation [HCB] 

3 Use commonly available functions such as the POSIX functions htonl(), htons(), 
ntohl() and ntohs() to convert from host byte order to network byte order and 
vice versa 

6.3 Bit 
representations 
[STR] 

4 Perform range checking before copying memory (using mechanisms such as 
memcpy and memmove), unless it can be shown that a range error cannot occur.  
 
Bounds checking is not performed automatically, but in the interest of speed and 
efficiency, range checking only needs to be done when it cannot be statically shown 
that an access outside of the array cannot occur. 

6.10 
Unchecked 
array copying 
[XYW] 

5 Check that a pointer is not null before dereferencing, unless it can be shown 
statically that the pointer cannot be null. 

6.13 NULL 
pointer 
dereference 
[XYH] 

6 After a call to free, set the pointer to null to prevent multiple deallocation or use 
of a dangling reference via this pointer, as illustrated in the following code: 

free (ptr); 

ptr = NULL;   
. 

6.14 Dangling 
reference to 
heap [XYK] 

7 Do not read uninitialized memory, including memory allocated by functions such as 
malloc.  

6.22 
Initialization of 
variables [LAV] 

8 Check that the result of an operation on an unsigned integer value will not cause 
wrapping, unless it can be shown that wrapping cannot occur. 
Any of the following operators have the potential to wrap: 

a + b   a – b   a * b   a++   ++a   a--   --a  

a += b  a -= b  a *= b  a << b   a<<=b   -a 

6.15 Arithmetic 
wrap-around 
error [FIF] 

9 Check that the result of an operation on a signed integer value will not cause an 
overflow, unless it can be shown that overflow cannot occur. 
Any of the following operators have the potential to overflow, which is undefined 
behaviour in C: 

a + b   a – b   a * b  a/b  a%b  a++  ++a  a--  --

a 

a += b  a -= b  a *= b  a /= b   a %= b  

a << b  a <<= b  -a 

6.15 Arithmetic 
wrap-around 
error [FIF] 

10 Ensure that a type conversion results in a value that can be represented in the 
resulting type.  

6.6 Conversion 
errors [FLC] 

 

6. Specific Guidance for C Vulnerabilities 

6.1 General  

This clause contains specific advice for C about the possible presence of vulnerabilities as described in TR 24772-1, 

and provides specific guidance on how to avoid them in C code. This section mirrors TR 24772-1 clause 6 in that 

the vulnerability “Type System [IHN]” is found in 6.2 of TR 24772–1, and C specific guidance is found in clause 6.2 

and subclauses in this TR.  



 

© ISO/IEC 2017 – All rights reserved 15 
 

 

6.2 Type system [IHN]  

6.2.1 Applicability to language 
C is a statically typed language.  In some ways C is both strongly and weakly typed as it requires all variables to be 

typed, but sometimes allows implicit or automatic conversion between types. For example, C can implicitly 

convert a long int to an int and potentially discard many significant digits. Note that integer sizes are 

implementation defined so that in some implementations, the conversion from a long int to an int will not discard 

any digits since they are the same size. In some implementations, all integer types could be implemented as the 

same size. 

 

C allows implicit conversions as in the following example: 
 short a = 1023; 

 int b; 

 b = a; 

 

If an implicit conversion could result in truncation of the value, such as in a conversion from a 32-bit int to a 16-bit 

short int: 
 int a = 100000; 

 short b; 

 b = a; 

many compilers will issue a warning message. 

 

C has a set of rules to determine how conversion between data types will occur. For instance, every integer type 

has an integer conversion rank that determines how conversions are performed. The ranking is based on the 

concept that each integer type contains at least as many bits as the types ranked below it. So even though there 

are rules in place and the rules are rather straightforward, the variety and complexity of the rules can cause 

unexpected results and potential vulnerabilities.  

 

6.2.2 Guidance to language users 

• Follow the advice provided in TR 24772-1 subclause 6.2.5.  

• Be aware of the rules for typing and conversions to avoid vulnerabilities. 

• Do not cast to an inappropriate type. 

 

6.3 Bit representations [STR]  

6.3.1 Applicability to language 
 

C supports a variety of sizes for integers such as short int, int, long int and long long int. Each may 

either be signed or unsigned. C also supports a variety of bitwise operators that facilitate bit manipulations, such 

as left and right shifts and bitwise & and |. Some bit manipulations can cause unexpected results through 

miscalculated shifts or platform dependent variations. 
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For instance, right shifting a signed integer is implementation defined in C, while shifting by an amount greater 

than or equal to the size of the data type is undefined behaviour. For instance, on a host where an int is of size 32 

bits, 
       unsigned int foo(const int k) { 

          unsigned int i = 1; 

         return i << k; 

     } 
is undefined for values of k greater than or equal to 32. 

 

The storage representation for interfacing with external constructs can also cause unexpected results. Byte orders 

may be in little-endian or big-endian format and unknowingly switching between the two can unexpectedly alter 

values. 

6.3.2 Guidance to language users  

• Follow the guidelines of TR 24772-1 clause 6.3.5. 

• Only use bitwise operators on unsigned integer values as the results of some bitwise operations on signed 

integers are implementation defined or undefined 

• Where available, use functions such as the POSIX standard functions htonl(), htons(), ntohl() 

and ntohs() to convert from host byte order to network byte order and vice versa. This would be 

needed to interface between an i80x86 architecture, where the Least Significant Byte is first, and devices 

with network byte order, as used on the Internet, where the Most Significant Byte is first. Use bitwise 

operations only as a last resort.  

• In cases where there is a possibility that a shift is greater than the size of the variable, perform a check as 

the following example shows, or a modulo reduction before the shift: 
unsigned int i; 

unsigned int k; 

unsigned int shifted_i; 

… 

  if (k < sizeof(unsigned int)*CHAR_BIT) 

        shifted_i = i << k; 

      else 

        // handle error condition 

6.4 Floating-point arithmetic [PLF]  

6.4.1 Applicability to language 

 
C permits the floating-point data types float, double and long double. Due to the approximate nature of floating-

point representations, the use of floating-point data types in situations where equality is to be tested or where 

rounding could accumulate over multiple iterations may lead to unexpected results and potential vulnerabilities. 

As with most data types, C is flexible in how float, double and long double can be used. For instance, C allows the 

use of floating-point types to be used as loop counters and in equality statements, even though in most cases 

these will not have the expected behaviour. For example 

 float x; 

 for (x=0.0; x!=1.0; x+=0.00000001) 
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may or may not terminate after 10,000,000 iterations. The representations used for x and the accumulated effect 

of many iterations may cause x to not be identical to 1.0 causing the loop to continue to iterate forever. 

Similarly, the Boolean test 

  float x=1.336f; 

    float y=2.672f; 

  if (x == (y/2)) 

 

may or may not evaluate to true. Given that x and y are constant values, it is expected that consistent results will 

be achieved on the same platform. However, it is questionable whether the logic performs as expected when a 

float that is twice that of another is tested for equality when divided by 2 as above.  

6.4.2 Guidance to language users 

Follow the general advice of TR 24772-1 clause 6.4.5: 

6.5 Enumerator issues [CCB]  

6.5.1 Applicability to language 

The enum type in C comprises a set of named integer constant values as in the example: 
 enum abc {A,B,C,D,E,F,G,H} var_abc; 

 

The values of the members of abc would be A=0, B=1, C=2, and so on. C allows explicit values to be assigned to 

the enumeration type members, so that that member is assigned the indicated value and the next member will 

take the next value (unless also explicitly assigned a value).  

 

So the declaration: 
 enum abc {A,B,C=6,D,E,F=7,G,H} var_abc; 

is equivalent to: 
 enum abc {A=0, B=1, C=6, D=7, E=8, F=7, G=8, H=9} var_abc; 

Note that this has gaps in the sequence of values and repeated values. 

 

There are a number of issues that can arise with enumeration types: 

• C treats enumeration members identically to integers. So an enumeration member can be used in an 

integer expression (using its associated value) and an integer can be assigned to an enumeration type 

object, even if there is no member associated with that value. This becomes an issue if an 

enumeration type object is used to control a switch statement if a switch statement is controlled by 

a value of type abd, where abd is defined as:   
enum abd {First, Second, Third, Fourth, Fifth, Sixth, Seventh, Eighth}; 

and the switch statement has eight case clauses, for case First:  to  case Eighth: then there are 

two scenarios where the switch may not behave as expected: 

o the user may expect all possible values to be covered. However, if the control expression is 

a variable assigned Eighth+1, then the code will ‘fall through’, without executing any of 

the case statements 
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o the above issue can be addressed by providing a default clause. However, in the safety 

domain, it is common practice to provide a default clause even if the code (apparently) can 

only ever have enumeration member values for the control expression. The argument is 

that this protects against unexpected corruption of the control variable, say by a buffet 

overrun. However, if the compiler also thinks the control value can only ever be one of the 

enumeration members, it is permitted to optimize away the default clause, meaning that 

the expected protection may not exist. 

• The code may initially have been written using the default assignment of values (0..Number of 

members – 1). If an array is declared with bounds [Last_member + 1]. This has one element for 

each enumeration type member. If maintenance of the code then occurs that modifies the 

assignment of values, two issues can arise:  

o a member may be created that has a value greater than Last_member‘s, so there will be 

undefined behaviour if this member is used to index the array 

o the values covered by the modified enumeration type members, may not form a 

continuous sequence from 0 to Number of members –1, with either gaps in the sequence 

or repeated values. If the members are used to initialize and access the array, then some 

members of the array will remain uninitialized if there are gaps. If some final processing is 

performed on the array, using an integer count from 0 to Number of members –1, again 

there is likely to be undefined behaviour. If there are repeated values, the result is unlikely 

to be that expected. 
 

