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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees established
by the respective organization to deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations, governmental and non-
governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, 1SO
and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

In exceptional circumstances, when the joint technical committee has collected data of a different kind from
that which is normally published as an International Standard (“state of the art”, for example), it may decide to
publish a Technical Report. A Technical Report is entirely informative in nature and shall be subject to review
every five years in the same manner as an International Standard.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. 1ISO and IEC shall not be held responsible for identifying any or all such patent rights.

The committee responsible for this document is Joint Technical Committee ISO/IEC JTC 1, Information
technology, Subcommittee SC 22, Programming languages, their environments and system software interfaces.

This edition cancels and replaces ISO IEC TR 24772:2012. The main changes between this document and the
previous version are:

e Language-specific annexes (Annexes C through H) have been removed from the document and are
being republished as language-specific parts, TR 24772-2 Programming Language Vulnerabilities —
Specific guidance for Ada, TR 24772-3 Programming Language Vulnerabilities — Specific guidance for C,
etc.

e Vulnerabilities that were documented in clause 8 of version 2 are now documented as part of clauses 6
and 7.

e New vulnerabilities are added.

e Guidance material for each vulnerability given in subclause 6.X.5 is reworded to be more explicit and
directive.

e Addition material for some vulnerabilities has been added.

© ISO/IEC 2013 — All rights reserved Vii
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Introduction

All programming languages contain constructs that are incompletely specified, exhibit undefined behaviour,
are implementation-dependent, or are difficult to use correctly. The use of those constructs may therefore
give rise to vulnerabilities, as a result of which, software programs can execute differently than intended by
the writer. In some cases, these vulnerabilities can compromise the safety of a system or be exploited by
attackers to compromise the security or privacy of a system.

This Technical Report is intended to provide guidance spanning multiple programming languages, so that
application developers will be better able to avoid the programming constructs that lead to vulnerabilities in
software written in their chosen language and their attendant consequences. This guidance can also be used
by developers to select source code evaluation tools that can discover and eliminate some constructs that
could lead to vulnerabilities in their software or to select a programming language that avoids anticipated
problems.

It should be noted that this Technical Report is inherently incomplete. It is not possible to provide a
complete list of programming language vulnerabilities because new weaknesses are discovered continually.
Any such report can only describe those that have been found, characterized, and determined to have
sufficient probability and consequence.

viii © ISO/IEC 2013 — All rights reserved



Technical Report ISO/IEC TR 24772:2013(E)

Information Technology — Programming Languages — Guidance to avoiding
vulnerabilities in programming languages

1. Scope

This document specifies software programming language vulnerabilities to be avoided in the development of
systems where assured behaviour is required for security, safety, mission-critical and business-critical software. In
general, this guidance is applicable to the software developed, reviewed, or maintained for any application.

Vulnerabilities are described in a generic manner that is applicable to a broad range of programming languages.

2. Normative references

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

ISO/IEC/IEEE 60559:2011, Information technology -- Microprocessor Systems -- Floating-Point arithmetic
ISO/IEC 10967-1: 2012 ...
ISO/IEC 10967-2:2001 ...

ISO/IEC 10967-3:2006 ...

3. Terms and definitions, symbols and conventions
3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 2382-1 and the following apply.
Other terms are defined where they appear in italic type.

ISO and IEC maintain terminology databases for use in standardization are available at:

e |EC Glossary, std.iec.ch/glossary
e ISO Online Browsing Platform, www.iso.ch/obp/ui

3.1.1 Communication
3.1.1.1
protocol

© ISO/IEC 2013 — All rights reserved 9
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set of rules and supporting structures for the interaction of threads

Note 1: A protocol can be tightly embedded and rely upon data in memory and hardware to control
interaction of threads or can be applied to more loosely coupled arrangements, such as message
communication spanning networks and computer systems.

3.1.1.2

stateless protocol

communication or cooperation between threads where no state is preserved in the protocol itself (example HTTP
or direct access to a shared resource)

Note 1: Since most interaction between threads requires that state be preserved, the cooperating threads
must use values of the resources(s) themselves or add additional communication exchanges to maintain
state. Stateless protocols require that the application provide explicit resource protection and locking
mechanisms to guarantee the correct creation, view, access to, modification of, and destruction of the
resource — for example, the state needed for correct handling of the resource.

3.1.2 Execution model
3.1.2.1

thread

sequential stream of execution

Note 1: Although the term thread is used here and the context portrayed is that of shared-memory threads
executing as part of a process, everything documented applies equally to other variants of concurrency such
as interrupt handlers being enabled by a process, processes being created on the same system using
operating system routines, or processes created as a result of distributed messages sent over a network. The
mitigation approaches will be similar to those listed in the relevant vulnerability descriptions, but the
implications for standardization would be dependent on how much language support is provided for the
programming of the concurrent system.

3.1.2.2
thread activation
creation and setup of a thread up to the point where the thread begins execution

Note 1: A thread may depend upon one or more other threads to define its access to other objects to be
accessed and to determine its duration.

3.1.2.3
activated thread
thread that is created and then begins execution as a result of thread activation

3.1.2.4

activating thread

thread that exists first and makes the library calls or contains the language syntax that causes the activated thread
to be activated

10 © I1SO/IEC 2013 — Al rights reserved
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Note 1: The activating thread may or may not wait for the activated thread to finish activation and may or
may not check for errors if the activation fails. The activating thread may or may not be permitted to
terminate until after the activated thread terminates.

3.1.2.5

static thread activation

creation and initiation of a thread by program initiation, an operating system or runtime kernel, or by another
thread as part of a declarative part of the thread before it begins execution

Note 1: In static activation, a static analysis can determine exactly how many threads will be created and how
much resource, in terms of memory, processors, CPU cycles, priority ranges and inter-thread communication
structures, will be needed by the executing program before the program begins.

3.1.2.6

dynamic thread activation

creation and initiation of a thread by another thread (including the main program) as an executable, repeatable
command, statement or subprogram call

3.1.2.7
thread abort
request to stop and shut down a thread immediately

Note 1: The request is asynchronous if from another thread, or synchronous if from the thread itself. The
effect of the abort request (such as whether it is treated as an exception) and its immediacy (that is, how long
the thread may continue to execute before it is shut down) depend on language-specific rules. Immediate
shutdown minimizes latency but may leave shared data structures in a corrupted state.

3.1.2.8
termination-directing thread
thread (including the OS) that requests the abortion of one or more threads

3.1.2.9

thread termination

completion and orderly shutdown of a thread, where the thread is permitted to make data objects consistent,
release any acquired resources, and notify any dependent threads that it is terminating

Note 1: There are a number of steps in the termination of a thread as listed below, but depending upon the
multithreading model, some of these steps may be combined, may be explicitly programmed, or may be
missing:

e the termination of programmed execution of the thread, including termination of any synchronous

communication;

e the finalization of the local objects of the thread;

e waiting for any threads that may depend on the thread to terminate;

e finalization of any state associated with dependent threads;

e notification that finalization is complete, including possible notification of the activating task;

© ISO/IEC 2013 — All rights reserved 11
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e removal and cleanup of thread control blocks and any state accessible by the thread or by other
threads in outer scopes.

3.1.2.10
terminated thread
thread that has been halted from any further execution

3.1.2.11

master thread

thread which must wait for a terminated thread before it can take further execution steps (including termination
of itself)

3.1.2.12
process
single execution of a program, or portion of an application

Note 1: Processes do not normally share a common memory space, but often share

e processor,

e network,

e operating system,

o filing system,

e environment variables, or
e other resources.

Processes are usually started and stopped by an operating system and may or may not interact with other
processes. A process may contain multiple threads.

3.1.3 Properties

3.1.3.1

software quality

degree to which software implements the requirements described by its specification and the degree to which
the characteristics of a software product fulfill its requirements

3.1.3.2
predictable execution
property of the program such that all possible executions have results that can be predicted from the source code

3.1.4 Safety

3.14.1

safety hazard

potential source of harm

Note 1: IEC 61508-4: defines a “Hazard” as a “potential source of harm”, where “harm” is “physical injury or
damage to the health of people either directly or indirectly as a result of damage to property or to the
environment”. Some derived standards, such as UK Defence Standard 00-56, broaden the definition of
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“harm” to include material and environmental damage (not just harm to people caused by property and
environmental damage).

3.1.4.2
safety-critical software
software for applications where failure can cause very serious consequences such as human injury or death

Note 1: IEC 61508-4: defines “Safety-related software” as “software that is used to implement safety
functions in a safety-related system. Notwithstanding that in some domains a distinction is made between
safety-related (can lead to any harm) and safety-critical (life threatening), this Technical Report uses the term
safety-critical for all vulnerabilities that can result in safety hazards.

3.1.5 Vulnerabilities

3.1.5.1

application vulnerability

security vulnerability or safety hazard, or defect

3.1.5.2

language vulnerability

property (of a programming language) that can contribute to, or that is strongly correlated with, application
vulnerabilities in programs written in that language

Note 1: The term "property" can mean the presence or the absence of a specific feature, used singly or in
combination. As an example of the absence of a feature, encapsulation (control of where names can be
referenced from) is generally considered beneficial since it narrows the interface between modules and can
help prevent data corruption. The absence of encapsulation from a programming language can thus be
regarded as a vulnerability. Note that a property together with its complement can both be considered
language vulnerabilities. For example, automatic storage reclamation (garbage collection) can be a
vulnerability since it can interfere with time predictability and result in a safety hazard. On the other hand,
the absence of automatic storage reclamation can also be a vulnerability since programmers can mistakenly
free storage prematurely, resulting in dangling references.

3.1.5.3

security vulnerability

weakness in an information system, system security procedures, internal controls, or implementation that could
be exploited or triggered by a threat

3.2 Symbols and conventions
3.2.1 Symbols

For the purposes of this document, the symbols given in ISO 80000-2 apply. Other symbols are defined where
they appear in this document.

3.2.2 Conventions

Programming language tokens and syntactic tokens appear in courier font.
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4. Basic concepts

4.1 Purpose of this Technical Report

This document specifies software programming language vulnerabilities to be avoided in the development of
systems where assured behaviour is required for security, safety, mission critical and business critical software. In
general, this guidance is applicable to the software developed, reviewed, or maintained for any application.

This document does not address software engineering and management issues such as how to design and
implement programs, use configuration management tools, use managerial processes, and perform process
improvement. Furthermore, the specification of properties and applications to be assured are not treated.

While this document does not discuss specification or design issues, there is recognition that boundaries among
the various activities are not clear-cut. This document seeks to avoid the debate about where low-level design
ends and implementation begins by treating selected issues that some might consider design issues rather than
coding issues.

The body of this document provides users of programming languages with a language-independent overview of
potential vulnerabilities in their usage. Annexes describe how the general observations apply to specific
languages.

4.2 Intended audience

The intended audience for this document are those who are concerned with assuring the predictable execution of
the software of their system; that is, those who are developing, qualifying, or maintaining a software system and
need to avoid language constructs that could cause the software to execute in a manner other than intended.

Developers of applications that have clear safety, security or mission-criticality are expected to be aware of the
risks associated with their code and could use this document to ensure that their development practices address
the issues presented by the chosen programming languages, for example by subsetting or providing coding
guidelines.

It should not be assumed, however, that other developers can ignore this Technical Report. A weakness in a non-
critical application may provide the route by which an attacker gains control of a system or otherwise disrupts co-
hosted applications that are critical. It is hoped that all developers would use this Technical Report to ensure that
common vulnerabilities are removed or at least minimized from all applications.

Specific audiences for this document include developers, maintainers and regulators of:

e Safety-critical applications that might cause loss of life, human injury, or damage to the environment.

e Security-critical applications that must ensure properties of confidentiality, integrity, and availability.

e Mission-critical applications that must avoid loss or damage to property or finance.

e Business-critical applications where correct operation is essential to the successful operation of the
business.

e Scientific, modeling and simulation applications that require high confidence in the results of possibly
complex, expensive and extended calculation.
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4.3 How to use this document

This document gathers descriptions of programming language vulnerabilities, as well as selected application
vulnerabilities, which have occurred in the past and are likely to occur again. Each vulnerability and its possible
mitigations are described in the body of the report in a language-independent manner, though illustrative
examples may be language specific. In addition, annexes for particular languages describe the vulnerabilities and
their mitigations in a manner specific to the language.

Because new vulnerabilities are always being discovered, it is anticipated that this document will be revised and
new descriptions added. For that reason, a scheme that is distinct from sub-clause numbering has been adopted
to identify the vulnerability descriptions. Each description has been assigned an arbitrarily generated, unique
three-letter code. These codes should be used in preference to sub-clause numbers when referencing
descriptions because they will not change as additional descriptions are added to future editions of this
document.

The main part of this Document contains descriptions that are intended to be language-independent to the
greatest possible extent. Annexes apply the generic guidance to particular programming languages.

This document has been written with several possible usages in mind:

e Programmers familiar with the vulnerabilities of a specific language can reference the guide for more
generic descriptions and their manifestations in less familiar languages.

e Tool vendors can use the three-letter codes as a succinct way to “profile” the selection of vulnerabilities
considered by their tools.

e Individual organizations may wish to write their own coding standards intended to reduce the number of
vulnerabilities in their software products. The guide can assist in the selection of vulnerabilities to be
addressed in those standards and the selection of coding guidelines to be enforced.

e Organizations or individuals selecting a language for use in a project may want to consider the
vulnerabilities inherent in various candidate languages.

e Scientists, engineers, economists, statisticians, or others who write computer programs as tools of their
chosen craft can read this document to become more familiar with the issues that may affect their work.