 

6.5.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.5.5. 

• Enumeration type declarations should be in one of the following three formats: 

o no explicit values: 

e.g.  enum abc {A,B,C,D,E,F,G,H} var_abc;. 

o a single explicit value for the first member: 
       e.g. enum abc {A=5,B,C,D,E,F,G,H} var_abc; 

o all values explicit: 

    e.g. enum abc { 

A=0,  

B=1, 

C=6, 

D=7, 

E=8, 

F=7, 

G=8, 

H=9} var_abc; 

• Avoid using loops that iterate over an enum that has representation specified for the enums, unless it can 

be guaranteed that there are no gaps or repetition of representation values within the enum definition. 

• Use an enumerated type to select from a limited set of choices to make possible the use of tools to detect 

omissions of possible values such as in switch statements. 

• If a ‘precautionary’ default statement is added to switch statement controlled by an enumeration type, 
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make the controlling object volatile, so the compiler cannot optimize it away (arguably, a compliant 

compiler shouldn’t optimize it away, but a number of them have been found that do). 

6.6 Conversion errors [FLC]  

6.6.1 Applicability to language 

C permits implicit conversions. That is, C will automatically perform a conversion without an explicit cast. For 

instance, C allows 
 int i; 

 float f=1.25f; 

 i = f; 

This implicit conversion will discard the fractional part of f and set i to 1.  If the value of f is greater than 

INT_MAX, then the assignment of  f to  i would be undefined. 

 

The rules for implicit conversions in C are defined in the C standard. For instance, integer types smaller than int 

are promoted when an operation is performed on them. If all values of Boolean, character or integer type can be 

represented as an int, the value of the smaller type is converted to an int; otherwise, it is converted to an 

unsigned int. 

 

Integer promotions are applied as part of the usual arithmetic conversions to certain argument expressions; 

operands of the unary +, -, and ~ operators, and operands of the shift operators. The following code fragment 

shows the application of integer promotions: 
 char c1, c2; 

 c1 = c1 + c2; 

Integer promotions require the promotion of each variable (c1 and c2) to int. The two int values are added and 

the sum is truncated to fit into the char type. 

 

Integer promotions are performed to avoid arithmetic errors resulting from the overflow of intermediate values. 

For example: 
 signed char cresult, c1, c2, c3; 

 c1 = 100; 

 c2 = 3; 

 c3 = 4; 

 cresult = c1 * c2 / c3; 

 

In this example, the value of c1 is multiplied by c2. The product of these values is then divided by the value of c3 

(according to operator precedence rules). Assuming that signed char is represented as an 8-bit value, the 

product of c1 and c2 (300) cannot be represented as a signed char. However, because of integer promotions,  

c1, c2, and c3 are each converted to int, and the overall expression is successfully evaluated. The resulting value 

is truncated and stored in cresult. Because the final result (75) is in the range of the signed char type, the 

conversion from int back to signed char does not result in lost data. It is possible that the conversion could 

result in a loss of data should the data be larger than the storage location. 

 

A loss of data (truncation) can occur when converting from a signed type to a narrower signed type. For example, 

the following code can result in truncation: 
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 signed long int sl = LONG_MAX; 

 signed char sc = (signed char)sl; 

 

The C standard defines rules for integer promotions, integer conversion rank, and the usual arithmetic 

conversions. The intent of the rules is to ensure that the conversions result in consistent numerical values, and 

that these values minimize surprises in the rest of the computation. 

 

A recent innovation from ISO/IEC TR 24731-1 [9] that has been added to the C standard 9899:2011 [4] is the 
definition of the rsize_t type. Extremely large object sizes are frequently a sign that an object’s size was 
calculated incorrectly. For example, negative numbers appear as very large positive numbers when converted to 
an unsigned type like size_t. Also, some implementations do not support objects as large as the maximum value 
that can be represented by type size_t. For these reasons, it is sometimes beneficial to restrict the range of 
object sizes to detect programming errors. For implementations targeting machines with large address spaces, it 
is recommended that RSIZE_MAX be defined as the smaller of the size of the largest object supported or 
(SIZE_MAX >> 1), even if this limit is smaller than the size of some legitimate, but very large, objects. 
Implementations targeting machines with small address spaces may wish to define RSIZE_MAX as SIZE_MAX, 

which means that there is no object size that is considered a runtime-constraint violation. 

6.6.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.6.5. 

• Check the value of a larger type before converting it to a smaller type to see if the value in the larger type 

is within the range of the smaller type. Any conversion from a type with larger range to a smaller range 

could result in a loss of data. In some instances, this loss is desired. Such cases should be explicitly 

acknowledged in comments. For example, the following code could be used to check whether a 

conversion from an unsigned integer to an unsigned character will result in truncation: 
 unsigned int i; 
 unsigned char c; 

 … 

 if (i <= UCHAR_MAX) {  // check against the maximum value  

                        // for an object of type unsigned char 

   c = (unsigned char) i; 

 } 

 else { 

   // handle error condition 

 } 

• Close attention should be given to all warning messages issued by the compiler regarding multiple casts. 

Making a cast in C explicit will both remove the warning and acknowledge that the change in value is 

intended. 

• If mixed types are used in an expression, ensure that each conversion preserves the value before being 

used as an operand in another operation in the same expression. 

• When converting between wide character and multi-byte characters and strings, always use the 

appropriate conversion functions (wctomb  and wcsrtombs or wcsrtombs_s respectively). Similarly for 

multi-byte to wide characters and strings use mbrtowc  and  mbsrtowcs or mbsrtowcs_s 
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6.7 String termination [CJM]  

6.7.1 Applicability to language 

A string in C is composed of a contiguous sequence of characters terminated by and including a null character (a 

byte with all bits set to 0).  Therefore, strings in C cannot contain the null character except as the terminating 

character. Inserting a null character in a string either through a bug or through malicious action can truncate a 

string unexpectedly. Alternatively, not putting a null character terminator in a string can cause actions such as 

string copies to continue well beyond the end of the expected string. Overflowing a string buffer through the 

intentional lack of a null terminating character can be used to expose information or to execute malicious code. 

6.7.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.7.5. 

• Use the safer and more secure functions for string handling that are defined in normative Annex K2 from 

ISO/IEC 9899:2011 [4] or the ISO TR24731-2 — Part II: Dynamic allocation functions. Both of these define 

alternative string handling library functions to the current Standard C Library. The functions verify that 

receiving buffers are large enough for the resulting strings being placed in them and ensure that resulting 

strings are null terminated.  One implementation of these functions has been released as the Safe C 

Library.  

6.8 Buffer boundary violation [HCB]  

6.8.1 Applicability to language 

A buffer boundary violation condition occurs when an array is indexed outside its bounds, or pointer arithmetic 

results in an access to storage that occurs outside the bounds of the object accessed. 

 

In C, the subscript operator [] is defined such that E1[E2] is identical to *(E1+E2) and to E2[E1], so that in all 

cases the value in location (E1+E2) is returned. C does not perform bounds checking on arrays, so the following 

code: 
    int foo(const int i) { 

   int x[] = {0,0,0,0,0,0,0,0,0,0}; 

    return x[i]; 

  } 

will return whatever is in location x[i] even if i were equal to -10 or 10 (assuming either subscript was still 

within the address space of the program). This could be sensitive information or even a return address, which if 

altered could change the program flow. 

 

The following code is more appropriate and would not violate the boundaries of the array x: 
int foo( const int i) { 

int x[X_SIZE] = {0}; 

if ( (i < 0) || (i >= X_SIZE) ) { 

                                                             

2  See comments on the correct use of Annex K functions in 6.8.1 Buffer boundary violation 6.8 Buffer boundary violation [HCB] 
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  return ERROR_CODE; 

  } 

else { 

  return x[i]; 

  } 

} 

 

A buffer boundary violation may also occur when copying, initializing, writing or reading a buffer if attention to 

the index or addresses used is not taken. For example, in the following move operation there is a buffer boundary 

violation: 
char buffer_src[]={“abcdefg”}; 

char buffer_dest[5]={0}; 

strcpy(buffer_dest, buffer_src); 

 

The buffer_src is longer than the buffer_dest, and the code does not check for this before the actual copy 

operation is invoked. A safer way to accomplish this copy would be to use strncpy, that can be limited to copy a 

maximum number of characters: 
 char buffer_src[]={“abcdefg”]; 

 char buffer_dest[5]={0}; 

 strncpy(buffer_dest, buffer_src, sizeof(buffer_dest) -1); 

   buffer_dest[sizeof(buffer_dest)-1] = 0; 

this would not cause a buffer bounds violation, however, because the destination buffer is smaller than the 

source buffer, the destination buffer will now hold “abcd”. Note that the final member of  buffer_dest is 

explicitly assigned the terminator value. strncpy does not automatically terminate strings if longer than the 

indicated number of characters, so this manual assignment to the last character of the destination buffer should 

always be made. 

 

A further alternative is to use the equivalent function from normative annex K of C11 [4] ‘Bounds-checking 

interfaces’: 
 char buffer_src[]={“abcdefg”]; 

 char buffer_dest[5]={0}; 

 if ( strcpy_s(buffer_dest, sizeof(buffer_dest), buffer_src) ) 

      { /* Error Handler */ } 

If the source string including the terminator is smaller than the indicated destination buffer size, then the source 

string is copied to the destination buffer. If, as in the example, the source string is too big, the first element of the 

destination string is assigned 0 (i.e. the destination becomes an empty string). Note that strcpy_s and related 

functions return 0 on success and a non-zero value on errors. When calling these function, the error value should 

always be checked. 

6.8.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.8.5. 

• Validate all input values. 

• Check any array index before use if there is a possibility the value could be outside the bounds of the 

array.  