The descriptions include suggestions for ways of avoiding the vulnerabilities. Some are simply the avoidance of
particular coding constructs, but others may involve increased review or other verification and validation
methods. Source code checking tools can be used to automatically enforce some coding rules and standards.

Clause 2 provides normative references.
Clause 3 provides terms, definitions, symbols and conventions.
Clause 4 provides the basic concepts used for this document.

Clause 5, Vulnerability Issues, provides rationale for this document and explains how many of the vulnerabilities
occur.

Clause 6, Programming Language Vulnerabilities, provides language-independent descriptions of vulnerabilities in
programming languages that can lead to application vulnerabilities. Each description provides:
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e asummary of the vulnerability,

e characteristics of languages where the vulnerability may be found,

e typical mechanisms of failure,

e techniques that programmers can use to avoid the vulnerability, and

e ways that language designers can modify language specifications in the future to help programmers
mitigate the vulnerability.

Clause 7, Application Vulnerabilities, provides descriptions of selected vulnerabilities which have been found and
exploited in a number of applications and which have well known mitigation techniques, and which result from
design decisions made by coders in the absence of suitable language library routines or other mechanisms. For
these vulnerabilities, each description provides:

e asummary of the vulnerability,
e typical mechanisms of failure, and
e techniques that programmers can use to avoid the vulnerability.

Clause 8, New Vulnerabilities, provides new vulnerabilities that have not yet had corresponding programming
language text developed.

Annex A, Vulnerability Taxonomy and List, is a categorization of the vulnerabilities of this report in the form of a
hierarchical outline and a list of the vulnerabilities arranged in alphabetic order by their three;Jetter code.

{ Deleted:

Annex B, Language Specific Vulnerability Template, is a template for the writing of programming language specific
annexes that explain how the vulnerabilities from clause 6 are realized in that programming language (or show
how they are absent), and how they might be mitigated in language-specific terms.

This document is supported by a set of Technical Reports numbered TR 24772-2, TR 24772-3, and so on. Each
additional part is named for a particular programming language lists the vulnerabilities described in Clauses 6 and
7 of this document and describe how each vulnerability appears in that specific language and specifies how it may
be mitigated in that language, whenever possible. All of the language-dependent descriptions assume that the
user adheres to the standard for the language as listed in the sub-clause of each Part.

5 Vulnerability issues and general avoidance mechanisms
5.1 Predictable execution

There are many reasons why software might not execute as expected by its developers, its users or other
stakeholders. Reasons include incorrect specifications, configuration management errors and a myriad of others.
This Document focuses on one cause—the usage of programming languages in ways that render the execution of
the code less predictable.

Predictable execution is a property of a program such that all possible executions have results that can be
predicted from examination of the source code. Achieving predictability is complicated by that fact that software
may be used:

e on unanticipated platforms (for example, ported to a different processor)
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e in unanticipated ways (as usage patterns change),
e in unanticipated contexts (for example, software reuse and system-of-system integrations), and
e by unanticipated users (for example, those seeking to exploit and penetrate a software system).

Furthermore, today’s ubiquitous connectivity of software systems virtually guarantees that most software will be
attacked—either because it is a target for penetration or because it offers a springboard for penetration of other
software. Accordingly, today’s programmers must take additional care to ensure predictable execution despite
the new challenges.

Software vulnerabilities are unwanted characteristics of software that may allow software to execute in ways that
are unexpected. Programmers introduce vulnerabilities into software by using language features that are
inherently unpredictable in the variable circumstances outlined above or by using features in a manner that
reduces what predictability they could offer. Of course, complete predictability is an ideal (particularly because
new vulnerabilities are often discovered through experience), but any programmer can improve predictability by
carefully avoiding the introduction of known vulnerabilities into code.

This Document focuses on a particular class of vulnerabilities, language vulnerabilities. These are properties of
programming languages that can contribute to (or are strongly correlated with) application vulnerabilities—
security weaknesses, safety hazards, or defects. An example may clarify the relationship. The programmer’s use of
a string copying function that does not check length may be exploited by an attacker to place incorrect return
values on the program stack, hence passing control of the execution to code provided by the attacker. The string
copying function is the language vulnerability and the resulting weakness of the program in the face of the stack
attack is the application vulnerability. The programming language vulnerability enables the application
vulnerability. The language vulnerability can be avoided by using a string copying function that does set
appropriate bounds on the length of the string to be copied. By using a bounded copy function the programmer
improves the predictability of the code’s execution.

The primary purpose of this Document is to survey common programming language vulnerabilities; this is done in
Clause 6. Each description explains how an application vulnerability can result. In Clause 7, a few additional
application vulnerabilities are described. These are selected because they are associated with language
weaknesses even if they do not directly result from language vulnerabilities. For example, a programmer might
have stored a password in plain text (see Error! Reference source not found.) because the programming Ianguagév

did not provide a suitable library function for storing the password in a non-recoverable format.

In addition to considering the individual vulnerabilities, it is instructive to consider the sources of uncertainty that
can decrease the predictability of software. These sources are briefly considered in the remainder of this clause.

5.2 Sources of unpredictability in language specification
5.2.1 Incomplete or evolving specification

The design and specification of a programming language involves considerations that are very different from the
use of the language in programming. Language specifiers often need to maintain compatibility with older versions
of the language—even to the extent of retaining inherently vulnerable features. Sometimes the semantics of new
or complex features are not completely known, especially when used in combination with other features.
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5.2.2 Undefined behaviour

It’s simply not possible for the specifier of a programming language to describe every possible behaviour. For
example, the result of using a variable to which no value has been assigned is left undefined by many languages.
In such cases, a program might do anything—including crashing with no diagnostic or executing with wrong data,
leading to incorrect results.

5.2.3 Unspecified behaviour

The behaviour of some features may be incompletely defined. The language implementer would have to choose
from a finite set of choices, but the choice may not be apparent to the programmer. In such cases, different
compilers may lead to different results.

5.2.4 Implementation-defined behaviour

In some cases, the results of execution may depend upon characteristics of the compiler that was used, the
processor upon which the software is executed, or the other systems with which the software has interfaces. In
principle, one could predict the execution with sufficient knowledge of the implementation, but such knowledge
is sometimes difficult to obtain. Furthermore, dependence on a specific implementation-defined behaviour will
lead to problems when a different processor or compiler is used—sometimes if different compiler switch settings
are used.

5.2.5 Difficult features

Some language features may be difficult to understand or to use appropriately, either due to complicated
semantics (for example, floating point in numerical analysis applications) or human limitations (for example,
deeply nested program constructs or expressions). Sometimes simple typing errors can lead to major changes in

u_n

behaviour without a diagnostic (for example, typing for assignment when one really intended “==" for

comparison).
5.2.6 Inadequate language support

No language is suitable for every possible application. Furthermore, programmers sometimes do not have the
freedom to select the language that is most suitable for the task at hand. In many cases, libraries must be used to
supplement the functionality of the language. Then, the library itself becomes a potential source of uncertainty
reducing the predictability of execution.

5.3 Sources of unpredictability in language usage
5.3.1 Porting and interoperation

When a program is recompiled using a different compiler, recompiled using different switches, executed with
different libraries, executed on a different platform, or even interfaced with different systems, its behaviour will
change. Changes result from different choices for unspecified and implementation-defined behaviour, differences
in library function, and differences in underlying hardware and operating system support. The problem is far

18 © I1SO/IEC 2013 — Al rights reserved



Baseline Edition—3 TR 24772-1

worse if the original programmer chose to use implementation-dependent extensions to the language rather than
staying with the standardized language.

5.3.2 Compiler selection and usage

Nearly all software has bugs and compilers are no exception. They should be carefully selected from trusted
sources and qualified prior to use. Perhaps less obvious, though, is the use of compiler switches. Different switch
settings can result in differences in generated code. A careful selection of settings can improve the predictability
of code, for example, a setting that causes the flagging of any usage of an implementation-defined behaviour.

5.4 Top avoidance mechanisms

Each vulnerability listed in sections 6 and 7 provides a set of ways that the vulnerability can be avoided or
mitigated. Many of the mitigations and avoidance mechanisms are common. This subclause provides the most
most effective and the most common mitigations, together with references to which vulnerabilities they apply.
The references are hyperlinked to provide the reader with easy access to those vulnerabilities for rationale and
further exploration.

The expectation is that users of this document will develop and use a coding standard based on this document
that is tailored to their risk environment.

Number | Recommended avoidance mechanism References
1 Validate input. Do not make assumptions about the values of parameters. 6.6 7.13

Check parameters for valid ranges and values in the calling and/or called

functions before performing any operations. 7;:

7.

2 When functions return error values, check the error return values before 6.36

processing any other returned data. 6.60
3 Enable compiler static analysis checking and resolve compiler warnings. 6.8 6.10 6.14 6.15

6.16 6.17 6.18 6.19

6.22 6.25 6.26 6.27

6.29 6.30 6.34 6.36

6.38 6.39 6.47 6.54

6.56 6.57 6.60 6.61
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4 Run a static analysis tool to detect anomalies not caught by the compiler. 6.3 6.6 6.7 6.8
6.10 6.14 6.15 6.16
6.17 6.18 6.19 6.22
6.25 6.26 6.27 6.29
6.30 6.34 6.36 6.38
6.39 6.47 6.54 6.56
6.57 6.60 6.61 6.62
7.28
5 Perform explicit range checking when it cannot be shown statically that 6.6
ranges will be obeyed, when range checking is not provided by the 6.8
implementation, or if automatic range checking is disabled. 6.16
6 Allocate and free resources, such as memory, threads or locks, at the same 6.14
level of abstraction.
7 Avoid constructs that have unspecified but bounded behavior, and if the 6.24 6.56
construct is needed, test for all possible behaviours.
8 Make error detection, error reporting, error correction, and recovery an 6.36
integral part of a system design.
10 Use only those features of the programming language that enforce a logical | 6.31
structure on the program.
11 Avoid using features of the language which are not specified to an exact 6.55 6.56 6.57
behaviour or that are undefined, implementation-defined or deprecated. 6.58 6.59
12 Avoid using libraries without proper signatures. 6.34
13 Do not modify loop control variables inside the loop body. 6.29
14 Do not perform assignments within Boolean expressions, even if allowed by | 6.25
the language.
15 Do not depend on side effects of a term in the expression itself. 6.31 6.24
16 Use names that are clear and visually unambiguous. Be consistent in 6.17
choosing names.
17 Use careful programming practice when programming border cases. 6.6 6.29
6.30
18 Be aware of short-circuiting behaviour when expressions with side effects 6.24
are used on the right side of a Boolean expression such as if the first 6.25
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expression evaluates to false in an and expression, then the remaining
expressions, including functions calls, will not be evaluated.

19 Avoid fall-through from one case (or switch) statement into the following 6.27
case statement: if a fall-through is necessary then provide a comment to
inform the reader that it is intentional.

20 Do not use floating-point arithmetic when integers would suffice, especially | 6.4
for counters associated with program flow, such as loop control variables.

21 Sanitize, erase or encrypt data that will be visible to others (for example, 7.11
freed memory, transmitted data). 7.12

6. Programming language vulnerabilities

6.1 General

This clause provides language-independent descriptions of vulnerabilities in programming languages that can lead
to application vulnerabilities. Each description provides:

e asummary of the vulnerability,

e characteristics of languages where the vulnerability may be found,

e typical mechanisms of failure,

e techniques that programmers can use to avoid the vulnerability, and

e ways that language designers can modify language specifications in the future to help programmers
mitigate the vulnerability.

Descriptions of how vulnerabilities are manifested in particular programming languages are provided in annexes
of this document. In each case, the behaviour of the language is assumed to be as specified by the standard cited
in the annex. Clearly, programs could have different vulnerabilities in a non-standard implementation. Examples
of non-standard implementations include:

e compilers written to implement some specification other than the standard,
e use of non-standard vendor extensions to the language, and
e use of compiler switches providing alternative semantics.

The following descriptions are written in a language-independent manner except when specific languages are
used in examples. The annexes may be consulted for language specific descriptions.

This clause will, in general, use the terminology that is most natural to the description of each individual
vulnerability. Hence terminology may differ from description to description.
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6.2 Type system [IHN]
6.2.1 Description of application vulnerability

When data values are converted from one data type to another, even when done intentionally, unexpected
results can occur.

6.2.2 Cross reference

JSF AV Rules: 148 and 183

MISRA C 2012: 4.6, 10.1, 10.3, and 10.4

MISRA C++ 2008: 3-9-2, 5-0-3 to 5-0-14

CERT C guidelines: DCLO7-C, DCL11-C, DCL35-C, EXPO5-C and EXP32-C
Ada Quality and Style Guide: 3.4

6.2.3 Mechanism of failure

The type of a data object informs the compiler how values should be represented and which operations may be
applied. The type system of a language is the set of rules used by the language to structure and organize its
collection of types. Any attempt to manipulate data objects with inappropriate operations is a type error. A
program is said to be type safe (or type secure) if it can be demonstrated that it has no type errors [27].

Every programming language has some sort of type system. A language is statically typed if the type of every
expression is known at compile time. The type system is said to be strong if it guarantees type safety and weak if
it does not. There are strongly typed languages that are not statically typed because they enforce type safety with
runtime checks [27].