• Use the safer and more secure functions for string handling from the normative annex K of C11 [4], 

Bounds-checking interfaces, but always check each call for a returned error condition.  
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• Alternatively, use length restrictive functions such as strncpy() instead of strcpy(), unless it can be 

shown the destination buffer is big enough, and noting the requirement to ensure to destination string is 

terminated. Also note that this may lead to truncation of the source string. 

• Use stack guarding add-ons to detect overflows of stack buffers. 

• Do not use the deprecated functions, such as gets(). 

6.9 Unchecked array indexing [XYZ]  

6.9.1 Applicability to language 

C does not perform bounds checking on arrays, so although arrays may be accessed outside of their bounds, the 

value returned is undefined and in some cases may result in a program termination. For example, in C the 

following code is valid, though, for example, if i has the value 10, the result is undefined: 
 int foo(const int i) { 

       int t; 

       int x[] = {0,0,0,0,0}; 

       t = x[i]; 

       return t; 

   } 

 

The variable t will likely be assigned whatever is in the location pointed to by x[10] (assuming that x[10] is still 

within the address space of the program). 

6.9.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.9.5. 

• Perform range checking before accessing an array. In the interest of speed and efficiency, range checking 

only needs to be done when it cannot be statically shown that an access outside of the array cannot 

occur. 

• Use the safer and more secure functions for string handling from the normative annex K of C11 [4], 

Bounds-checking interfaces3. These are alternative string handling library functions. The functions verify 

that receiving buffers are large enough for the resulting strings being placed in them and ensure that 

resulting strings are null terminated. 

6.10 Unchecked array copying [XYW]  

6.10.1 Applicability to language 

A buffer overflow occurs when some number of bytes is copied from one buffer to another and the amount being 

copied is greater than is allocated for the destination buffer. 

 

In the interest of ease and efficiency, C library functions such as  
   memcpy(void * restrict s1, const void * restrict s2, size_t n)   

and  

                                                             

3  See comments on the correct use of Annex K functions in 6.8.1 Buffer boundary violation [HCB] 
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   memmove(void *s1, const void *s2, size_t n)   

are used to copy the contents from one area to another.  memcpy() and memmove() simply copy memory and no 

checks are made as to whether the destination area is large enough to accommodate the n bytes of data being 

copied. It is assumed that the calling routine has ensured that adequate space has been provided in the 

destination. Problems can arise when the destination buffer is too small to receive the amount of data being 

copied. 

 

A separate issue is that memcpy assumes that the memory blocks pointed to by s1 and s2 are non-overlapping. If 

this assumption is false, the program’s behaviour is undefined. This restriction does not apply to memmove. 

6.10.2 Guidance to language users 

• Follow the advice provided by TR 24772-1 clause 6.10.5. 

• Perform range checking before calling a memory copying function such as memcpy() and memmove(). 

These functions do not perform bounds checking automatically. In the interest of speed and efficiency, 

range checking only needs to be done when it cannot be statically shown that an access outside of the 

array cannot occur 

• For any functions defined with two or more restrict pointers, ensure that the arrays pointed to do not 

overlap 

• Use the safer and more secure functions for string handling from the normative annex K of C11 [4], 

Bounds-checking interfaces4. 

6.11 Pointer type conversions [HFC]  

6.11.1 Applicability to language 

C allows casting the value of a pointer to and from another data type. These conversions can cause unexpected 

changes to pointer values. 

If a pointer is cast to a different type and then pointer arithmetic applied (including array indexing) then the 

memory accessed may not be that intended. In particular casting from a pointer to a struct to a pointer to a basic 

type (like int) and then attempting to examine the members of the struct by incrementing the pointer may not 

give the expected results because of the possible presence of padding bytes. 

 

The one safe pointer conversion is from a pointer to some object type to void* and then back to the original 

pointer type. The standard guarantees this to restore the original pointer. 

 

One specific recommendation is that a macro is used to ensure that when malloc is used to allocate space for an 

object or array of a particular type, the result of malloc is cast to the appropriate pointer type. That is for an 

object of type T: 
              #define makeObjectOfTypeT(T)     (T*)malloc(sizeof(T))          

or for an array of N elements: 
              #define makeArrayOfTypeT(T, N)   (T*)malloc(sizeof(T) * N)          

                                                             

4  See comments on the correct use of Annex K functions in 6.8 Buffer boundary violation [HCB] 
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6.11.2 Guidance to language users 

• Follow the advice provided by TR 24772-1 clause 6.11.5. 

• Maintain the same type to avoid errors introduced through conversions. 

• Use a macro to cast the value returned by malloc  to the correct type 

• Heed compiler warnings that are issued for pointer conversion instances.   

6.12 Pointer arithmetic [RVG]  

6.12.1 Applicability to language 

When performing pointer arithmetic in C, the size of the value to add to a pointer is automatically scaled to the 

size of the type of the pointed-to object. For instance, when adding a value to the byte address of a 4-byte 

integer, the value is scaled by a factor 4 and then added to the pointer. The effect of this scaling is that if a pointer 

P points to the i-th element of an array object, then (P) + N will point to the i+n-th element of the array. Failing 

to understand how pointer arithmetic works can lead to miscalculations that result in serious errors, such as 

buffer overflows. 

In C, arrays have a strong relationship to pointers. The following example will illustrate arithmetic in C involving a 

pointer and how the operation is done relative to the size of the pointer's target. Consider the following code 

snippet: 
 int buf[5]; 

 int *buf_ptr = buf; 

 

where the address of buf is 0x1234, after the assignment buf_ptr points to buf[0]. Adding 1 to buf_ptr 

will result in buf_ptr == 0x1238 on a host where an int is 4 bytes; buf_ptr will then point to buf[1]. Not 

realizing that address operations will be in terms of the size of the object being pointed to can lead to address 

miscalculations and undefined behaviour. . 

 

Indexing an array is implemented by pointer arithmetic, so that accessing an array element  array[n]  creates a 

pointer equivalent to  array + n  and accessing the memory at that address. 

 

6.12.2 Guidance to language users 

• Follow the advice provided by TR 24772-1 clause 6.12.5. 

• Consider a ban on pointer arithmetic (other than by use of the index operator) due to its error-prone 

nature. 

• Verify that all pointers are assigned a valid memory address for use. 

6.13 NULL pointer dereference [XYH]  

6.13.1 Applicability to language 
 

C allows memory to be dynamically allocated primarily through the use of malloc(), calloc(), and 

realloc(). Each will return the address to the allocated memory. Due to a variety of situations, the memory 
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allocation may not occur as expected and a null pointer will be returned. Other operations or faults in logic can 

result in a memory pointer being set to null. Using the null pointer as though it pointed to a valid memory location 

causes undefined behaviour  . (such as a segmentation fault). 

 

Space for 10000 integers can be dynamically allocated in C in the following way: 
     int *ptr = malloc(10000*sizeof(int));  // allocate space for 10000 ints 

malloc()will return the address of the memory allocated or a null pointer if insufficient memory is available for 

the allocation. It is good practice after the attempted allocation to check whether the memory has been allocated 

via an if test against NULL: 
     if (ptr != NULL) // check to see that the memory could be allocated 

Memory allocations usually succeed, so neglecting this test and using the memory will usually work. That is why 

neglecting the null test will frequently go unnoticed. An attacker can intentionally create a situation where the 

memory allocation will fail leading to undefined behaviour. .  

6.13.2 Guidance to language users 

• Follow the advice provided by TR 24772-1 clause 6.13.5. 

• Create a specific check that a pointer is not null before dereferencing it. As this can be expensive in some 

cases (such as in a for loop that performs operations on each element of a large segment of memory), 

judicious checking of the value of the pointer at key strategic points in the code is recommended. 

6.14 Dangling reference to heap [XYK]  

6.14.1 Applicability to language 

C allows memory to be dynamically allocated primarily through the use of of malloc(), calloc(), and 

realloc(). C allows a considerable amount of freedom in accessing the dynamic memory. Pointers to the 

dynamic memory can be created to perform operations on the memory. Once the memory is no longer needed, it 

can be released through the use of free(). However, freeing the memory does not prevent the attempted use of 

the pointers to the memory and issues can arise if operations are performed after memory has been freed. 

 

Consider the following segment of code: 
   int foo() { 

 int *ptr = malloc (100*sizeof(int));/* allocate space for 100 integers */ 

 if (ptr != NULL) { /* check to see that the memory could be allocated */ 

                       /* perform some operations on the dynamic memory   */ 

  free (ptr);     /* memory is no longer needed, so free it          */ 

                       /* program continues performing other operations   */ 

  ptr[0] = 10;    /* ERROR – memory being used after released        */ 

  … 

  } 

 … 

   } 

 

The use of memory in C after it has been freed is undefined behaviour. . Depending on the execution path taken 

in the program, freed memory may have been reallocated via another call of malloc()or other dynamic memory 

allocation. If the memory has not been reallocated, use of the memory may be unnoticed. However, if the 
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memory has been reallocated, altering of the data contained in the memory will almost certainly result in data 

corruption. Determining that a dangling memory reference is the cause of a problem and locating it can be 

difficult. 