In practical terms, nearly every language falls short of being strongly typed (in an ideal sense) because of the
inclusion of mechanisms to bypass type safety in particular circumstances. For that reason and because every
language has a different type system, this description will focus on taking advantage of whatever features for type
safety may be available in the chosen language.

Sometimes it is appropriate for a data value to be converted from one type to another compatible one. For
example, consider the following program fragment, written in no specific language:

float a;
integer i;
a :=a + i;

The variable "i" is of integer type. It is converted to the float type before it is added to the data value. This is an
implicit type conversion. If, on the other hand, the conversion must be specified by the program, for example, "a
:= a + float (i)",thenitis an explicit type conversion.

Type equivalence is the strictest form of type compatibility; two types are equivalent if they are compatible
without using implicit or explicit conversion. Type equivalence is usually characterized in terms of name type
equivalence—two variables have the same type if they are declared in the same declaration or declarations that
use the same type name—or structure type equivalence—two variables have the same type if they have identical
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structures. There are variations of these approaches and most languages use different combinations of them [28].
Therefore, a programmer skilled in one language may very well code inadvertent type errors when using a
different language.

It is desirable for a program to be type safe because the application of operations to operands of an inappropriate
type may produce unexpected results. In addition, the presence of type errors can reduce the effectiveness of
static analysis for other problems. Searching for type errors is a valuable exercise because their presence often
reveals design errors as well as coding errors. Many languages check for type errors—some at compile-time,
others at run-time. Obviously, compile-time checking is more valuable because it can catch errors that are not
executed by a particular set of test cases.

Making the most use of the type system of a language is useful in two ways. First, data conversions always bear
the risk of changing the value. For example, a conversion from integer to float risks the loss of significant digits
while the inverse conversion risks the loss of any fractional value. Conversion of an integer value from a type with
a longer representation to a type with a shorter representation risks the loss of significant digits. This can produce
particularly puzzling results if the value is used to index an array. Conversion of a floating-point value from a type
with a longer representation to a type with a shorter representation risks the loss of precision. This can be
particularly severe in computations where the number of calculations increases as a power of the problem size. (It
should be noted that similar surprises can occur when an application is retargeted to a machine with different
representations of numeric values.)

Second, a programmer can use the type system to increase the probability of catching design errors or coding
blunders. For example, the following Ada fragment declares two distinct floating-point types:

type Celsius is new Float;
type Fahrenheit is new Float;

The declaration makes it impossible to add a value of type Celsius to a value of type Fahrenheit without explicit
conversion.

6.2.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:
e Languages that support multiple types and allow conversions between types.

6.2.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Take advantage of any facility offered by the programming language to declare distinct types and use any
mechanism provided by the language processor and related tools to check for or enforce type
compatibility.

e Use available language and tools facilities to preclude or detect the occurrence of implicit type
conversions, such as those in mixed type arithmetic. If it is not possible, use human review to assist in
searching for implicit conversions.
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e Avoid explicit type conversion of data values except when there is no alternative. Document such
occurrences so that the justification is made available to maintainers.

e Use the most restricted data type that suffices to accomplish the job. For example, use an enumeration
type to select from a limited set of choices (such as, a switch statement or the discriminant of a union
type) rather than a more general type, such as integer. This will make it possible for tooling to check if all
possible choices have been covered.

e Treat every compiler, tool, or run-time diagnostic concerning type compatibility as a serious issue. Do not
resolve the problem by modifying the code to include an explicit conversion, without further analysis;
instead examine the underlying design to determine if the type error is a symptom of a deeper problem.

e Never ignore instances of implicit type conversion; if the conversion is necessary, change it to an explicit
conversion and document the rationale for use by maintainers.

e Analyze the problem to be solved to learn the magnitudes and/or the precisions of the quantities needed
as auxiliary variables, partial results and final results.

e (Create types that more accurately model the problem domain, with corresponding safe operations and
conversions in lieu of using primitive types. (from Mtg 51 with WG 21 SG 12) (Need more discussion in
subclause 1 or 3 to support this)

6.2.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Language specifiers should standardize on a common, uniform terminology to describe their type systems
so that programmers experienced in other languages can reliably learn the type system of a language that
is new to them.

e Provide a mechanism for selecting data types with sufficient capability for the problem at hand.

e Provide a way for the computation to determine the limits of the data types actually selected.

e lLanguage implementers should consider providing compiler switches or other tools to provide the highest
possible degree of checking for type errors.

6.3 Bit representations [STR]

6.3.1 Description of application vulnerability

Interfacing with hardware, other systems and protocols often requires access to one or more bits in a single
computer word, or access to bit fields that may cross computer words for the machine in question. Mistakes can
be made as to what bits are to be accessed because of the “endianness” of the processor (see below) or because
of miscalculations. Access to those specific bits may affect surrounding bits in ways that compromise their
integrity. This can result in the wrong information being read from hardware, incorrect data or commands being
given, or information being mangled, which can result in arbitrary effects on components attached to the system.

6.3.2 Cross reference

JSF AV Rules 147, 154 and 155
MISRA C2012: 1.1, 6.1, 6.2, and 10.1
MISRA C++ 2008: 5-0-21, 5-2-4 to 5-2-9, and 9-5-1
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CERT C guidelines: EXP38-C, INTOO-C, INTO7-C, INT12-C, INT13-C, and INT14-C
Ada Quality and Style Guide: 7.6.1 through 7.6.9, and 7.3.1

6.3.3 Mechanism of failure

Computer languages frequently provide a variety of sizes for integer variables. Languages may support short,
integer, long, and even big integers. Interfacing with protocols, device drivers, embedded systems, low level
graphics or other external constructs may require each bit or set of bits to have a particular meaning. Those bit
sets may or may not coincide with the sizes supported by a particular language implementation. When they do
not, it is common practice to pack all of the bits into one word. Masking and shifting of the word using powers of
two to pick out individual bits or using sums of powers of 2 to pick out subsets of bits (for example, using
28=22+2+2" to create the mask 11100 and then shifting 2 bits) provides a way of extracting those bits. Knowledge
of the underlying bit storage is usually not necessary to accomplish simple extractions such as these. Problems
can arise when programmers mix their techniques to reference the bits or output the bits. Problems can arise
when programmers mix arithmetic and logical operations to reference the bits or output the bits. The storage
ordering of the bits may not be what the programmer expects.

Packing of bits in an integer is not inherently problematic. However, an understanding of the intricacies of bit
level programming must be known. Some computers or other devices store the bits left-to-right while others
store them right-to-left. The kind of storage can cause problems when interfacing with external devices that
expect the bits in the opposite order. One problem arises when assumptions are made when interfacing with
external constructs and the ordering of the bits or words are not the same as the receiving entity. Programmers
may inadvertently use the sign bit in a bit field and then may not be aware that an arithmetic shift (sign
extension) is being performed when right shifting causing the sign bit to be extended into other fields.
Alternatively, a left shift can cause the sign bit to be one. Bit manipulations can also be problematic when the
manipulations are done on binary encoded records that span multiple words. The storage and ordering of the bits
must be considered when doing bit-wise operations across multiple words as bytes may be stored in big-endian or
little-endian format.

6.3.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
e Languages that allow bit manipulations.

6.3.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Explicitly document any reliance on bit ordering such as explicit bit patterns, shifts, or bit numbers.

e Understand the way bit ordering is done on the host system and on the systems with which the bit
manipulations will be interfaced.

e Where the language supports it, use bit fields in preference to binary, octal, or hex representations.

e Avoid bit operations on signed operands.

e Localize and document the code associated with explicit manipulation of bits and bit fields.

e  Use static analysis tools that identify and report reliance upon bit ordering or bit representation.
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6.3.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e For languages that are commonly used for bit manipulations, an AP/ (Application Programming Interface)
for bit manipulations that is independent of word size and machine instruction set should be defined and
standardized.

6.4 Floating-point arithmetic [PLF]
6.4.1 Description of application vulnerability

Most real numbers cannot be represented exactly in a computer. To represent real numbers, most computers use
IEC 60559 Information technology -- Microprocessor Systems -- Floating-Point arithmetic. If IEC 60559 is not
followed, then the bit representation for a floating-point number can vary from compiler to compiler and on
different platforms, however, relying on a particular representation can cause problems when a different
compiler is used or the code is reused on another platform. Regardless of the representation, many real numbers
can only be approximated since representing the real number using a binary representation may well require an
endlessly repeating string of bits or more binary digits than are available for representation. Therefore, it should
be assumed that a floating-point number is only an approximation, even though it may be an extremely good one.
Floating-point representation of a real number or a conversion to floating-point can cause surprising results and
unexpected consequences to those unaccustomed to the idiosyncrasies of floating-point arithmetic.

Many algorithms that use floating point can have anomalous behaviour when used with certain values. The most
common results are erroneous results or algorithms that never terminate for certain segments of the numeric
domain, or for isolated values. Those without training or experience in numerical analysis may not be aware of
which algorithms, or, for a particular algorithm, of which domain values should be the focus of attention.

In some hardware, precision for intermediate floating-point calculations may be different than that suggested by
the data type, causing different rounding results when moving to standard precision modes.

6.4.2 Cross reference

JSF AV Rules: 146, 147, 184, 197, and 202

MISRA C 2012: 1.1 and 14.1

MISRA C++ 2008: 0-4-3, 3-9-3, and 6-2-2

CERT C guidelines: FLPOO-C, FP01-C, FLP0O2-C and FLP30-C
Ada Quality and Style Guide: 5.5.6 and 7.2.1 through 7.2.8

6.4.3 Mechanism of failure

Floating-point numbers are generally only an approximation of the actual value. Expressed in base 10 world, the
value of 1/3 is 0.333333... The same type of situation occurs in the binary world, but the numbers that can be
represented with a limited number of digits in base 10, such as 1/10=0.1 become endlessly repeating sequences
in the binary world. So 1/10 represented as a binary number is:

0.0001100110011001100110011001100110011001100110011...
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Which is 0¥1/2 + 0*1/4 + 0*1/8 + 1*1/16 + 1*1/32 + 0*1/64... and no matter how many digits are used, the
representation will still only be an approximation of 1/10. Therefore, when adding 1/10 ten times, the final result
may or may not be exactly 1.

Accumulating floating point values through the repeated addition of values, particularly relatively small values,
can provide unexpected results. Using an accumulated value to terminate a loop can result in an unexpected
number of iterations. Rounding and truncation can cause tests of floating-point numbers against other values to
yield unexpected results. Another cause of floating point errors is reliance upon comparisons of floating point
values or the comparison of a floating point value with zero. Tests of equality or inequality can vary due to
rounding or truncation errors, which may propagate far from the operation of origin. Even comparisons of
constants may fail when a different rounding mode was employed by the compiler and by the application.
Differences in magnitudes of floating-point numbers can result in no change of a very large floating-point number
when a relatively small number is added to or subtracted from it.

Manipulating bits in floating-point numbers is also very implementation dependent if the implementation is not
IEC 60559 compliant or in the interpretation of NAN’s. Typically, special representations are specified for positive
and negative zero; infinity and subnormal numbers very close to zero. Relying on a particular bit representation is
inherently problematic, especially when a new compiler is introduced or the code is reused on another platform.
The uncertainties arising from floating-point can be divided into uncertainty about the actual bit representation of
a given value (such as, big-endian or little-endian) and the uncertainty arising from the rounding of arithmetic
operations (for example, the accumulation of errors when imprecise floating-point values are used as loop
indices).

Note that most floating-point implementations are binary. Decimal floating-point numbers are available on some
hardware and has been standardized in ISO/IEC/IEEE 60559:2011 (IEEE 754:2008), but be aware what precision
guarantees your programming language makes. In general, fixed point arithmetic may be a better solution to
common problems involving decimal fractions (such as financial calculations).

Implementations (libraries) for different precisions are often implemented in the highest precision. This can yield
different results in algorithms such as exponentiation than if the programmer had performed the calculation
directly.

Floating-point systems have more than one rounding mode. Round to the nearest even number is the default for
almost all implementations. Repeatedly rounding iterative calculations towards zero or away from zero can result
in a loss of precision, and can cause unexpected outcome.

Floating-point min and max can return an arbitrary sign when both parameters are zero (and of different sign).
Tests that use the sign of a number rather than its relationship to zero can return unexpected results.

6.4.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e All languages with floating-point variables can be subject to rounding or truncation errors.
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6.4.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Unless the program’s use of floating-point is trivial, obtain the assistance of an expert in numerical
analysis and in the hardware properties of your system to check the stability and accuracy of the
algorithm employed.

Do not use a floating-point expression in a Boolean test for equality unless it can be shown that the logic
implemented by the equality test cannot be affected by prior rounding errors. Instead, use coding that
determines the difference between the two values to determine whether the difference is acceptably
small enough so that two values can be considered equal. Note that if the two values are very large, the
“small enough” difference can be a very large number.

Verify that the underlying implementation is IEC 60559 (IEEE 754) or that it includes subnormal numbers
(fixed point numbers that are close to zero). Be aware that implementations that do not have this
capability can underflow to zero in unexpected situations.

Be aware that infinities, NAN and subnormal numbers may be possible and give special consideration to
tests that check for those conditions before using them in floating point calculations.

Use library functions with known numerical characteristics. Avoid the use of a floating-point variable as a
loop counter. If it is necessary to use a floating-point value for loop control, use inequality to determine
the loop control (that is, <, <=, > or >=).

Understand the floating-point format used to represent the floating-point numbers. This will provide
some understanding of the underlying idiosyncrasies of floating-point arithmetic.

Avoid manipulating the bit representation of a floating-point number. Prefer built-in language operators
and functions that are designed to extract the mantissa, exponent or sign.

Do not use floating-point for exact values such as monetary amounts. Use floating-point only when
necessary such as for fundamentally inexact values such as measurements or values of diverse
magnitudes. Consider the use of fixed point arithmetic /libraries or decimal floating point when
appropriate.

Use known precision modes to implement algorithms

Avoid changing the rounding mode from RNE (round nearest even)

Avoid reliance on the sign of the floating-point Min and Max operations when both numbers are zero.
When adding (or subtracting) sequences of numbers, sort and add (or subtract) them from smallest to
largest in absolute value to avoid loss of precision.

6.4.6 Implications for language design and evolution

In future language design and evolution activities, the following items should be considered:

28

Languages that do not already adhere to or only adhere to a subset of IEC 60559 [7] should consider
adhering completely to the standard. Examples of standardization that should be considered:

Languages should consider providing a means to generate diagnostics for code that attempts to test
equality of two floating point values.
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e Languages should consider standardizing their data type to ISO/IEC 10967-1:2012 and ISO/IEC 10967-
2:2001.

6.5 Enumerator issues [CCB]

6.5.1 Description of application vulnerability

Enumerations are a finite list of named entities that contain a fixed mapping from a set of names to a set of
integral values (called the representation) and an order between the members of the set. In some languages,
there are no other operations available except order, equality, first, last, previous, and next; in others, the full
underlying representation operators are available, such as integer “+” and “-” and bit-wise operations.

Most languages that provide enumeration types also provide mechanisms to set non-default representations. If
these mechanisms do not enforce whole-type operations and check for conflicts then some members of the set
may not be properly specified or may have the wrong mappings. If the value-setting mechanisms are positional
only, then there is a risk that improper counts or changes in relative order will result in an incorrect mapping.

For arrays indexed by enumerations with non-default representations, there is a risk of structures with holes, and
if those indexes can be manipulated numerically, there is a risk of out-of-bound accesses of these arrays.

Most of these errors can be readily detected by static analysis tools with appropriate coding standards,
restrictions and annotations. Similarly mismatches in enumeration value specification can be detected statically.
Without such rules, errors in the use of enumeration types are computationally hard to detect statically as well as
being difficult to detect by human review.

6.5.2 Cross reference

JSF AV Rule:

MISRA C 2012: 8.12,9.2,and 9.3
MISRA C++ 2008: 8-5-3

CERT C guidelines: INT09-C
Holzmann rule 6

Ada Quality and Style Guide: 3.4.2

6.5.3 Mechanism of failure

As a program is developed and maintained the list of items in an enumeration often changes in three basic ways:
new elements are added to the list; order between the members of the set often changes; and representation
(the map of values of the items) change. Expressions that depend on the full set or specific relationships between
elements of the set can create value errors that could result in wrong results or in unbounded behaviours if used
as array indices.

Improperly mapped representations can result in some enumeration values being unreachable, or may create
“holes” in the representation where values that cannot be defined are propagated.
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If arrays are indexed by enumerations containing non-default representations, some implementations may leave
space for values that are unreachable using the enumeration, with a possibility of unnecessarily large memory
allocations or a way to pass information undetected (hidden channel).

When enumerators are set and initialized explicitly and the language permits incomplete initializers, then changes
to the order of enumerators or the addition or deletion of enumerators can result in the wrong values being
assigned or default values being assigned improperly. Subsequent indexing can result in invalid accesses and
possibly unbounded behaviours.

6.5.4 Applicable language Characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages that permit incomplete mappings between enumerator specification and value assignment, or
that provide a positional-only mapping require additional static analysis tools and annotations to help
identify the complete mapping of every literal to its value.

e Languages that provide a trivial mapping to a type such as integer require additional static analysis tools
to prevent mixed type errors. They also cannot prevent invalid values from being placed into variables of
such enumerator types. For example:

enum Directions {back, forward, stop};
enum Directions a = forward, b = stop, ¢ = a + b;

In this example, ¢ may have a value not defined by the enumeration, and any further use as that
enumeration will lead to erroneous results.

e Some languages provide no enumeration capability, leaving it to the programmer to define named
constants to represent the values and ranges.

6.5.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Use static analysis tools that will detect inappropriate use of enumerators, such as using them as integers
or bit maps, and that detect enumeration definition expressions that are incomplete or incorrect. For
languages with a complete enumeration abstraction this is the compiler.

e In code that performs different computations depending on the value of an enumeration, ensure that
each possible enumeration value is covered, or provide a default that raises an error or exception.

e Use an enumerated type to select from a limited set of choices and use tools that statically detect
omissions of possible values in an enumeration

6.5.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Languages that currently permit arithmetic and logical operations on enumeration types could provide a
mechanism to ban such operations program-wide.
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e Languages that provide automatic defaults or that do not enforce static matching between enumerator
definitions and initialization expressions could provide a mechanism to enforce such matching.

6.6 Conversion errors [FLC]

6.6.1 Description of application vulnerability

Certain contexts in various languages may require exact matches with respect to types [32]:

aVar := anExpression
valuel + value?2
foo(argl, arg2, arg3, .., argNN)

Type conversion seeks to follow these exact match rules while allowing programmers some flexibility in using
values such as: structurally-equivalent types in a name-equivalent language, types whose value ranges may be
distinct but intersect (for example, subranges), and distinct types with sensible/meaningful corresponding values
(for example, integers and floats).

Conversions can lead to a loss of data, if the target representation is not capable of representing the original
value. For example, converting from an integer type to a smaller integer type can result in truncation if the
original value cannot be represented in the smaller size and converting a floating point to an integer can result in
a loss of precision or an out-of-range value. Converting from a character type to a smaller character type can
result in the misrepresentation of the character.

Type-conversion errors can lead to erroneous data being generated, algorithms that fail to terminate, array
bounds-errors, or arbitrary program execution.

See also 6.44 Polymorphic variables [BKK]

,for up-casting errors. [ Deleted: 6.44 Polymorphic variables [BKK]

... [1]

6.6.2 Cross reference

CWE: 192. Integer Coercion Error

MISRA C 2012: 7.2, 10.1, 10.3, 10.4, 10.6-10.8, and 11.1-11.8

MISRA C++ 2008: 2-13-3, 5-0-3, 5-0-4, 5-0-5, 5-0-6, 5-0-7, 5-0-8, 5-0-9, 5-0-10, 5-2-5, 5-2-9, and 5-3-2
CERT C guidelines: FLP34-C, INT02-C, INTO8-C, INT31-C, and INT35-C

6.6.3 Mechanism of failure

Conversion errors result in data integrity issues, and may also result in a number of safety and security
vulnerabilities.

When the conversion results in no change in representation but a change in value for the new type, this may
result in a value that is not expressible in the new type, or that has a dramatically different order or meaning. One
such situation is the change of sign between the origin and destination (negative -> positive or positive ->
negative), which changes the relative order of members of the two types and could result in memory access
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failures if the values are used in address calculations. Numeric type conversions can be less obvious because some
languages will silently convert between numeric types.

Vulnerabilities typically occur when appropriate range checking is not performed, and unanticipated values are
encountered. These can result in safety issues, for example, when the Ariane 5 launcher failure occurred due to
an improperly handled conversion error resulting in the processor being shut down [29].

Conversion errors can also result in security issues. An attacker may input a particular numeric value to exploit a
flaw in the program logic. The resulting erroneous value may then be used as an array index, a loop iterator, a
length, a size, state data, or in some other security-critical manner. For example, a truncated integer value may be
used to allocate memory, while the actual length is used to copy information to the newly allocated memory,
resulting in a buffer overflow [30].

Numeric type-conversion errors can lead to undefined states of execution resulting in infinite loops or crashes. In
some cases, integer type-conversion errors can lead to exploitable buffer overflow conditions, resulting in the
execution of arbitrary code. Integer type-conversion errors result in an incorrect value being stored for the
variable in question.

6.6.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages that perform implicit type conversion (coercion).
e Languages that permit conversions between subtypes of a polymorphic typd. See 6.44 Polymorphic

Variables [BKK] upcasts and downcasts\. | Comment [SM1]: Links are not obvious. Find all of them and
e Weakly typed languages that do not strictly enforce type rules. colour them.

e languages that support logical, arithmetic, or circular shifts on integer values.
e Languages that do not generate exceptions on problematic conversions.

6.6.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e If range checking is not provided by the language, use explicit range checks, type checks or value checks
to validate the correctness of all values originating from a source that is not trusted. However, it is
difficult to guarantee that multiple input variables cannot be manipulated to cause an error to occur in
some operation somewhere in a program [30].

e Alternatively, use explicit range checks to protect each operation. Because of the large number of integer
operations that are susceptible to these problems and the number of checks required to prevent or
detect exceptional conditions, this approach can be prohibitively labor intensive and expensive to
implement.

e Choose a language that generates exceptions on erroneous data conversions.

e Design objects and program flow such that multiple or complex explicit type conversions are unnecessary.
Understand any explicit type conversion that you must use to reduce the plausibility of error in use.

e Use static analysis tools to identify whether or not unacceptable conversions will occur, to the extent
possible.
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e Avoid the use of “plausible but wrong” default values when a calculation cannot be completed correctly.
Either generate an error or produce a value that is out of range and is certain to be detected. Take care
that any error processing does not lead to a denial-of-service vulnerability.

6.6.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Languages should provide mechanisms to prevent programming errors due to conversions.
e Languages should consider making all type-conversions explicit or at least generating warnings for implicit
conversions where loss of data might occur.

6.7 String termination [CJM]

6.7.1 Description of application vulnerability

Some programming languages use a termination character to indicate the end of a string. Relying on the
occurrence of the string termination character without verification can lead to either exploitation or unexpected
behaviour.

6.7.2 Cross reference

CWE:
170. Improper Null Termination
CERT C guidelines: STR03-C, STR31-C, STR32-C, and STR36-C

6.7.3 Mechanism of failure

String termination errors occur when the termination character is solely relied upon to stop processing on the
string and the termination character is not present. Continued processing on the string can cause an error or
potentially be exploited as a buffer overflow. This may occur as a result of a programmer making an assumption
that a string that is passed as input or generated by a library contains a string termination character when it does
not.

Programmers may forget to allocate space for the string termination character and expect to be able to store an n
length character string in an array that is n characters long. Doing so may work in some instances depending on
what is stored after the array in memory, but it may fail or be exploited at some point.

6.7.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages that use a termination character to indicate the end of a string.
e Languages that do not do bounds checking when accessing a string or array.

6.7.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
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e Do not rely solely on the string termination character.

e Use library calls that do not rely on string termination characters such as strncpy instead of strcpy in
the standard C library.

e Use static analysis tools that detect errors in string termination.

6.7.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Eliminating library calls that make assumptions about string termination characters.
e Checking bounds when an array or string is accessed, C Bounds Checking Library[13].
e Specifying a string construct that does not need a string termination character.

6.8 Buffer boundary violation (buffer overflow) [HCB]

6.8.1 Description of application vulnerability

A buffer boundary violation arises when, due to unchecked array indexing or unchecked array copying, storage
outside the buffer is accessed. Usually boundary violations describe the situation where such storage is then
written. Depending on where the buffer is located, logically unrelated portions of the stack or the heap could be
modified maliciously or unintentionally. Usually, buffer boundary violations are accesses to contiguous memory
beyond either end of the buffer data, accessing before the beginning or beyond the end of the buffer data is
equally possible, dangerous and maliciously exploitable.

6.8.2 Cross reference

CWE:
120. Buffer copy without Checking Size of Input (‘Classic Buffer Overflow’)
122. Heap-based Buffer Overflow
124. Boundary Beginning Violation (‘Buffer Underwrite’)
129. Unchecked Array Indexing
131. Incorrect Calculation of Buffer Size
787. Out-of-bounds Write
805. Buffer Access with Incorrect Length Value
JSF AV Rule: 15 and 25
MISRA C 2012: 21.1
MISRA C++ 2008: 5-0-15 to 5-0-18
CERT C guidelines: ARR30-C, ARR32-C, ARR33-C, ARR38-C, MEM35-C and STR31-C

6.8.3 Mechanism of failure

The program statements that cause buffer boundary violations are often difficult to find.

There are several kinds of failures (in all cases an exception may be raised if the accessed location is outside of
some permitted range of the run-time environment):
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e Aread access will return a value that has no relationship to the intended value, such as, the value of
another variable or uninitialized storage.

e An out-of-bounds read access may be used to obtain information that is intended to be confidential.

e A write access will not result in the intended value being updated and may result in the value of an
unrelated object (that happens to exist at the given storage location) being modified, including the
possibility of changes in external devices resulting from the memory location being hardware-mapped.

e When an array has been allocated storage on the stack an out-of-bounds write access may modify
internal runtime housekeeping information (for example, a function's return address) which might change
a program’s control flow.

e Aninadvertent or malicious overwrite of function pointers that may be in memory, causing them to point
to an unexpected location or the attacker's code. Even in applications that do not explicitly use function
pointers, the run-time will usually store pointers to functions in memory. For example, object methods in
object-oriented languages are generally implemented using function pointers in a data structure or
structures that are kept in memory. The consequence of a buffer boundary violation can be targeted to
cause arbitrary code execution; this vulnerability may be used to subvert any security service.