 

Setting and using another pointer to the same section of dynamically allocated memory can also lead to 

undefined behaviour. . Consider the following section of code: 
  int foo() { 

 int *ptr = malloc (100*sizeof(int));/* allocate space for 100 integers */ 

 if (ptr != NULL) {                  /* check to see that the memory  

                                          could be allocated */ 

    int ptr2 = &ptr[10];               /* set ptr2 to point to the 10th 

                                          element of the allocated memory */ 

       …                               /* perform some operations on the memory */ 

 

  free (ptr);                     /* memory is no longer needed */ 

  ptr = NULL;                     /* set ptr to NULL to prevent ptr  

                                          from being used again */ 

  …                              /* program continues performing  

                                          other operations */ 

  ptr2[0] = 10;                   /* ERROR – memory is being used  

                                          after it has been released via ptr2 */ 

  … 

  } 

   return (0); 

    } 

 

Dynamic memory was allocated via a malloc()and then later in the code, ptr2 was used to point to an address 

in the dynamically allocated memory. After the memory was freed using free(ptr) and the good practice of 

setting ptr to NULL was followed to avoid a dangling reference by ptr later in the code, a dangling reference still 

existed using ptr2. 

 

6.14.2 Guidance to language users 

• Follow the advice provided by TR 24772-1 clause 6.14.2. 

• Set a freed pointer to NULL immediately after the free()call to prevent multiple deallocation or use of a 

dangling reference via this pointer, as illustrated in the following code: 
free (ptr); 

ptr = NULL; 

• Avoid creating additional pointers to dynamically allocated memory. 

6.15 Arithmetic wrap-around error [FIF]  

6.15.1 Applicability to language 
 

Given the fixed size of integer data types, continuously adding to an unsigned integer eventually results in a value 

that cannot be represented. For C this is defined to ‘wrap around’, so adding one to the maximum positive value 

results in zero. This happens without any detection or notification mechanism. Continuously adding to a signed 

integer until it reaches a value that cannot be represented results in undefined behaviour.  
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Similarly, repeatedly subtracting from an unsigned integer leads to wrap-around, or undefined behaviour for 

signed integers. 

 

For example, consider the following code for a short int  containing 16 bits: 
    int foo( short int i ) { 

   i++; 

     return i; 

  } 

 

Calling foo with the value of 32767 would cause undefined behaviour, such as wrapping to -32768,  trapping, or 

any other behaviour.  Manipulating a value in this way can result in unexpected results such as overflowing a 

buffer.  

 

For unsigned integers, the wrap-around behaviour is well defined, and may be what the programmer intended. 

However, the programmer may have expected normal arithmetic behaviour, and been unaware that the value 

was getting too big to represent. As it is impossible for the compiler or an analysis tool to determine what the 

programmer intended, it is better to warn if wrap-around may occur. 

 

In C, bit shifting by a value greater than the size of the data type or by a negative number is undefined behaviour 

for both signed and unsigned integers. The following code, where a int is 16 bits, would be undefined when        

j >= 16 or j is negative: 
    int foo(const int i, const int j ) { 

     return i>>j; 

  } 

 

6.15.2 Guidance to language users 

• Follow the advice provided by TR 24772-1 clause 6.15.2. 

• Check that the result of an operation on an unsigned integer value will not cause wrapping, unless it can 

be shown that wrapping cannot occur. Any of the following operators have the potential to wrap: 
a + b    a – b     a * b    a++     ++a     a--    --a  

a += b   a -= b    a *= b   a << b  a<<=b   -a 

• Check that the result of an operation on a signed integer value will not cause an overflow, unless it can be 

shown that overflow cannot occur. Any of the following operators have the potential to overflow, which is 

undefined behaviour in C: 
a + b    a – b      a * b     a/b          a%b       a++   ++a   a--         --

a 

a += b   a -= b     a *= b    a /= b       a %= b    a << b    a <<= b   -a 

• Use defensive programming techniques to check whether an operation will overflow or underflow the 

receiving data type. These techniques can be omitted if it can be shown at compile time that overflow or 

underflow is not possible. 

• The number of bits to be shifted by a shift operator should lie between 0 and (n-1), where n is the size of 

the data type. 
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6.16 Using shift operations for multiplication and division [PIK]  

6.16.1 Applicability to language 

The issues for C are well defined in TR 24772-1 clause 6.16 Using shift operations for multiplication and division 

[PIK].  Also see clause 6.15 Arithmetic Wrap-around Error [FIF]. 

6.16.2 Guidance to language users 

Follow the guidance for users as defined in TR 24772-1 clause 6.16 Using shift operations for multiplication and 

division [PIK]. Also see, 6.15 Arithmetic Wrap-around Error [FIF]. 

6.17 Choice of clear names [NAI]  

6.17.1 Applicability to language 

The possible confusion of names with typographically similar characters is not specific to C, but C is as prone to it 

as any other language. Depending upon the local character set, avoid having names that only differ by characters 

that may be confused, such as ‘O’ and ‘0’ 

For C, the maximum significant name length is implementation defined. If a program includes names that are 

longer than the defined maximum, the compiler will truncate them to the maximum. So, if two names in a 

program only differ in characters after the maximum, they will be treated as the same. For functions this is usually 

detected by the compiler as an attempted redeclaration, but for variables declared in different but overlapping 

scopes this may lead to the wrong variable being used, as in: 

             int long_name_ending in_A = … 

                { int long_name_ending in_B = … 

                  /* Use of long_name_ending in_A here will actually use 

                     long_name_ending in_B  */ 

                } 

This issue is related to 6.20 Identifier name reuse [YOW], as they are both mechanisms by which the programmer 

may inadvertently use an object other than the one intended. 

6.17.2 Guidance to language users 

• Follow the advice provided by TR 24772-1 clause 6.17.2. 

• Use names that are clear and non-confusing. 

• Use consistency in choosing names. 

• Keep names short and concise in order to make the code easier to understand. 

• Do not declare names longer than the maximum defined by the implementation. 

• Choose names that are rich in meaning. 

• Do not uses names that only differ by a mixture of case or the presence or absence of an underscore 

character. 

• Avoid differentiating through characters that are commonly confused visually such as ‘O’ and ‘0’, ‘I’ (lower 

case ‘L’), ‘l’ (capital ‘I’) and ‘1’, ‘S’ and ‘5’, ‘Z’ and ‘2’, and ‘n’ and ‘h’. 
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6.18 Dead store [WXQ]  

6.18.1 Applicability to language 

Because C is an imperative language, programs in C can contain dead stores (locations that are written but never 

subsequently read, or overwritten without an intervening read). This can result from an error in the initial design 

or implementation of a program, or from an incomplete or erroneous modification of an existing program. 

However, it may also be intended behaviour, for example when initializing a sparse array. It may be more efficient 

to clear the entire array to zero, then to assign the non-zero values, so the presence of dead stores should be 

regarded as a warning of a possible error, rather than an actual error. 

A store into a volatile-qualified variable generally should not be considered a dead store because accessing such a 

variable may cause additional side effects, such as input/output (memory-mapped I/O) or observability by a 

debugger or another thread of execution. 

6.18.2 Guidance to language users 
• Follow the advice provided by TR 24772-1 clause 6.18.2. 

• Use compilers and analysis tools to identify dead stores in the program. 

• Mark all variables observable by another thread or hardware agent as volatile, also see 6.61 Concurrent 

data access [CGX] 

6.19 Unused variable [YZS]  

6.19.1 Applicability to language 

Variables may be declared, but never used when writing code or the need for a variable may be eliminated in the 

code, but the declaration may remain. Most compilers will report this as a warning and the warning can be easily 

resolved by removing the unused variable. 

6.19.2 Guidance to language users 

• Follow the advice provided by TR 24772-1 clause 6.19.2. 

• Resolve all compiler warnings for unused variables. Having an unused variable in code indicates that 

either warnings were turned off during compilation or were ignored by the developer. 

 

6.20 Identifier name reuse [YOW]  

6.20.1 Applicability to language 

C allows scoping so that a variable that is not declared locally may be resolved to some outer block and that 

resolution may cause the variable to operate on an entity other than the one intended. 

 

In the following example, because the variable name var1 was reused, the printed value of var1 may be 

unexpected. 
int var1;    /* declaration in outer scope */ 
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var1 = 10; 

{ 

       int var2; 

       int var1;   /* declaration in nested (inner) scope */ 

       var2 = 5; 

       var1 = 1;   /* var1 in inner scope is 1 */ 

} 

 

  print (“var1=%d\n”, var1); /* will print “var1=10” as var1 refers */ 

                              /* to var1 in the outer scope */ 

 

Removing the declaration of var2 will result in a diagnostic message being generated making the programmer 

aware of an undeclared variable. However, removing the declaration of var1 in the inner block will not result in a 

diagnostic as var1 will be resolved to the declaration in the outer block and a programmer maintaining the code 

could very easily miss this subtlety. The removing of inner block var1 will result in the printing of var1=1 instead 

of var1=10. 
 

This issue is related to 6.17 Choice of clear names [NAI], as they are both mechanisms by which the programmer 

may inadvertently use an object other than the one intended. 

 

6.20.2 Guidance to language users 

• Follow the advice provided by TR 24772-1 clause 6.20.2. 

• Ensure that a definition of an entity does not occur in a scope where a different entity with the same 

name is accessible and can be used in the same context. A language-specific project coding convention 

can be used to ensure that such errors are detectable with static analysis. 

6.21 Namespace issues [BJL]  

6.21.1 Applicability to language 

Does not apply to C because C requires unique names and has a single global namespace. A diagnostic message is 

required for duplicate names in a single compilation unit. 

6.22 Initialization of variables [LAV]  

6.22.1 Applicability to language 

Local, automatic variables can assume unexpected values if they are used before they are initialized. The C 

Standard specifies, "If an object that has automatic storage duration is not initialized explicitly, its value is 

indeterminate". In the common case, on architectures that make use of a program stack, this value defaults to 

whichever values are currently stored in stack memory. While uninitialized memory may contain zeros, this is not 

guaranteed. Consequently, uninitialized memory can cause a program to behave in an unpredictable or 

unplanned manner and may provide an avenue for attack. 

Many implementations will issue a diagnostic message indicating that a variable has been used that was not 

initialized. 
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6.22.2 Guidance to language users 

• Follow the advice provided by TR 24772-1 clause 6.22.2. 

• Heed compiler warning messages about uninitialized variables. These warnings should be resolved as 

recommended to achieve a clean compile at high warning levels. 

• Do not use memory allocated by functions such as malloc()before the memory is initialized as the 

memory contents are indeterminate. 

6.23 Operator precedence and associativity [JCW]  

6.23.1 Applicability to language 

Operator precedence and associativity in C are clearly defined, and  mixing logical and arithmetic operations is 

allowed without parentheses. However, the language has more than 40 operators with 15 levels of precedence, 

and experience has shown that even experienced programmers do not always get the interpretation of complex 

expressions correct.  

6.23.2 Guidance to language users 

• Follow the guidance provided in TR 24772-1 clause 6.23.5 

• Use parentheses any time arithmetic operators, logical operators, and shift operators are mixed in an 

expression, or where the expression is complex and may be difficult to parse for review or maintenance. 

6.24 Side-effects and order of evaluation of operands [SAM]  

6.24.1 Applicability to language 
 

C allows expressions to have side effects. If two or more side effects modify the same expression as in: 
       int v[10]; 

       int i; 

       /* … */ 

       i = v[i++]; 

 

the behaviour is undefined and this can lead to unexpected results. Either the “i++” is performed first or the 

assignment  i=v[i] is performed first, or some other unspecified behaviour  occurs. Because the order of 

evaluation can have drastic effects on the functionality of the code, this can greatly impact portability and lead to 

unexpected behaviour. 

 

There are several situations in C where the order of evaluation of subexpressions or the order in which side 

effects take place is unspecified including: 

• The order in which the arguments to a function are evaluated (C, Section 6.5.2.2,"Function calls"). 

• The order of evaluation of the operands in an assignment statement (C, Section 6.5.16,"Assignment 

operators"). 

• The order in which any side effects occur among the initialization list expressions is unspecified. In 

particular, the evaluation order need not be the same as the order of subobject initialization (C, Section 

6.7.9, “Initialization"). 
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Because these are unspecified behaviours, testing may give the false impression that the code is working and 

portable, when it could just be that the values provided cause evaluations to be performed in a particular order 

that causes side effects to occur as expected. 

 

In general, a compiler is allowed to perform calculations and assignments in any order between sequence points. 

Annex C of the C language standard defines all the points in the language syntax that count as sequence points. 

One such is the comma operator. So, whilst described above   i = v[i++]; has unspecified behaviour, as the 

assignment and increment may be performed in either order,   i++, i = v[i]; does not, as the increment is 

always performed before the assignment. 

 

There is also a common misconception that bracketing influences the order of evaluation. This is not true. If A, B 

and C are functions that return integers, then in: 
              ( A() + B() ) * C() 

the brackets don’t affect the order of evaluation of A, B and C, but do affect the order in which the results of 

these functions are combined. A, B and C may be evaluated in any order, and if they modify common variables the 

result is unspecified. 

 

6.24.2 Guidance to language users 

• Follow the guidance provided in TR 24772-1 clause 6.24.5 

• Write expressions so that the same effects will occur under any order of evaluation that the C standard 

permits since side effects can be dependent on an implementation specific order of evaluation. 

• Become familiar with Annex C of the C standard ISO/IEC 9899:2011 [4], which is a list of the sequence 

points that enforce an ordering of computations within an expression. 

 

 

6.25 Likely incorrect expression [KOA]  
 

6.25.1 Applicability to language 
 

C has several instances of operators which are similar in structure, but vastly different in meaning, for example 

confusing the comparison operator “==” with assignment “=”. Using an expression that is syntactically correct, 

but which may just be a null statement can lead to unexpected results. Consider: 
int x, y; 

/* … */ 

if (x = y){ 

  /* … */ 

} 

A fair amount of analysis may need to be done to determine whether the programmer intended to do an 

assignment as part of the if statement (valid in C) or whether the programmer made the common mistake of 

using an “=” instead of a “==”. In order to prevent this confusion, it is suggested that any assignments in contexts 

that are easily misunderstood be moved outside of the Boolean expression. This would change the example code 

to the semantically equivalent: 
int x,y; 
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/* … */ 

x = y; 

if (x != 0) { 

  /* … */ 

 } 

This would clearly state what the programmer meant and that the assignment of y to x was intended. 

 

It is also not unknown for programmers to insert the “;” statement terminator prematurely. However, 

inadvertently doing this can drastically alter the meaning of code, even though the code is valid, as in the 

following example: 
 int a,b; 

 /* … */ 

 if (a == b);  // the semi-colon will make this a null statement 

 { 

  /* … */ 

 } 

 

Because of the misplaced semi-colon, the code block following the if will always be executed.  In this case, it is 

extremely likely that the programmer did not intend to put the semi-colon there. 

 

6.25.2 Guidance to language users 

• Follow the guidance provided in TR 24772-1 clause 6.25.5 

• Explain statements with interspersed comments to clarify programming functionality and help future 

maintainers understand the intent and nuances of the code.   

• Avoid assignments embedded within other statements, as these can be problematic. Each of the following 

would be clearer and have less potential for problems if the embedded assignments were conducted 

outside of the expressions: 
 int a,b,c,d; 

 /* … */ 

 if ((a == b) || (c = (d-1))) // the assignment to c may not 

           // occur if a is equal to b  

               or: 
  int a,b,c; 

  /* … */ 

  foo (a=b, c); 

               Each is a valid C statement, but each may have unintended results. 

• Give null statements a source line of their own. This, combined with enforcement by static analysis, would 

make clearer the intention that the statement was meant to be a null statement. 

• Consider the adoption of a coding standard that limits the use of the assignment statement within an 

expression. 

 

 

6.26 Dead and deactivated code [XYQ]  
 

6.26.1 Applicability to language 
 



 

© ISO/IEC 2017 – All rights reserved 35 
 

C allows the usual sources of dead code (described in 6.26 of TR 24772-1 ) that are common to most conventional 

programming languages. 

 

C uses some operators that can be confused with other operators. For instance, the common mistake of using an 

assignment operator in a Boolean test as in: 
 int a; 

 /* … */ 

 if (a = 1) 

    { … }  else { … } 

can cause portions of code to become dead code, because the else portion of the if statement cannot be reached. 

 

6.26.2 Guidance to language users 

• Follow the guidance provided in TR 24772-1 clause 6.26.5. 

• Use “//” comment syntax instead of “/*…*/” comment syntax to avoid the inadvertent commenting out 

sections of code. 

 

6.27 Switch statements and static analysis [CLL]  
 

6.27.1 Applicability to language 
 

Because of the way in which the switch-case statement in C is structured, it can be relatively easy to 

unintentionally omit the break statement between cases causing unintended execution of statements for some 

cases. 

 

C contains a switch statement of the form: 
 char abc; 

 /* … */ 

 switch (abc) { 

    case 1: 

          sval = “a”; 

     break; 

    case 2: 

     sval = “b”; 

     break; 

    case 3: 

     sval = “c”; 

     break; 

    default: 

     printf (“Invalid selection\n”); 

    } 

 

If there isn’t a default case and the switched expression doesn’t match any of the cases, then control simply shifts 

to the next statement after the switch statement block. Unintentionally omitting a break statement between two 

cases will cause subsequent cases to be executed until a break or the end of the switch block is reached. This 

could cause unexpected results.  
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6.27.2 Guidance to language users 

• Apply the guidance provided in TR 24772-1 subclause 6.27.5 

• Adopt a coding style that requires every nonempty case statement to be terminated with a break 

statement as illustrated in the following example: 
int i; 

/* … */ 

switch (i) { 

    case 1:  /* fall through from case 1 to 2 is permitted */ 

    case 2:   /* since there is no intervening code */ 

         i++; 

      break; 

     case 3: 

      j++; 

       case 4: /* fall through from case 3 to 4 is not permitted */ 

                /* as it is not a direct fall through due to the  */ 

                /* j++ statement */ 

   } 

If direct fall through from one nonempty case to another is required, then this should be clearly 

documented by a comment, preferably one recognized by the analysis tool used. 

• Adopt a coding style that permits your language processor and analysis tools to verify that all cases 

are covered. Where this is not possible, use a default clause that diagnoses the error. 

• Adopt a coding style that requires the default clause to be either the first or last clause in the switch 

statement to assist the maintenance of complex switch statements. 

  

6.28 Demarcation of control flow [EOJ]  
 

6.28.1 Applicability to language 

C lacks a keyword to be used as an explicit terminator. Therefore, it may not be readily apparent which 

statements are part of a loop construct or an if statement. 

 

Consider the following section of code: 
 int foo(int a, const int *b) { 

  int i=0, count = 0; 

  /* … */ 

      a = 0; 

  for (i=0; i<10; i++) 

         a += b[i]; 

         count++; 

   printf(“%d %d\n”, a, count); 

 } 

 

The programmer may have intended both a += b[i]; and  count++;  to be the body of the loop, but as there 

is no enclosing brackets, the second statement is only performed once. 

 

If statements in C are also susceptible to control flow problems since there isn’t a requirement for there to be an 

else statement for every if statement. An else statement in C always belong to the most recent if statement 
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without an else. However, the situation could occur where it is not readily apparent to which if statement an 

else belongs due to the way the code is indented or aligned. 

 

6.28.2 Guidance to language users 

• Follow the rules provided in TR 24772-1 clause 6.28.5. 

• Enclose the bodies of if, else, while, for, and similar in braces. This will reduce confusion and 

potential problems when modifying the software. For example: 
int a,b,i; 

/* … */ 

if (i == 10){ 

    a = 5;  /* this is correct */ 

    b = 10; 

   } 

   else 

     a = 10;  

     b = 5;  

If the assignments to b were added later and were expected to be part of each if and else clause (they 

are indented as such), the above code is incorrect: the assignment to b that was intended to be in the 

else clause is unconditionally executed. 