6.8.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages that do not detect and prevent an array being accessed outside of its declared bounds (either
by means of an index or by pointerl).

e Languages that do not automatically allocate storage when accessing an array element for which storage
has not already been allocated.

e Languages that provide bounds checking but permit the check to be suppressed.

e Languages that allow a copy or move operation without an automatic length check ensuring that source
and target locations are of at least the same size. The destination target can be larger than the source
being copied.

6.8.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Use of implementation-provided functionality to automatically check array element accesses and prevent
out-of-bounds accesses.

e Use of static analysis to verify that all array accesses are within the permitted bounds. Such analysis may
require that source code contain certain kinds of information, such as, that the bounds of all declared
arrays be explicitly specified, or that pre- and post-conditions be specified.

e Perform sanity checks on all calculated expressions used as an array index or for pointer arithmetic.

e Ascertain whether or not the compiler can insert bounds checks while still meeting the performance
requirements of the program and direct the compiler to insert such checks where appropriate

1 Using the physical memory address to access the memory location.

© ISO/IEC 2013 — All rights reserved 35



WG 23/N 0751

Some guideline documents recommend only using variables having an unsigned data type when indexing an
array, on the basis that an unsigned data type can never be negative. This recommendation simply converts an
indexing underflow to an indexing overflow because the value of the variable will wrap to a large positive value
rather than a negative one. Also, some languages support arrays whose lower bound is greater than zero, so an
index can be positive and be less than the lower bound. Some languages support zero-sized arrays, so any
reference to a location within such an array is invalid.

In the past, the implementation of array bound checking has sometimes incurred what has been considered to be
a high runtime overhead (often because unnecessary checks were performed). It is now practical for translators
to perform sophisticated analysis that significantly reduces the runtime overhead (because runtime checks are
only made when it cannot be shown statically that no bound violations can occur).

6.8.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e lLanguages should provide safe copying of arrays as built-in operation.

e lLanguages should consider only providing array copy routines in libraries that perform checks on the
parameters to ensure that no buffer overrun can occur.

e Languages should perform automatic bounds checking on accesses to array elements, unless the compiler
can statically determine that the check is unnecessary. This capability may need to be optional for
performance reasons.

e Languages that use pointer types should consider specifying a standardized feature for a pointer type that
would enable array bounds checking.

6.9 Unchecked array indexing [XYZ]

6.9.1 Description of application vulnerability

Unchecked array indexing occurs when a value is used as an index into an array without checking that it falls
within the acceptable index range.

6.9.2 Cross reference

CWE:
129. Unchecked Array Indexing
676. Use of Potentially Dangerous Function
JSF AV Rules: 164 and 15
MISRA C 2012: 21.1
MISRA C++ 2008: 5-0-15 to 5-0-18
CERT C guidelines: ARR30-C, ARR32-C, ARR33-C, and ARR38-C
Ada Quality and Style Guide: 5.5.1, 5.5.2, 7.6.7, and 7.6.8
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6.9.3 Mechanism of failure

A single fault could allow both an overflow and underflow of the array index. An index overflow exploit might use
buffer overflow techniques, but this can often be exploited without having to provide "large inputs." Array index
overflows can also trigger out-of-bounds read operations, or operations on the wrong objects; that is, "buffer
overflows" are not always the result. Unchecked array indexing, depending on its instantiation, can be responsible
for any number of related issues. Most prominent of these possible flaws is the buffer overflow condition, with
consequences ranging from denial of service, and data corruption, to arbitrary code execution. The most common
situation leading to unchecked array indexing is the use of loop index variables as buffer indexes. If the end
condition for the loop is subject to a flaw, the index can grow or shrink unbounded, therefore causing a buffer
overflow or underflow. Another common situation leading to this condition is the use of a function's return value,
or the resulting value of a calculation directly as an index in to a buffer. Unchecked array indexing can result in the
corruption of relevant memory and perhaps instructions, lead to the program halting, if the values are outside of
the valid memory area. If the memory corrupted is data, rather than instructions, the system might continue to
function with improper values. If the corrupted memory can be effectively controlled, it may be possible to
execute arbitrary code, as with a standard buffer overflow.

Language implementations might or might not statically detect out of bound access and generate a compile-time
diagnostic. At runtime, the implementation might or might not detect the out-of-bound access and provide a
notification. The notification might be treatable by the program or it might not be. Accesses might violate the
bounds of the entire array or violate the bounds of a particular index. It is possible that the former is checked and
detected by the implementation while the latter is not. The information needed to detect the violation might or
might not be available depending on the context of use. (For example, passing an array to a subroutine via a
pointer might deprive the subroutine of information regarding the size of the array.)

Aside from bounds checking, some languages have ways of protecting against out-of-bounds accesses. Some
languages automatically extend the bounds of an array to accommodate accesses that might otherwise have been
beyond the bounds. However, this may or may not match the programmer's intent and can mask errors. Some
languages provide for whole array operations that may obviate the need to access individual elements thus
preventing unchecked array accesses.

6.9.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages that do not automatically bounds check array accesses.
e Languages that do not automatically extend the bounds of an array to accommodate array accesses.

6.9.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
e Include sanity checks to ensure the validity of any values used as index variables.

e The choice could be made to use a language that is not susceptible to these issues.
e When available, use whole array operations whenever possible.
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6.9.6 Implications for language designers
In future language design and evolution, the following items should be considered:

e Provide compiler switches or other tools to check the size and bounds of arrays and their extents that are
statically determinable.

e Providing whole array operations that may obviate the need to access individual elements.

e Languages should consider the capability to generate exceptions or automatically extend the bounds of
an array to accommodate accesses that might otherwise have been beyond the bounds.

6.10 Unchecked array copying [XYW]
6.10.1 Description of application vulnerability

A buffer overflow occurs when some number of bytes (or other units of storage) is copied from one buffer to
another and the amount being copied is greater than is allocated for the destination buffer.

6.10.2 Cross reference

CWE:
121. Stack-based Buffer Overflow
JSF AV Rule: 15
MISRA C 2012: 21.1
MISRA C++ 2008: 5-0-15 to 5-0-18
CERT C guidelines: ARR33-C and STR31-C
Ada Quality and Style Guide: 7.6.7 and 7.6.8

6.10.3 Mechanism of failure

- e { Formatted: Normal

We need to include opverlapped structures or slices.

Many languages and some third party libraries provide functions that efficiently copy the contents of one area of
storage to another area of storage. Most of these libraries do not perform any checks to ensure that the copied
from/to storage area is large enough to accommodate the amount of data being copied.

The arguments to these library functions include the addresses of the contents of the two storage areas and the
number of bytes (or some other measure) to copy. Passing the appropriate combination of incorrect start
addresses or number of bytes to copy makes it possible to read or write outside of the storage allocated to the
source/destination area. When passed incorrect parameters the library function performs one or more unchecked

array index accesses, as described in 6.9 Unchecked array indexing [XYZ], [ Formatted: Font:Italic, Underline, Font color: Blue ]
| Deleted: 6.9 Unchecked array indexing [XYZ]6.9 Unchecked array ]

6.10.4 Applicable language characteristics . | indexing [XYZ
[ Formatted: Font:Italic, Underline, Font color: Blue J

This vulnerability description is intended to be applicable to languages with the following characteristics:
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e Languages that contain standard library functions for performing bulk copying of storage areas.

e The same range of languages having the characteristics listed in 6.9 Unchecked array indexing [XYZ], | [ Formatted: Font:Italic, Underline, Font color: Blue

Deleted: 6.9 Unchecked array indexing [XYZ]6.9 Unchecked
array indexing [XYZ]

6.10.5 Avoiding the vulnerability or mitigating its effects

[ Formatted: Font:Italic, Underline, Font color: Blue

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Only use library functions that perform checks on the arguments to ensure no buffer overrun can occur
(perhaps by writing a wrapper for the Standard provided functions). Perform checks on the argument
expressions prior to calling the Standard library function to ensure that no buffer overrun will occur.

e Use static analysis to verify that the appropriate library functions are only called with arguments that do
not result in a buffer overrun. Such analysis may require that source code contain certain kinds of
information, for example, that the bounds of all declared arrays be explicitly specified, or that pre- and
post-conditions be specified as annotations or language constructs.

6.10.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Languages should consider only providing libraries that perform checks on the parameters to ensure that
no buffer overrun can occur.
e Languages should consider providing full array assignment.

6.11 Pointer type conversions [HFC]

6.11.1 Description of application vulnerability

The code produced for access via a data or function pointer requires that the type of the pointer is appropriate
for the data or function being accessed. Otherwise undefined behaviour can occur. Specifically, “access via a data
pointer” is defined to be “fetch or store indirectly through that pointer” and “access via a function pointer” is
defined to be “invocation indirectly through that pointer.” The detailed requirements for what is meant by the
“appropriate” type may vary among languages.

Even if the type of the pointer is appropriate for the access, erroneous pointer operations can still cause a fault.
6.11.2 Cross reference

CWE:
136. Type Errors
188. Reliance on Data/Memory Layout
JSF AV Rules: 182 and 183
MISRA C 2012:11.1-11.8
MISRA C++ 2008: 5-2-2 to 5-2-9
CERT C guidelines: INT11-C and EXP36-A
Hatton 13: Pointer casts
Ada Quality and Style Guide: 7.6.7 and 7.6.8
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6.11.3 Mechanism of failure

If a pointer’s type is not appropriate for the data or function being accessed, data can be corrupted or privacy can
be broken by inappropriate read or write operation using the indirection provided by the pointer value. With a
suitable type definition, large portions of memory can be maliciously or accidentally modified or read. Such
modification of data objects will generally lead to value faults of the application. Modification of code elements
such as function pointers or internal data structures for the support of object-orientation can affect control flow.
This can make the code susceptible to targeted attacks by causing invocation via a pointer-to-function that has
been manipulated to point to an attacker’s malicious code.

6.11.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e Pointers (and/or references) can be converted to different pointer (and/or reference) types.
e Pointers to functions can be converted to pointers to data.

6.11.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Treat the compiler’s pointer-conversion warnings as serious errors.

e Adopt programming guidelines (preferably augmented by static analysis) that restrict pointer conversions.
For example, consider the rules itemized above from JSF AV [15], CERT C [11], Hatton [18], or MISRA C
[12].

e Use other means of assurance such as proofs of correctness, analysis with tools, verification techniques,
or other methods to check that pointer conversions do not lead to later undefined behaviour.

6.11.6 Implications for language design and evolution

In future language design and evolution activities, the following items should be considered:

e lLanguages should consider creating a mode that provides a runtime check of the validity of all accessed
objects before the object is read, written or executed.

6.12 Pointer arithmetic [RVG]
6.12.1 Description of application vulnerability

Using pointer arithmetic incorrectly can result in addressing arbitrary locations, which in turn can cause a program
to behave in unexpected ways.

6.12.2 Cross reference

JSF AV Rule: 215

MISRA C 2012: 18.1-18.4

MISRA C++ 2008: 5-0-15 to 5-0-18
CERT C guidelines: EXP08-C
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6.12.3 Mechanism of failure

Pointer arithmetic used incorrectly can produce:

e Addressing arbitrary memory locations, including buffer underflow and overflow.
e Arbitrary code execution.
e Addressing memory outside the range of the program.

6.12.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages that allow pointer arithmetic.

6.12.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Avoid using pointer arithmetic for accessing anything except composite types.
e Prefer indexing for accessing array elements rather than using pointer arithmetic.
e Limit pointer arithmetic calculations to the addition and subtraction of integers.

6.12.6 Implications for language design and evolution
[None]

6.13 Null pointer dereference [XYH]
6.13.1 Description of application vulnerability

A null-pointer dereference takes place when a pointer with a value of NULL is used as though it pointed to a valid
memory location. This is a special case of accessing storage via an invalid pointer.

6.13.2 Cross reference

CWE:
476. NULL Pointer Dereference
JSF AV Rule 174
CERT C guidelines: EXP34-C
Ada Quality and Style Guide: 5.4.5

6.13.3 Mechanism of failure

When a pointer with a value of NULL is used as though it pointed to a valid memory location, then a null-pointer
dereference is said to take place. This can result in a segmentation fault, unhandled exception, or accessing
unanticipated memory locations.
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6.13.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages that permit the use of pointers and that do not check the validity of the location being
accessed prior to the access.
e lLanguages that allow the use of a NULL pointer.

6.13.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
e Before dereferencing a pointer, ensure it is not equal to NULL.

6.13.6 Implications for language design and evolution

In future language design and evolution activities, the following items should be considered:

e Alanguage feature that would check a pointer value for NULL before performing an access should be
considered.

6.14 Dangling reference to heap [XYK]

6.14.1 Description of application vulnerability

A dangling reference is a reference to an object whose lifetime has ended due to explicit deallocation or the stack
frame in which the object resided has been freed due to exiting the dynamic scope. The memory for the object
may be reused; therefore, any access through the dangling reference may affect an apparently arbitrary location
of memory, corrupting data or code.

This description concerns the former case, dangling references to the heap. The description of dangling

references to stack framesgcan be found in 6.33 Dangling reference to stack frame [DCM]. In many languages { Deleted: is

references are called pointers; the issues are identical.

A notable special case of using a dangling reference is calling a deallocator, for example, free (), twice on the
same pointer value. Such a “Double Free” may corrupt internal data structures of the heap administration,
leading to faulty application behaviour (such as infinite loops within the allocator, returning the same memory
repeatedly as the result of distinct subsequent allocations, or deallocating memory legitimately allocated to
another request since the first free () call, to name but a few), or it may have no adverse effects at all.