 

6.29 Loop control variables [TEX]  
 

6.29.1 Applicability to language 
 

C allows the modification of loop control variables within the loop, but can cause unexpected behaviour. 

 

Since the modification of a loop control variable within a loop is infrequently encountered, reviewers of C code 

may not expect it and hence miss noticing the modification or not recognize its significance. Modifying the loop 

control variable can cause unexpected results, as in : 
       int a,i; 

       for (i=1; i<10; i++){ 

          … 

          if (a > 7) 

             i = 10; 

          … 

       } 

which would cause the for loop to exit once a is greater than 7 regardless of the number of iterations that have 

occurred. 

 

C doesn’t require the loop control variable to be an integer type. If, for example, it is a floating point type, the test 

for completion should not use equality or inequality, as floating point rounding may lead to mathematically 

inexact results, and hence an unterminated loop. The following may loop ten times or indefinitely: 
       float j; 

       for (j = 0.0f; j != 10.0f; j += 1.0f){ 

          … 

       } 
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The following is little better: 
       float j; 

       for (j = 0.0f; j < 10.0f; j += 1.0f){ 

          … 

       } 

Rounding may cause this loop to be performed ten or eleven times. To ensure this loop is performed ten times, j 

needs to be initialized to 0.5f.  

 

6.29.2 Guidance to language users 

• Apply the guidance of TR 24772-1 clause 6.29.5. 

• Do not modify a loop control variable within a loop. 

• Do not use floating point types as a loop control variable 

 

6.30 Off-by-one error [XZH]  
 

6.30.1 Applicability to language 
 

Arrays are a common place for off by one errors to manifest. In C, arrays are indexed starting at 0, causing the 

common mistake of looping from 0 to the size of the array as in: 
     int foo() { 

     int a[10]; 

     int i; 

     for (i=0, i<=10, i++) 

       … 

     return (0); 

     } 

 

Strings in C are also another common source of errors in C due to the need to allocate space for and account for 

the string terminator. A common mistake is to expect to store an n length string in an n length array instead of 

length n+1 to account for the terminating ‘\0’. Interfacing with other languages that do not use terminators in 

strings can also lead to an off by one error. 

 

C does not flag accesses outside of array bounds, so an off by one error may not be detectable. Several tools can 

be used to help detect accesses beyond the bounds of arrays. However, such tools will not help in the case where 

only a portion of the array is used and the access is still within the bounds of the array. 

 

Looping one more or one less is usually detectable by good testing. Due to the structure of the C language, this 

may be the main way to avoid this vulnerability. Unfortunately some cases may still slip through the development 

and test phase and manifest themselves during operational use. 

 

6.30.2 Guidance to language users 

• Follow the guidance of TR 24772-1 clause 6.30.5. 

• Use careful programming, testing of boundary conditions, and static analysis tools to detect off by 

one errors in C. 
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6.31 Structured programming [EWD]  
 

6.31.1 Applicability to language 
 

It is as easy to write structured programs in C as it is not to.  C contains the goto and longjmp statements, which 

can create unstructured code.  C also has continue, break, and return that can create complicated control 

flow when used in an undisciplined manner. Unstructured {spaghetti} code can be more difficult for C static 

analyzers to analyze and is sometimes used on purpose to obfuscate the functionality of software. Code that has 

been modified multiple times by an assortment of programmers to add or remove functionality or to fix problems 

can be prone to become unstructured. 

Because unstructured code in C can cause problems for analyzers (both automated and human), problems with 

the code may not be detected as readily or at all as would be the case if the software was written in a structured 

manner. 

IEC 61508 [12] highly recommends the use of no more than one return statement in a function. At times, this 

guidance can have the opposite effect, such as in the case of an if check of parameters at the start of a function 

that requires the remainder of the function to be encased in the if statement in order to reach the single exit 

point. If, for example, the use of multiple exit points can arguably make a piece of code clearer, then they should 

be used. However, the code should be able to withstand a critique that a restructuring of the code would have 

made the need for multiple exit points unnecessary. 

6.31.2 Guidance to language users 

• Follow the guidance of TR 24772-1 clause 6.31.5. 

• Write clear and concise structured code to make code as understandable as possible. 

• Restrict the use of goto, continue, break and longjmp to encourage more structured programming. 

 

 

6.32 Passing parameters and return values [CSJ]  
 

6.32.1 Applicability to language 
 

C uses call by value parameter passing. The parameter is evaluated and its value is assigned to the formal 

parameter of the function that is being called. A formal parameter behaves like a local variable and can be 

modified in the function without affecting the actual argument. An object can be modified in a function by passing 

the address to the object to the function, for example 
      void swap(int *x, int *y) { 

         int t = *x; 

         *x = *y; 

         *y = t; 

      } 

Where x and y are integer pointer formal parameters, and *x and *y in the swap()function body dereference 

the pointers to access the integers. If it is not intended that the function should be able to modify the object 
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whose address is passed to the function, the object of the pointer should be specified as constant, 

 e.g. const int *p 

 

 C99 introduced the restrict keyword. This may be applied to function pointer parameters. Where a function 

has two or more pointer parameters marked with restrict, the programmer is telling the compiler that the 

function will never be called with arrays that have overlapping access. This allows the compiler to make use of 

optimizations that may lead to incorrect results if the arrays do overlap, e.g. a copy function like strncpy that 

copies a fixed number of characters from a source string to a target. If the target overlaps the source, the result 

depends upon whether the copying was performed from the start of the string to the end or vice versa. 

Conversely, where a library function is declared with restrict parameters, the programmer is being told never 

to call it so that accesses within the function overlap. There is no compile or run-time check that the parameter 

arrays are actually non-overlapping, so caution should be taken when using functions with restrict parameters. 

 

Whilst function-like macros appear to be called, they are actually ‘executed’ by text substitution before 

compilation, so parameter passing doesn’t occur, see 6.51 Pre-processor directives [NMP]. 

 

6.32.2 Guidance to language users 

• Follow the guidance of TR 24772-1 clause 6.32.5. 

• Do not use expressions with side effects in parameters to function-like macros, unless it can be shown 

that the parameter is used only once inside the macro. 

• Do not use expressions with side effects for multiple parameters to functions, since the order in which the 

parameters are evaluated and hence the side effects occur is unspecified. 

• Use caution when passing the address of an object. The object passed could be an alias5. Aliases can be 

avoided by following the respective guidelines of TR 24772-1 subclause 6.32.5.  

• Do not use a function that includes the restrict keyword unless it can be established that the array 

parameters to the function can never overlap. 

 

 

 

 

6.33 Dangling references to stack frames [DCM]  
 

6.33.1 Applicability to language 
 

C allows the address of a variable to be stored in a pointer variable. Should this pointer variable contain, for 

example, the address of a local variable that was part of a stack frame, then using this address after the function 

containing the local variable has terminated leads to undefined behaviour, as the memory will have been made 

available for further allocation and may indeed have been allocated for some other use. The same is true for a 

pointer to memory allocate with malloc etc. and which has subsequently been freed.  

 

                                                             

5   An alias is a variable or formal parameter that refers to the same location as another variable or formal parameter. 
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6.33.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.33.5. 

• Do not assign the address of an object to any entity which persists after the object has ceased to exist. 

This is done in order to avoid the possibility of a dangling reference. In particular, never return the 

address of a local variable as the result of a function call. 

• Long lived pointers that contain block-local addresses should be assigned the null pointer value before 

executing a return from the block. 

 

6.34 Subprogram signature mismatch [OTR]  

6.34.1 Applicability to language 
 

If it is necessary to call a function that is not yet defined in the current translation unit6, a function prototype is 

required as a forward reference to the definition. Usually the prototype specifies the name of the function, its 

return type and the types of the parameters it requires, as in   void foo(int x);  However for compatibility 

with earlier C standards, compilers accept a prototype with either no parameters, as in  void foo();  or just 

parameter names, as in  void foo(x);  If either of these two forms is used, the compiler allows calls to the 

function with any number of parameters, including none, which may lead to undefined behaviour. . It is therefore 

recommended that function prototypes should always be written with parameter types. If the function has no 

parameters, it should be written using void as the parameter list, as in                  void goo(void);   

 

C also allows a function to take a variable number of arguments,  as in the printf() function.  This is specified in 

the function definition by terminating the list of parameters with an ellipsis (...). No information about the 

number or types of the parameters expected is supplied, and the compiler will accept any number and type of 

parameters in the call.   

 

 

 

C compilers will attempt to perform an implicit conversion from the type of an actual parameter to the type of the 

formal parameter. So for sqrt()that is defined to expect a double: 
     double sqrt(double) 

the call: 
     root2 = sqrt(2); 

converts the integer 2 into the double value 2.0. 

 

6.34.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.34.5. 

• Use a function prototype to declare a function with its expected parameters to allow the compiler to 

check for a matching count and types of the parameters. If the function has no parameters, show its 

parameter list as(void) rather than(). 

                                                             

6 For example because the function is defined in a different translation unit, or there is mutual recursion between two (or more) functions. 
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• Do not use the variable argument feature except in rare instances. The variable argument feature 

such as is used in printf()is difficult to use in a type safe manner. 

 

6.35 Recursion [GDL]  
 

6.35.1 Applicability to language 
 

C permits recursion, hence is subject to the problems described in TR 24772-1 subclause 6.35. 

 

6.35.2 Guidance to language users 

• Apply the guidance described in TR 24772-1 clause 6.35.5. 

6.36 Ignored error status and unhandled exceptions [OYB]  

6.36.1 Applicability to language 

The C standard does not include exception handling, therefore only error status will be covered. 

C provides the header file <errno.h> that defines the macros EDOM, EILSEQ and ERANGE, which expand to 

integer constant expressions with type int, distinct positive values and which are suitable for use in #if 

preprocessing directives.  C also provides the integer errno that may be set to a nonzero value by any library 

function to indicate that an error has occurred (if the use of errno is not documented in the description of the 

library function in the C Standard, errno could be used whether or not there is an error). Though these values are 

defined, inconsistencies in responding to error conditions can lead to vulnerabilities. 

 

errno and the defined macros may also be used by user defined functions, but for clarity, such use should be 

consistent with the use by library functions. 

C library functions may also return error indicator values. 

 

6.36.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.36.5. 

• Check the returned error status upon return from a function.   

• Set errno to zero before a library function call in situations where a program intends to check errno 

before a subsequent library function call. 

• Use errno_t to make it readily apparent that a function is returning an error code. Often a function that 

returns an errno error code is declared as returning a value of type int.  Although syntactically correct, it 

is not apparent that the return code is an errno error code. The normative Annex K from ISO/IEC 

9899:2011 [4] introduces the new type errno_t in <errno.h> that is defined to be type int. 

• Handle an error as close as possible to the origin of the error but as far out as necessary to be able to deal 

with the error.  
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• When a function returns an error value, other than using errno (e.g. malloc that returns NULL if the 

requested memory allocation cannot be performed), always check the error condition returned after a 

call 

• For each routine, document all error conditions, matching error detection and reporting needs, and 

provide sufficient information for handling the error situation. 

• Use static analysis tools to detect and report missing or ineffective error detection or handling. 

• When execution within a particular context encounters an error, finalize the context by closing open files, 

releasing resources and restoring any invariants associated with the context.  

 

6.37 Type-breaking reinterpretation of data [AMV]  

6.37.1 Applicability to language 

The primary way in C that a reinterpretation of data can be accomplished is through a union, which may be used 

to interpret the same piece of memory in multiple ways. If the use of the union members is not managed 

carefully, then unexpected and erroneous results may occur. 

Reinterpretations can also result from a pointer accessing data of a type other than the type of the pointer. This 

may occur if the pointer has been cast, and can result in undefined behaviour, as documented in TR 24772-1 

clause 6.37. The only pointer casting that the C standard requires to provide defined results is to cast the pointer 

to void *, then cast the void * pointer back to the same type. So if S and T are distinct types: 

            S x;  void *pX = &x;  S *pX2 = (S*)pX;  // defined behaviour 

                                  T *pX3 = (T*)pX;  // undefined behaviour 

 

 6.37.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.37.5. 

• When using unions, implement an explicit discriminant and check its value before accessing the data in 

the union. 

• Ensure through the use of static analysis tools that arbitrary pointer casts always return objects of the 

correct type. 

 

6.38 Deep vs. shallow copying [YAN]  

 

6.38.1 Applicability to language 

This issue can arise where a struct or union contains a pointer to an object. If A and B are two struct objects of the 

same type that has a pointer member, then the statement A = B;  copies all the members of B to the equivalent 

members of A. For the pointer, only the pointer itself has been copied, so A and B both now point to the same 

object, i.e. shallow copying. 
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If the required behaviour is to copy the struct and have each copy point to its own object, then a function is 

needed to implement deep copying, i.e. copy all the members of B to A – other than the pointer, and allocate 

sufficient memory to make a copy of the object pointed to by B and make A point to this new object. 

6.38.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.38.5. 

• Where necessary, create a function to correctly perform the deep copy  

 

6.39 Memory leak [XYL]  

6.39.1 Applicability to language 

C relies on the programmer to implement memory management, allocating and freeing dynamic memory as 

required, rather than supplying a built in garbage collector. 

Memory is dynamically allocated in C using the library calls malloc(), calloc(), and realloc().  When the 

program no longer needs the dynamically allocated memory, it can be released using the library call free(). 

Should there be a flaw in the logic of the program, memory may continue to be allocated but not freed when it is 

no longer needed. A common situation is where memory is allocated while in a function, the memory is not freed 

before the exit from the function and the lifetime of the pointer to the memory has ended upon exit from the 

function. 

 

6.39.2 Guidance to language users 

 

• Follow the guidelines of TR 24772-1 clause 6.39.5. 

• Use debugging tools such as leak detectors to help identify unreachable memory. 

• Allocate and free memory in the same module and at the same level of abstraction to make it easier to 

determine when and if an allocated block of memory has been freed. 

• Use realloc() only to resize dynamically allocated arrays. 

• Use garbage collectors that are available to replace the usual C library calls for dynamic memory 

allocation which allocate memory to allow memory to be recycled when it is no longer reachable. The use 

of garbage collectors may not be acceptable for some applications as the delay introduced when the 

allocator reclaims memory may be noticeable or even objectionable leading to performance degradation. 

 

6.40 Templates and generics [SYM]  
 

This vulnerability does not apply to C, because C does not implement these mechanisms. 

 

6.41 Inheritance [RIP]  
 

This vulnerability does not apply to C, because C does not implement struct hierarchies. 
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6.42 Violations of the Liskov substitution principle or the contract model  [BLP]  
 

This vulnerability does not apply to C, because C does not implement polymorphism. 

 

6.43 Redispatching [PPH]  
 

This vulnerability does not apply to C, because C does not implement this mechanism. 

 

6.44 Polymorphic variables [BKK]  
 

This vulnerability does not apply to C, because C does not implement this mechanism. 

 

 

6.45 Extra intrinsics [LRM]  
 

This vulnerability does not apply to C, because C does not implement these mechanisms. 

 

6.46 Argument passing to library functions [TRJ]  

6.46.1 Applicability to language 

Parameter passing in C is either pass by reference or pass by value. There isn’t a guarantee that the values being 

passed will be verified by either the calling or receiving functions. So values outside of the assumed range may be 

received by a function resulting in a potential vulnerability. 

A parameter may be received by a function that was assumed to be within a particular range and then an 

operation or series of operations is performed using the value of the parameter resulting in unanticipated results 

and even a potential vulnerability. 

6.46.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.46.5. 

• Do not make assumptions about the values of parameters. 

• Do not assume that the calling or receiving function will be range checking a parameter. Therefore, 

establish a strategy for each interface to check parameters in either the calling or receiving routines. 

 

6.47 Inter-language calling [DJS]  

6.47.1 Applicability to language 

The C Standard defines the calling conventions, data layout, error handing and return conventions needed to use 

C from another language. Ada has developed a standard for interfacing with C. Fortran has included a Clause 15 
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that explains how to call C functions. Calls from C into other languages become the responsibility of the 

programmer. 

6.47.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.47.5. 

• Minimize the use of those issues known to be error-prone when interfacing from C, such as  

1. passing character strings,  

2. dimension, bounds and layout issues of arrays,  

3. interfacing with other parameter formats such as call by reference or name,  

4. receiving return codes, and  

5. bit representation. 

 

6.48 Dynamically-linked code and self-modifying code [NYY]  

6.48.1 Applicability to language 

Most loaders allow dynamically linked libraries also known as shared libraries. Code is designed and tested using a 

suite of shared libraries which are loaded at execution time. The process of linking and loading is outside the 

scope of the C standard. 

C can allow self-modifying code. In C there isn’t a distinction between data space and code space, executable 

commands can be altered as desired during the execution of the program. Although self-modifying code may be 

easy to do in C, it can be difficult to understand, test and fix leading to potential vulnerabilities in the code. 

Self-modifying code can be done intentionally in C to obfuscate the effect of a program or in some special 

situations to increase performance. Modification of C code can occur if pointers are misdirected to access the 

code space instead of data space or code is executed in data space. Accidental modification usually leads to a 

program crash. Intentional modification can also lead to a program crash, but used in conjunction with other 

vulnerabilities can lead to more serious problems that affect the entire host. 

6.48.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.48.5. 

• Do not use self-modifying code, unless it has a documented rationale and is carefully reviewed.  

• Verify that the dynamically linked or shared code being used is the same as that which was tested.  

• Retest when it is possible that the dynamically linked or shared code has changed before using the 
application. 

 

6.49 Library signature [NSQ]  

6.49.1 Applicability to language 

Integrating C and another language into a single executable relies on knowledge of how to interface the function 

calls, argument lists and data structures so that symbols match in the object code during linking. Byte alignments 

can be a source of data corruption. 
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For instance, when calling Fortran from C, several issues arise:  

• Neither C nor Fortran check for mismatch argument types or even the number of arguments.  

• C passes arguments by value and Fortran passes arguments by reference, so addresses must be passed to 

Fortran rather than values in the argument list.  

• Multidimensional arrays in C are stored in row major order, whereas Fortran stores them in column major 

order.  

• Strings in C are terminated by a null character, whereas Fortran uses the declared length of a string.  

These are just some of the issues that arise when calling Fortran programs from C. Each language has its 

differences with C, so different issues arise with each interface. 

 

Writing a library wrapper is the traditional way of interfacing with code from another language. However, this can 

be quite tedious and error-prone. 

6.49.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.49.5. 

• Use a tool, if possible, to automatically create interface wrappers. 

 

6.50 Unanticipated exceptions from library routines [HJW]  

Since C does not have exceptions and so cannot handle exceptions passed from other language systems, this 

vulnerability does not apply. See 6.36 for a discussion of Ignored errors. See TR 24772-1 clause 6.47 in the case 

where libraries written in languages that use exceptions may be called. 

6.51 Pre-processor directives [NMP]  

6.51.1 Applicability to language 
 

The C pre-processor allows the use of macros that are text-replaced before compilation.  