Memory corruption through the use of a dangling reference is among the most difficult errors to locate. { Deleted: of

With sufficient knowledge about the heap management scheme (often provided by the OS (Operating System) or
run-time system), use of dangling references is an exploitable vulnerability, since the dangling reference provides
a method with which to read and modify valid data in the designated memory locations after freed memory has
been re-allocated by subsequent allocations.
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6.14.2 Cross reference

CWE:
415. Double Free (Note that Double Free (415) is a special case of Use After Free (416))
416. Use After Free

MISRA C 2012: 18.1-18.6

MISRA C++ 2008: 0-3-1, 7-5-1, 7-5-2, 7-5-3, and 18-4-1

CERT C guidelines: MEMO01-C, MEM30-C, and MEM31.C

Ada Quality and Style Guide: 5.4.5, 7.3.3, and 7.6.6

6.14.3 Mechanism of failure

The lifetime of an object is the portion of program execution during which storage is guaranteed to be reserved
for it. An object exists and retains its last-stored value throughout its lifetime. If an object is referred to outside of
its lifetime, the behaviour is undefined. Explicit deallocation of heap-allocated storage ends the lifetime of the
object residing at this memory location (as does leaving the dynamic scope of a declared variable). The value of a
pointer becomes indeterminate when the object it points to reaches the end of its lifetime. Such pointers are
called dangling references.

The use of dangling references to previously freed memory can have any number of adverse consequences —
ranging from the corruption of valid data to the execution of arbitrary code, depending on the instantiation and
timing of the deallocation causing all remaining copies of the reference to become dangling, of the system's reuse
of the freed memory, and of the subsequent usage of a dangling reference.

Like memory leaks and errors due to double de-allocation, the use of dangling references has two common and
sometimes overlapping causes:

e An error condition or other exceptional circumstances that unexpectedly cause an object to become
undefined.
e Developer confusion over which part of the program is responsible for freeing the memory.

If a pointer to previously freed memory is used, it is possible that the referenced memory has been reallocated.
Therefore, assignment using the original pointer has the effect of changing the value of an unrelated variable. This
induces unexpected behaviour in the affected program. If the newly allocated data happens to hold a class
description, in an object-oriented language for example, various function pointers may be scattered within the
heap data. If one of these function pointers is overwritten with an address of malicious code, execution of
arbitrary code can be achieved.

6.14.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages that permit the use of pointers and that permit explicit deallocation by the developer or
provide for alternative means to reallocate memory still pointed to by some pointer value.

e Languages that permit definitions of constructs that can be parameterized without enforcing the
consistency of the use of parameter at compile time.
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6.14.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Use an implementation that checks whether a pointer is used that designates a memory location that has
already been freed.

e Use a coding style that does not permit deallocation.

e In complicated error conditions, be sure that clean-up routines respect the state of allocation properly. If
the language is object-oriented, ensure that object destructors delete each chunk of memory only once.
Ensuring that all pointers are set to NULL once the memory they point to have been freed can be an
effective strategy. The utilization of multiple or complex data structures may lower the usefulness of this
strategy.

e Use a static analysis tool that is capable of detecting some situations when a pointer is used after the
storage it refers to is no longer a pointer to valid memory location.

e Memory should be allocated and freed at the same level of abstraction, and ideally in the same code
moduleZ,

6.14.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Implementations of the free function could tolerate multiple frees on the same reference/pointer or frees
of memory that was never allocated.

e Language specifiers should design generics in such a way that any attempt to instantiate a generic with
constructs that do not provide the required capabilities results in a compile-time error.

e For properties that cannot be checked at compile time, language specifiers should provide an assertion
mechanism for checking properties at run-time. It should be possible to inhibit assertion checking if
efficiency is a concern.

e Astorage allocation interface should be provided that will allow the called function to set the pointer
used to NULL after the referenced storage is deallocated.

6.15 Arithmetic wrap-around error [FIF]

6.15.1 Description of application vulnerability

Wrap-around errors can occur whenever a value is incremented past the maximum or decremented past the
minimum value representable in its type and, depending upon

e whether the type is signed or unsigned,

e the specification of the language semantics and/or jmplementation choices, - { Moved (insertion) [1]

e wraps around" to an unexpected value. { Formatted: Space After: 0 pt

[ Moved up [1]: implementation choices,

Allocating and freeing memory in different modules and levels of abstraction burdens the programmer with tracking the lifetime of
that block of memory. This may cause confusion regarding when and if a block of memory has been allocated or freed, leading to
programming defects such as double-free vulnerabilities, accessing freed memory, or dereferencing NULL pointers or pointers that
are not initialized.
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" This vulnerability is related to 6.16 Using shift operations for multiplication and division [PIK]3.

{ Deleted: wraps around" to an unexpected value.

6.15.2 Cross reference

CWE:

128. Wrap-around Error

190. Integer Overflow or Wraparound
JSF AV Rules: 164 and 15
MISRA C 2012: 7.2, 10.1, 10.3, 10.4, 10.6, 10.7, and 12.4
MISRA C++ 2008: 2-13-3, 5-0-3 to 5-0-10, and 5-19-1
CERT C guidelines: INT30-C, INT32-C, and INT34-C

6.15.3 Mechanism of failure

Due to how arithmetic is performed by computers, if a variable’s value is increased past the maximum value
representable in its type, the system may fail to provide an overflow indication to the program. One of the most
common processor behaviour is to “wrap” to a very large negative value, or set a condition flag for overflow or
underflow, or saturate at the largest representable value.

Wrap-around often generates an unexpected negative value; this unexpected value may cause a loop to continue
for a long time (because the termination condition requires a value greater than some positive value) or an array
bounds violation. A wrap-around can sometimes trigger buffer overflows that can be used to execute arbitrary
code.

It should be noted that the precise consequences of wrap-around differ depending on:
e Whether the type is signed or unsigned.
e Whether the type is a modulus type.
e Whether the type’s range is violated by exceeding the maximum representable value or falling short of
the minimum representable value.

e The semantics of the language specification.
e Implementation decisions.

However, in all cases, the resulting problem is that the value yielded by the computation may be unexpected.
6.15.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
e Languages that do not trigger an exception condition when a wrap-around error occurs.
6.15.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

3 This description is derived from Wrap-Around Error [XYY], which appeared in Edition 1 of this international technical report.
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e Determine applicable upper and lower bounds for the range of all variables and use language mechanisms
or static analysis to determine that values are confined to the proper range.
e Analyze the software using static analysis looking for unexpected consequences of arithmetic operations.

6.15.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:
e Language standards developers should consider providing facilities to specify either an error, a saturated
value, or a modulo result when numeric overflow occurs. Ideally, the selection among these alternatives

could be made by the programmer.

6.16 Using shift operations for multiplication and division [PIK]

6.16.1 Description of application vulnerability

Using shift operations as a surrogate for multiply or divide may produce an unexpected value when the sign bit is
changed or when value bits are lost. This vulnerability is related to 6.15 Arithmetic wrap-around error [FIFJ.

[ Formatted: Font:Italic, Underline, Font color: Blue

)

6.16.2 Cross reference

CWE:

128. Wrap-around Error

190. Integer Overflow or Wraparound
JSF AV Rules: 164 and 15
MISRA C 2012: 7.2, 10.1, 10.3, 10.4, 10.6, 10.7, and 12.4
MISRA C++ 2008: 2-13-3, 5-0-3 to 5-0-10, and 5-19-1
CERT C guidelines: INT30-C, INT32-C, and INT34-C

6.16.3 Mechanism of failure

Shift operations intended to produce results equivalent to multiplication or division fail to produce correct results
if the shift operation affects the sign bit or shifts significant bits from the value.

Such errors often generate an unexpected negative value; this unexpected value may cause a loop to continue for
a long time (because the termination condition requires a value greater than some positive value) or an array
bounds violation. The error can sometimes trigger buffer overflows that can be used to execute arbitrary code.

6.16.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e lLanguages that permit logical shift operations on variables of arithmetic type.

4 This description is derived from Wrap-Around Error [XYY], which appeared in Edition 1 of this international technical report.
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6.16.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Determine applicable upper and lower bounds for the range of all variables and use language mechanisms
or static analysis to determine that values are confined to the proper range.

e Analyze the software using static analysis looking for unexpected consequences of shift operations.

e Avoid using shift operations as a surrogate for multiplication and division. Most compilers will use the
correct operation in the appropriate fashion when it is applicable.

6.16.6 Implications for language design and evolution

In future language design and evolution activities, the following items should be considered:
e Not providing logical shifting on arithmetic values or flagging it for reviewers.

6.17 Choice of clear names [NAI].

6.17.1 Description of application vulnerability

Humans sometimes choose similar or identical names for objects, types, aggregates of types, subprograms and
modules. They tend to use characteristics that are specific to the native language of the software developer to aid
in this effort, such as use of mixed-casing, underscores and periods, or use of plural and singular forms to support
the separation of items with similar names. Similarly, development conventions sometimes use casing for
differentiation (for example, all uppercase for constants).

Human cognitive problems occur when different (but similar) objects, subprograms, types, or constants differ in
name so little that human reviewers are unlikely to distinguish between them, or when the system maps such
entities to a single entity.

Conventions such as the use of capitalization, and singular/plural distinctions may work in small and medium
projects, but there are a number of significant issues to be considered:

e Large projects often have mixed languages and such conventions are often language-specific.

e Many implementations support identifiers that contain international character sets and some language
character sets have different notions of casing and plurality.

e Different word-forms tend to be language and dialect specific, such as a pidgin, and may be meaningless
to humans that speak other dialects.

An important general issue is the choice of names that differ from each other negligibly (in human terms), for

example by differing by only underscores, (none, and

"), plurals ("s"), visually similar characters (such as
"1","0" and "0"), or underscores/dashes ("-","_"). [There is also an issue where identifiers appear distinct to a
human but identical to the computer, such as FOO, Foo, and foo in some computer languages.] Character sets
extended with diacritical marks and non-Latin characters may offer additional problems. Some languages or their

implementations may pay attention to only the first n characters of an identifier.

The problems described above are different from overloading or overriding where the same name is used
intentionally (and documented) to access closely linked sets of subprograms. This is also different than using
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reserved names which can lead to a conflict with the reserved use and the use of which may or may not be
detected at compile time.

Name confusion can lead to the application executing different code or accessing different objects than the writer
intended, or than the reviewers understood. This can lead to outright errors, or leave in place code that may
execute sometime in the future with unacceptable consequences.

Although most such mistakes are unintentional, it is plausible that such usages can be intentional, if masking
surreptitious behaviour is a goal.

6.17.2 Cross reference

JSF AV Rules: 48, 49, 50, 51,52
MISRA C 2012: 1.1

CERT C guidelines: DCL02-C

Ada Quality and Style Guide: 3.2

6.17.3 Mechanism of Failure

Calls to the wrong subprogram or references to the wrong data element (that was missed by human review) can
result in unintended behaviour. Language processors will not make a mistake in name translation, but human
cognition limitations may cause humans to misunderstand, and therefore may be missed in human reviews.

6.17.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages with relatively flat name spaces will be more susceptible. Systems with modules, classes,
packages can use qualification to disambiguate names that originate from different parents.

e Languages that provide preconditions, post conditions, invariances and assertions or redundant coding of
subprogram signatures help to ensure that the subprograms in the module will behave as expected, but
do nothing if different subprograms are called.

e lLanguages that treat letter case as significant. Some languages do not differentiate between names with
differing case, while others do.

6.17.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Use static analysis tools to show the target of calls and accesses and to produce alphabetical lists of
names. Human review can then often spot the names that are sorted at an unexpected location or which
look almost identical to an adjacent name in the list.

e Use languages with a requirement to declare names before use or use available tool or compiler options
to enforce such a requirement.

e Do not choose names that conflict with (unreserved) keywords or language-defined library names for the
language being used.
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e Do not use names that only differ by characters that may be confused visually in the alphabet used in
development. For the Roman alphabet these would include as ‘O’ and ‘0’, ‘I’ (lower case ‘L’), ‘I’ (capital ‘')
and ‘1’, ‘S’ and ‘5’, ‘2’ and ‘2, and ‘n’ and ‘h’.

e Do not use names that only differ in the use of upper and lower case to other names

6.17.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Languages that do not require declarations of names should consider providing an option that does
impose that requirement.

6.18 Dead store [WXQ]
6.18.1 Description of application vulnerability

A variable's value is assigned but never subsequently used, either because the variable is not referenced again, or
because a second value is assigned before the first is used. This may suggest that the design has been
incompletely or inaccurately implemented, for example, a value has been created and then ‘forgotten about’.

This vulnerability is very similar to 6.19 Unused variable [YZS], | [ Deleted: 6.19 Unused variable [YZ5]6.19 Unused variable [YZS] ]

| [ Formatted: Font:Italic, Underline, Font color: Blue ]
6.18.2 Cross reference [ Formatted: Font:Italic, Underline, Font color: Blue J
CWE:

563. Unused Variable
MISRA C++ 2008: 0-1-4 and 0-1-6
CERT C guidelines: MSC13-C

See also 6.19 Unused variable [YZS] | [ Formatted: Font:Italic, Underline, Font color: Blue ]
I | [ Deleted: 6.19 Unused variable [YZ5]6.19 Unused variable [YZS] J
6. 18.3 Mechanism of failure [ Formatted: Font:Italic, Underline, Font color: Blue J

A variable is assigned a value but this is never subsequently used. Such an assignment is then generally referred to
as a dead store.