 

Function-like macros look similar to functions but have different semantics. Because the arguments are text-

replaced, expressions passed to a function-like macro may be evaluated multiple times. This can result in 

unintended and unspecified behaviour , if the arguments have side effects or are pre-processor directives as 

described by C §6.10 [1]. Additionally, the arguments and body of function-like macros should be fully 

parenthesized to avoid unintended and unspecified behaviour [2]. 

 

The following code example demonstrates unspecified behaviour when a function-like macro is called with 

arguments that have side-effects (in this case, the increment operator) [2]: 
#define foo(X) ((X) * (X) + (X)) 

/* ... */ 

int i = 2; 

int a = foo(++i); 

 

The above example could expand to: 
 int a = ((++i) * (++i) + (++i)); 
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this has unspecified behaviour, as its not known in which order the compiler will evaluate the three  ++i 

subexpressions. 

 

Another mechanism of failure can occur when the arguments within the body of a function-like macro are not 

fully parenthesized. The following example shows a macro without parenthesized arguments [2]: 
#define CUBE(X) (X * X * X) 

/* ... */ 

int a = CUBE(2 + 1); 

 

This example expands to: 
       int a = (2 + 1 * 2 + 1 * 2 + 1) 

 

which evaluates to 7 instead of the intended 27. 

6.51.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.51.5. 

• Replace macro-like functions with inline functions where possible. Although making a function inline only 

suggests to the compiler that the calls to the function be as fast as possible, the extent to which this is 

done is unspecified. Inline functions do offer consistent semantics and allow for better analysis by static 

analysis tools. 

• Ensure that if a function-like macro must be used, that its arguments and body are parenthesized. 

• Do not use pre-processor directives or expressions with side-effects (such as assignment, 

increment/decrement, volatile access, or function calls) in the parameter of a function-like macro. 

 

6.52 Suppression of language-defined run-time checking [MXB]  

Does not apply to C since there are no language-defined runtime checks. 

 

 

6.53 Provision of inherently unsafe operations [SKL]  

6.53.1 Applicability to language 
 

C was designed for implementing system software where some ‘unsafe’ operations are inherent and common. 

 

6.53.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.53.5. 
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6.54 Obscure language features [BRS]  

6.54.1 Applicability of language  

C is a relatively small language with a limited syntax set, lacking many of the complex features of some other 

languages.  Many of the complex features in C are not implemented as part of the language syntax, but rather 

implemented as library routines. As such, most of the available features in C are used relatively frequently. 

Problems are more likely to arise from the use of a combination of features that are rarely used together or 

fraught with issues if not used correctly. This can cause unexpected results and potential vulnerabilities.  

6.54.2 Guidance to language users 

• Follow the guidelines in TR 24772-1 clause 6.54.5. 

• Specify a coding standards that restrict or ban the use of features or combinations of features that have 

been observed to lead to vulnerabilities in the operational environment for which the software is 

intended. 

6.55 Unspecified behaviour [BQF]  

 

6.55.1 Applicability of language  

 The C standard has documented, in Annex J.1, 54 instances of unspecified behaviour. Examples of unspecified 

behaviour include: 

• The order in which parameters of a function call are evaluated 

• The order in which any side effects occur among the initialization list expressions in an initializer 

• The layout of storage for function parameters 

 

Reliance on a particular observed behaviour that is unspecified not only leads to portability problems when the 

same code is compiled with a different compiler, but is not required to be consistent within the same program. 

Many cases of unspecified behaviour have to do with the order of evaluation of subexpressions and side effects. 

For example, in the function call 
 f1(f2(x), f3(x)); 

 the functions f2 and f3 may be called in any order, possibly yielding different results. 

 

6.55.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.55.5. 

• Do not rely on unspecified behaviour because the behaviour can change at each instance. Any code that 

makes assumptions about the behaviour of something that is unspecified should be replaced. 
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6.56 Undefined behaviour [EWF] .  

6.56.1 Applicability to language 

The C standard does not impose any requirements on code with undefined behaviour. Typical undefined 

behaviours include doing nothing, producing arbitrary results, and terminating the program. 

 

The C standard has documented, in Annex J.2, 191 instances of undefined behaviour that exist in C. One example 

of undefined behaviour occurs when the value of the second operand of the / or % operator is zero. This is 

generally not detectable through static analysis of the code, but could easily be prevented by a check for a zero 

divisor before the operation is performed. Leaving this behaviour as undefined lessens the burden on the 

implementation of the division and modulo operators. 

 

Other examples of undefined behaviour include: 

• Referring to an object outside of its lifetime 

• The conversion to or from an integer type that produces a value outside of the range that can be 

represented 

• The use of two identifiers that differ only in non-significant characters 

 

Relying on undefined behaviour makes a program unstable and non-portable. Whilst it may be discovered that 

the code generated by a particular compiler shows consistent behaviour in cases that the standard specifies  

 as "undefined", it is still dangerous to rely on this behaviour.  

 

6.56.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.56.5. 

6.57 Implementation–defined behaviour [FAB]  

6.57.1 Applicability to language 
 

The C standard has documented, in Annex J.3, 112 instances of implementation-defined behaviour. Examples of 

implementation-defined behaviour include: 

• The number of bits in a byte 

• The direction of rounding when a floating-point number is converted to a narrower floating-point number 

• The rules for composing valid file names 

 

Relying on implementation-defined behaviour can make a program less portable across implementations. 

However, this is less true than for unspecified and undefined behaviour.. Also, as many basic properties, such as 

the sizes of the basic types, are implementation defined, it is virtually impossible to avoid using implementation 

defined features. The header stdint.h provides the definition of fixed width integers, so uint32_t is an 

unsigned 32-bit integer. Which sizes are supported is implementation defined, but some safety-critical coding 

standards recommend the use of these types in preference to the basic types where available. 
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The following code shows an example of reliance upon implementation-defined behaviour: 
unsigned char x = 100; 

x = 5*x +1;  

 

Since the width of unsigned char is implementation-defined, the computation on x will yield different results 

for implementations with different widths.  

 

6.57.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.57.5. 

• Eliminate to the extent possible any reliance on implementation-defined behaviour from programs in 

order to increase portability. Even programs that are specifically intended for a particular implementation 

may in the future be ported to another environment or sections reused for future implementations. 

6.58 Deprecated language features [MEM]  

6.58.1 Applicability to language 
 

C deprecated one function, the function gets() and removed it from the standard in 2011. 

 

C has deprecated several language features primarily by tightening the requirements for the feature: 

• Implicit int declarations are no longer allowed. 

• Functions cannot be implicitly declared. They must be defined before use or have a prototype. 

• The use of the function ungetc() at the beginning of a binary file is deprecated. 

• A return without expression is not permitted in a function that returns a value (and vice versa).  

 

6.58.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.58.5. 

• Rewrite code that uses deprecated language features to remove such use, whenever possible. 

6.59 Concurrency – Activation [CGA]  

6.59.1 Applicability to language  

The C standard, in clause 7.26.5.1, requires a conforming implementation to set specific return codes to indicate 

whether or not a thread activation succeeded; therefore the vulnerability does not apply to the C language.  

However, if the program fails to check the return code and fails to take appropriate action to handle a failed 

thread creation, the vulnerability described in clause 6.36 applies. 

6.59.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.59.5. 
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6.60 Concurrency – Directed termination [CGT]  

This vulnerability does not apply to C because C does not implement a mechanism to directly terminate a thread. 

A similar effect may be achieved by a global flag requesting that a thread terminate itself, but the thread is 

responsible to ensure that that such termination doesn’t occur until all critical activities are completed. 

6.61 Concurrent data access [CGX]  

6.61.1 Applicability to language  

As stated in clause 5.1.2.4 of the C standard, a program that contains a data race exhibits undefined behaviour.  In 

addition to threads, signal handlers also pose a risk of concurrent data access. It is the responsibility of the 

application to use atomic variables or mutexes to ensure that one thread or signal handler cannot modify an 

object while another thread or signal handler is attempting to access the same object. For signal handling, 

“volatile sig_atomic_t” or atomic variables can be used to prevent this vulnerability.  

6.61.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.61.5. 

• Use atomic variables where appropriate to avoid data races. 

• Use mutexes appropriately to protect accesses to non-atomic shared objects. Where mutexes are used, 

the programmer must show that there are no paths in the program where a release can be missed, either 

because of conditional code or other mechanisms.  

• Use mutexes to model Hoare monitors or similar high level abstractions of synchronization. 

• Use “volatile sig_atomic_t” to protect data shared with signal handlers in a single-threaded 

environment. 

 

6.62 Concurrency – Premature termination [CGS] 

6.62.1 Applicability to language 

This vulnerability applies to C because the standard does not provide a mechanism to determine whether a 

thread has terminated. 

6.62.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.62.5. 

• Use low-level operating system primitives or other APIs where available to check that a required thread is 

still active. 
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6.63 Lock protocol errors [CGM] 

6.63.1 Applicability to language 

Applications in C may contain lock protocol errors such as a missing release of a mutex. See TR 24772-1 clause 

6.63 for descriptions and mitigations of protocol lock errors.  

6.63.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.63.5. 

• Be aware of the operation of each synchronization mechanism, such as the cases where accesses to 

atomic variables may occur more than once in a statement. 

 

6.64  Reliance on external format strings  [SHL] 

6.64.1 Applicability to language 

The standard C libraries provide a large family of input and output functions that use a control string to 

interpret the data read or format the output. These strings include all the feature described in TR 24772-1 

clause 6.64.1. 

 

6.64.2 Guidance to language users 

• Follow the guidelines of TR 24772-1 clause 6.64.5. 

 

 

7. Language specific vulnerabilities for C 

[Intentionally blank] 
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