A dead store may be indicative of careless programming or of a design or coding error; as either the use of the
value was forgotten (almost certainly an error) or the assignment was performed even though it was not needed
(at best inefficient). Dead stores may also arise as the result of mistyping the name of a variable, if the mistyped
name matches the name of a variable in an enclosing scope.

There are legitimate uses for apparent dead stores. For example, the value of the variable might be intended to

be read by another execution thread or an external device. In such cases, though, the variable should be marked
as volatile. Common compiler optimization techniques will remove apparent dead stores if the variables are not
marked as volatile, hence causing incorrect execution.

A dead store is justifiable if, for example:
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e The code has been automatically generated, where it is commonplace to find dead stores introduced to
keep the generation process simple and uniform.

e The code is initializing a sparse data set, where all members are cleared, and then selected values
assigned a value.

6.18.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
e Any programming language that provides assignment.

6.18.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Use static analysis to identify any dead stores in the program, and ensure that there is a justification for
them.

o If variables are intended to be accessed by other execution threads or external devices, mark them as
volatile.

e Avoid declaring variables of compatible types in nested scopes with similar names.

e For security, assign zero (or some other information free value) after the last intended read.

6.18.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Languages should consider providing optional warning messages for dead store.

6.19 Unused variable [YZS]

6.19.1 Description of application vulnerability

An unused variable is one that is declared but neither read nor written in the program. This type of error suggests
that the design has been incompletely or inaccurately implemented.

Unused variables by themselves are innocuous, but they may provide memory space that attackers could use in
combination with other techniques.

This vulnerability is similar to 6.18 Dead store [WXQ] if the variable is initialized but never used.

[ Deleted: 6.18 Dead store [WXQ]6.18 Dead store [WXQ]

6.19.2 Cross reference

CWE:

563. Unused Variable
MISRA C++ 2008: 0-1-3
CERT C guidelines: MSC13-C
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6.19.3 Mechanism of failure

A variable is declared, but never used. The existence of an unused variable may indicate a design or coding error.

Because compilers routinely diagnose unused local variables, their presence may be an indication that compiler
warnings are either suppressed or are being ignored.

While unused variables are innocuous, they may provide available memory space to be used by attackers to
exploit other vulnerabilities.

6.19.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
e Languages that provide variable declarations.

6.19.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Enable detection of unused variables in the compiler.
e Use static analysis to identify any unused variables in the program, and ensure that there is a justification
for them.

6.19.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:
e Languages should consider requiring mandatory diagnostics for unused variables.

6.20 Identifier name reuse [YOW]

6.20.1 Description of application vulnerability

When distinct entities are defined in nested scopes using the same name it is possible that program logic will
operate on an entity other than the one intended.

When it is not clear which identifier is used, the program could behave in ways that were not predicted by reading
the source code. This can be found by testing, but circumstances can arise (such as the values of the same-named
objects being mostly the same) where harmful consequences occur. This weakness can also lead to vulnerabilities
such as hidden channels where humans believe that important objects are being rewritten or overwritten when in
fact other objects are being manipulated.

For example, the innermost definition is deleted from the source, the program will continue to compile without a
diagnostic being issued (but execution can produce unexpected results).

6.20.2 Cross reference

JSF AV Rules: 120, 135, 136 and 137,

© ISO/IEC 2013 — All rights reserved 51



WG 23/N 0751

MISRA C 2012:5.3,5.8,5.9, 21.1, 21.2

MISRA C++ 2008: 2-10-2, 2-10-3, 2-10-4, 2-10-5, 2-10-6, 17-0-1, 17-0-2, and 17-0-3
CERT C guidelines: DCLO1-C and DCL32-C

Ada Quality and Style Guide: 5.6.1 and 5.7.1

6.20.3 Mechanism of failure

Many languages support the concept of scope. One of the ideas behind the concept of scope is to provide a
mechanism for the independent definition of identifiers that may share the same name.

For instance, in the following code fragment:

int some_ var;
{
int t var;
int some_var; /* definition in nested scope */

t_var = 3;

some var 2;

an identifier called some_var has been defined in different scopes.

If either the definition of some_var or t var that occurs in the nested scope is deleted (for example, when the
source is modified) it is necessary to delete all other references to the identifier’s scope. If a developer deletes the
definition of t _var but fails to delete the statement that references it, then most languages require a diagnostic
to be issued (such as reference to undefined variable). However, if the nested definition of some var is deleted

but the reference to it in the nested scope is not deleted, then no diagnostic will be issued (because the reference
resolves to the definition in the outer scope).

In some cases non-unique identifiers in the same scope can also be introduced through the use of identifiers
whose common substring exceeds the length of characters the implementation considers to be distinct. For
example, in the following code fragment:

extern int global symbol definition lookup table a[100];
extern int global symbol definition_lookup table b[100];

the external identifiers are not unique on implementations where only the first 31 characters are significant. This
situation only occurs in languages that allow multiple declarations of the same identifier (other languages require
a diagnostic message to be issued).

A related problem exists in languages that allow overloading or overriding of keywords or standard library
function identifiers. Such overloading can lead to confusion about which entity is intended to be referenced.

Definitions for new identifiers should not use a name that is already visible within the scope containing the new
definition. Alternately, utilize language-specific facilities that check for and prevent inadvertent overloading of
names should be used.
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6.20.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

Languages that allow the same name to be used for identifiers defined in nested scopes.
Languages where unique names can be transformed into non-unique names as part of the normal tool
chain.

6.20.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Ensure that a definition of an entity does not occur in a scope where a different entity with the same
name is accessible and can be used in the same context. A language-specific project coding convention
can be used to ensure that such errors are detectable with static analysis.

Ensure that a definition of an entity does not occur in a scope where a different entity with the same
name is accessible and has a type that permits it to occur in at least one context where the first entity can
occur.

Use language features, if any, which explicitly mark definitions of entities that are intended to hide other
definitions.

Develop or use tools that identify name collisions or reuse when truncated versions of names cause
conflicts.

Ensure that all identifiers differ within the number of characters considered to be significant by the
implementations that are likely to be used, and document all assumptions.

6.20.6 Implications for language design and evolution

In future language design and evolution activities, the following items should be considered:

Languages should require mandatory diagnostics for variables with the same name in nested scopes.
Languages should require mandatory diagnostics for variable names that exceed the length that the
implementation considers unique.

Languages should consider requiring mandatory diagnostics for overloading or overriding of keywords or
standard library function identifiers.

6.21 Namespace issues [B]JL]

6.21.1 Description of Application Vulnerability

If a language provides separate, non-hierarchical namespaces, a user-controlled ordering of namespaces, and a

means to make names declared in these namespaces directly visible to an application, the potential of
unintentional and possible disastrous change in application behaviour can arise, when names are added to a

namespace during maintenance.

Namespaces include constructs like packages, modules, libraries, classes or any other means of grouping

declarations for import into other program units.
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6.21.2 Cross references
MISRA C++ 2008: 7-3-1, 7-3-3, 7-3-5, 14-5-1, and 16-0-2
6.21.3 Mechanism of Failure

The failure is best illustrated by an example. Namespace N1 provides the name A, but not B. Namespace N2
provides the name B but not A. The application wishes to use A from N1 and B from N2. At this point, there are
no obvious issues. The application chooses (or needs) to import both namespaces to obtain names for direct
usage, for an example.

Use N1, N2; — presumed to make all names in N1 and N2 directly visible in the scope of intended use
. X = A + B;
The semantics of the above example are intuitive and unambiguous.

Later, during maintenance, the name B is added to N1. The change to the namespace usually implies a
recompilation of dependent units. At this point, two declarations of B are applicable for the use of B in the above

example.

Some languages try to disambiguate the above situation by stating preference rules in case of such ambiguity
among names provided by different name spaces. If, in the above example, N1 is preferred over N2, the meaning
of the use of B changes silently, presuming that no typing error arises. Consequently, the semantics of the
program change silently and assuredly unintentionally, since the implementer of N1 cannot assume that all users
of N1 would prefer to take any declaration of B from N1 rather than its previous namespace.

It does not matter what the preference rules actually are, as long as the namespaces are mutable. The above

example is easily extended by adding A to N2 to show a symmetric error situation for a different precedence rule.

If a language supports overloading of subprograms, the notion of “same name” used in the above example is
extended to mean not only the same name, but also the same signature of the subprogram. For vulnerabilities
associated with overloading and overriding, see 6.20 Identifier name reuse [YOW], In the context of namespaces,

[ Formatted: Font:Italic, Underline, Font color: Blue

however, adding signature matching to the name binding process, merely extends the described problem from
simple names to full signatures, but does not alter the mechanism or quality of the described vulnerability. In
particular, overloading does not introduce more ambiguity for binding to declarations in different name spaces.
This vulnerability not only creates unintentional errors, but it also can be exploited maliciously, if the source of
the application and of the namespaces is known to the aggressor and one of the namespaces is mutable by the
attacker.

6.21.4 Applicable Language Characteristics
The vulnerability is applicable to languages with the following characteristics:

e Languages that support non-hierarchical separate name-spaces have means to import all names of a
namespace “wholesale” for direct use, and have preference rules to choose among multiple imported
direct homographs. All three conditions need to be satisfied for the vulnerability to arise.
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6.21.5 Avoiding the Vulnerability or Mitigating its Effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Avoid “wholesale” import directives, i.e. directives that give all imported names the same visibility level as
each other and/or the same visibility level as local names (provided that the language offers the
respective capabilities);

e Use only selective “single name” import directives or using fully qualified names (provided that the
language offers the respective capabilities)

6.21.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Languages should not have preference rules among mutable namespaces. Ambiguities should be invalid
and avoidable by the user, for example, by using names qualified by their originating namespace.

6.22 Initialization of variables [LAV]
6.22.1 Description of application vulnerability

Reading a variable that has not been assigned a value appropriate to its type can cause unpredictable execution in
the block that uses the value of that variable, and has the potential to export bad values to callers, or to cause
out-of-bounds memory accesses.

Uninitialized variable usage is frequently not detected until after testing and often when the code in question is
delivered and in use, because happenstance will provide variables with adequate values (such as default data
settings or accidental left-over values) until some other change exposes the defect.

Variables that are declared during module construction (by a class constructor, instantiation, or elaboration) may
have alternate paths that can read values before they are set. This can happen in straight sequential code but is
more prevalent when concurrency or co-routines are present, with the same impacts described above.

Another vulnerability occurs when compound objects are initialized incompletely, as can happen when objects
are incrementally built, or fields are added under maintenance.

When possible and supported by the language, whole-structure initialization is preferable to field-by-field
initialization statements, and named association is preferable to positional, as it facilitates human review and is
less susceptible to error injection under maintenance. For classes, the declaration and initialization may occur in
separate modules. In such cases it must be possible to show that every field that needs an initial value receives
that value, and to document ones that do not require initial values.

6.22.2 Cross reference

CWE:

457. Use of Uninitialized Variable
JSF AV Rules: 71, 143, and 147
MISRA C 2012:9.1,9.2,and 9.3
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MISRA C++2008: 8-5-1
CERT C guidelines: DCL14-C and EXP33-C
Ada Quality and Style Guide: 5.9.6

6.22.3 Mechanism of failure

Uninitialized objects may have invalid values, valid but wrong values, or valid and dangerous values. Wrong values
could cause unbounded branches in conditionals or unbounded loop executions, or could simply cause wrong
calculations and results.

There is a special case of pointers or access types. When such a type contains null values, a bound violation and
hardware exception can result. When such a type contains plausible but meaningless values, random data reads
and writes can collect erroneous data or can destroy data that is in use by another part of the program; when
such a type is an access to a subprogram with a plausible (but wrong) value, then either a bad instruction trap
may occur or a transfer to an unknown code fragment can occur. All of these scenarios can result in undefined
behaviour.

Uninitialized variables are difficult to identify and use for attackers, but can be arbitrarily dangerous in safety
situations.

The general problem of showing that all program objects are initialized is intractable;

6.22.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
e languages that permit variables to be read before they are assigned.

6.22.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Carefully structure programs to show that all variables are set before first read on every path throughout
each subprogram.

e When an object is visible from multiple modules, identify a module that must set the value before reads
can occur from any other module that can access the object, and ensure that this module is executed
first.

e When concurrency, interrupts and co-routines are present, identify where early initialization occurs and
show that the correct order is set via program structure, not by timing, OS precedence, or chance.

e Initialize each object at elaboration time, or immediately after subprogram execution commences and
before any branches.

e If the subprogram must commence with conditional statements, show that every variable declared and
not initialized earlier is initialized on each branch.

e Ensure that the initial object value is a sensible value for the logic of the program. The so-called "junk
initialization" (such as, for example, setting every variable to zero) prevents the use of tools to detect
otherwise uninitialized variables.
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e Define or reserve fields or portions of the object to only be set when fully initialized. Consider, however,
that this approach has the effect of setting the variable to possibly mistaken values while defeating the
use of static analysis to find the uninitialized variables.

e Use static analysis tools to show that all objects are set before use. As the general problem is intractable,
keep initialization algorithms simple so that they can be analyzed.

e When declaring and initializing the object together, if the language does not require the compiler to
statically verify that the declarative structure and the initialization structure match, use static analysis
tools to help detect any mismatches.

e When setting compound objects, if the language provides mechanisms to set all components together, use
those in preference to a sequence of initializations as this facilitates coverage analysis; otherwise use tools
that perform such coverage analysis and document the initialization. Do not perform partial initializations
unless there is no choice, and document any deviations from full initialization.

e Where default assighments of multiple components are performed, explicit declaration of the component
names and/or ranges helps static analysis and identification of component changes during maintenance.

e Use named assignments in preference to positional assignment where the language has named
assignments that can be used to build reviewable assignment structures that can be analyzed by the
language processor for completeness. Use comments and secondary tools to help show correct
assignment where the language only supports positional assighment notation.

6.22.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Some languages have ways to determine if modules and regions are elaborated and initialized and to
raise exceptions if this does not occur. Languages that do not, could consider adding such capabilities.

e Languages could consider setting aside fields in all objects to identify if initialization has occurred,
especially for security and safety domains.

e Languages that do not support whole-object initialization, could consider adding this capability.

6.23 Operator precedence and associativity [JCW]
6.23.1 Description of application vulnerability

Each language provides rules of precedence and associativity, for each expression that operands bind to which
operators. These rules are also known as “grouping” or “binding”.

Experience and experimental evidence shows that developers can have incorrect beliefs about the relative
precedence of many binary operators. See, Developer beliefs about binary operator precedence. C Vu, 18(4):14-
21, August 2006

6.23.2 Cross reference

JSF AV Rules: 204 and 213

MISRA C 2012: 10.1, 12.1, 13.2, 14.4, 20.7, 20.10, and 20.11

MISRA C++ 2008: 4-5-1, 4-5-2, 4-5-3, 5-0-1, 5-0-2, 5-2-1, 5-3-1, 16-0-6, 16-3-1, and 16-3-2
CERT C guidelines: EXPOO-C
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Ada Quality and Style Guide: 7.1.8 and 7.1.9
6.23.3 Mechanism of failure

In C and C++, the bitwise operators (bitwise logical and bitwise shift) are sometimes thought of by the
programmer having similar precedence to arithmetic operations, so just as one might correctly write “x - 1 ==
0” (“x minus one is equal to zero”), a programmer might erroneously write “x & 1 == 0”, mentally meaning
“x and-ed with 1 is equal to zero”, whereas the operator precedence rules of C and C++ actually bind the
expression as “compute 1==0, producing ‘false’ interpreted as zero, then bitwise-and the result with x”,
producing (a constant) zero, contrary to the programmer’s intent.

Examples from an opposite extreme can be found in programs written in APL, which is noteworthy for the
absence of any distinctions of precedence. One commonly made mistake is to write “a * b + c”, intending to
produce “a times b plus c”, whereas APL’s uniform right-to-left associativity produces “b plus c, times a”.

6.23.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages whose precedence and associativity rules are sufficiently complex that developers may not
fully remember them.

6.23.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Adopt programming guidelines (preferably augmented by static analysis). For example, use the language-
specific rules cross-referenced in 6.24.2.

e Use parentheses around binary operator combinations that are known to be a source of error (for
example, mixed arithmetic/bitwise and bitwise/relational operator combinations).

e Break up complex expressions and use temporary variables to make the intended order clearer.

6.23.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Language definitions should avoid providing precedence or a particular associativity for operators that are
not typically ordered with respect to one another in arithmetic, and instead require full parenthesization
to avoid misinterpretation.

6.24 Side-effects and order of evaluation of operands [SAM]
6.24.1 Description of application vulnerability

Some programming languages allow subexpressions to cause side-effects (such as assignment, increment, or
decrement). For example, some programming languages permit such side-effects, and if, within one expression
(suchas“i = v[i++]"), two or more side-effects modify the same object, undefined behaviour results.
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Some languages allow subexpressions to be evaluated in an unspecified ordering, or even removed during
optimization. If these subexpressions contain side-effects, then the value of the full expression can be dependent
upon the order of evaluation. Furthermore, the objects that are modified by the side-effects can receive values
that are dependent upon the order of evaluation.

If a program contains these unspecified or undefined behaviours, testing the program and seeing that it yields the
expected results may give the false impression that the expression will always yield the expected result.

6.24.2 Cross reference

JSF AV Rules: 157, 158, 204, 204.1, and 213
MISRA C 2012: 12.1, 13.2,13.5 and 13.6
MISRA C++ 2008: 5-0-1

CERT C guidelines: EXP10-C, EXP30-C

Ada Quality and Style Guide: 7.1.8 and 7.1.9

6.24.3 Mechanism of failure

When subexpressions with side effects are used within an expression, the unspecified order of evaluation can
result in a program producing different results on different platforms, or even at different times on the same
platform.

(All examples here use the syntax of C or Java for brevity; the effects can be created in any language that allows
functions with side-effects in the places where C allows the increment operations.)

Consider
a = f(b) + g(b);

where f and g both modify b. If £ (b) is evaluated first, then the b used as a parameter to g (b) may be a
different value than if g (b) is performed first. Likewise, if g (b) is performed first, £ (b) may be called with a
different value of b.

Other examples of unspecified order, or even undefined behaviour, can be manifested, such as
a = f£(i) + i++;

or
afi++] = b[i++];

Parentheses around expressions can assist in removing ambiguity about grouping, but the issues regarding side-
effects and order of evaluation are not changed by the presence of parentheses. Consider

J o= i++ * i4+;

where even if parentheses are placed around the i++ subexpressions: undefined behaviour still remains.
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The unpredictable nature of the calculation means that the program cannot be tested adequately to any degree
of confidence. A knowledgeable attacker can take advantage of this characteristic to manipulate data values
triggering execution that was not anticipated by the developer.

6.24.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages that permit expressions to contain subexpressions with side effects.

e Languages whose subexpressions are computed in an unspecified ordering.
6.24.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Make use of one or more programming guidelines, which (a) prohibit these unspecified or undefined
behaviours, and (b) can be enforced by static analysis. (See JSF AV and MISRA rules in Cross reference
clause [SAM])

e Keep expressions simple. Complicated code is prone to error and difficult to maintain.

e Ensure that each expression results in the same value, regardless of the order of evaluation or execution
of terms of the expression.

6.24.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

o In developing new or revised languages, give consideration to language features that will eliminate or
mitigate this vulnerability, such as pure functions.

6.25 Likely incorrect expression [KOA]
6.25.1 Description of application vulnerability

Certain expressions are symptomatic of what is likely to be a mistake made by the programmer. The statement is
not contrary to the language standard, but is unlikely to be intended. The statement may have no effect and
effectively is a null statement or may introduce an unintended side-effect. A common example is the use of = in
an if expression in C-based languages where the programmer meant to do an equality test using the ==
operator. Other easily confused operators in C-based languages are the logical operators such as & & for the
bitwise operator &, or vice versa. It is valid and possible that the programmer intended to do an assignment
within the i f expression, but due to this being a common error, a programmer doing so would be using a poor
programming practice. A less likely occurrence, but still possible is the substitution of == for = in what is
supposed to be an assignment statement, but which effectively becomes a null statement. These mistakes may
survive testing only to manifest themselves in deployed code where they may be maliciously exploited.

6.25.2 Cross reference

CWE:
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480. Use of Incorrect Operator
481. Assigning instead of Comparing
482. Comparing instead of Assigning
570. Expression is Always False
571. Expression is Always True
JSF AV Rules: 160
MISRA C 2012: 2.2, 13.3-13.6, and 14.3
MISRA C++ 2008: 0-1-9, 5-0-1, 6-2-1, and 6-5-2
CERT C guidelines: MSC02-C and MSC03-C

6.25.3 Mechanism of failure

Some of the failures are simply a case of programmer carelessness. Substitution of = in place of == in a Boolean
test is easy to do and most C and C++ programmers have made this mistake at one time or another. Other
instances can be the result of intricacies of the language definition that specifies what part of an expression must
be evaluated. For instance, having an assignment expression in a Boolean statement is likely assuming that the
complete expression will be executed in all cases. However, this is not always the case as sometimes the truth-
value of the Boolean expression can be determined after only executing some portion of the expression. For
instance:

if ((a == Db) [l (c = (d-1)))

Should (a==b) be determined to be true, then there is no need for the subexpression (c=(d-1)) to be
executed and as such, the assignment (c=(d-1)) will not occur.

Embedding expressions in other expressions can yield unexpected results. Increment and decrement operators
(++ and —-) can also yield unexpected results when mixed into a complex expression.

Incorrectly calculated results can lead to a wide variety of erroneous program execution.

6.25.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
e All languages are susceptible to likely incorrect expressions.

6.25.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Simplify expressions.

e Do not use assignment expressions as function parameters. Sometimes the assignment may not be
executed as expected. Instead, perform the assignment before the function call.

e Do not perform assignments within a Boolean expression. This is likely unintended, but if it is not, then
move the assignment outside of the Boolean expression for clarity and robustness.

e Use static analysis tools that detect and warn of expressions that include assignment within the
expression.
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e On some rare occasions, some statements intentionally do not have side effects and do not cause control
flow to change. These should be annotated through comments and made obvious that they are
intentionally no-ops with a stated reason. If possible, such reliance on null statements should be avoided.
In general, except for those rare instances, all statements should either have a side effect or cause control
flow to change.

6.25.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Languages should consider providing warnings for statements that are unlikely to be right such as
statements without side effects. A null (no-op) statement may need to be added to the language for
those rare instances where an intentional null statement is needed. Having a null statement as part of the
language will reduce confusion as to why a statement with no side effects is present in the code.

e lLanguages should consider not allowing assignments used as function parameters.

e Languages should consider not allowing assignments within a Boolean expression.

e Language definitions should avoid situations where easily confused symbols (such as = and ==, or ; and
:,or '=and /=) are valid in the same context. For example, = is not generally valid in an i f statement in
Java because it does not normally return a Boolean value.

6.26 Dead and deactivated code [XYQ]

6.26.1 Description of application vulnerability

Dead and Deactivated code is code that exists in the executable, but which can never be executed, either because
there is no call path that leads to it (for example, a function that is never called), or the path is semantically
infeasible (for example, its execution depends on the state of a conditional that can never be achieved).

Dead and Deactivated code may be undesirable because it may indicate the possibility of a coding error. A
security issue is also possible if a “jump target” is injected. Many safety standards prohibit dead code because
dead code is not traceable to a requirement.

Also covered in this vulnerability is code which is believed to be dead, but which is inadvertently executed.

Dead and Deactivated code is considered separately from the description of Unused Variable, which is provided
by [YZS].

6.26.2 Cross reference

CWE:
561. Dead Code
570. Expression is Always False
571. Expression is Always True
JSF AV Rules: 127 and 186
MISRA C 2012:2.1and 4.4
MISRA C++ 2008: 0-1-1 to 0-1-10, 2-7-2, and 2-7-3
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CERT C guidelines: MSC07-C and MSC12-C
DO-178B/C

6.26.3 Mechanism of failure

DO-178B defines Dead and Deactivated code as:

e Dead code — Executable object code (or data) which cannot be executed (code) or used (data) in an
operational configuration of the target computer environment and is not traceable to a system or
software requirement.

e Deactivated code — Executable object code (or data) which by design is either (a) not intended to be
executed (code) or used (data), for example, a part of a previously developed software component, or (b)
is only executed (code) or used (data) in certain configurations of the target computer environment, for
example, code that is enabled by a hardware pin selection or software programmed options.

Dead code is code that exists in an application, but which can never be executed, either because there is no call
path to the code (for example, a function that is never called) or because the execution path to the code is
semantically infeasible, as in

integer i = 0;

i (il = ©)
then fun_a();
else fun b();

-1 C [SGM2]: This does not follow our coding

fun b () is Dead code, as only fun_a () can ever be executed.

Compilers that optimize sometimes generate and then remove dead code, including code placed there by the
programmer. The deadness of code can also depend on the linking of separately compiled modules.

The presence of dead code is not in itself an error. There may also be legitimate reasons for its presence, for
example:

e Defensive code, only executed as the result of a hardware failure.

e Code that is part of a library not required in the program in question.

e Diagnostic code not executed in the operational environment.

e Code that is temporarily deactivated but may be needed soon. This may occur as a way to make sure the
code is still accepted by the language translator to reduce opportunities for errors when it is reactivated.

e Code that is made available so that it can be executed manually via a debugger.

Such code may be referred to as deactivated. That is, dead code that is there by intent.

There is a secondary consideration for dead code in languages that permit overloading of functions and other
constructs that use complex name resolution strategies. The developer may believe that some code is not going
to be used (deactivated), but its existence in the program means that it appears in the namespace, and may be
selected as the best match for some use that was intended to be of an overloading function. That is, although the
developer believes it is never going to be used, in practice it may be used in preference to the intended function.
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However, it may be the case that, because of some other error, the code is rendered unreachable. Therefore, any
dead code should be reviewed and documented.

Be aware that some defensive code, such as that created to catch hardware error, may be optimized away by the
compiler. Use of optimization fences such as volatile accesses (consult language and compiler manuals) may help.

6.26.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
e Languages that allow code to exist in a program or executable, which can never be executed.

6.26.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Remove dead code from an application unless its presence serves a documented purpose.

e When a developer identifies code that is dead because a conditional consistently evaluates to the same
value, this could be indicative of an earlier bug or it could be indicative of inadequate path coverage in the
test regimen. Additional investigation may be needed to ascertain why the same value is occurring.

e Identify any dead code in the application, and provide a justification as to why it is there.

e Ensure that any code that was expected to be unused is documented as dead code.

e For code that appears to be dead code but is in reality accessible only by asynchronous events or error
handlers, or present for debugging purposes, prevent the optimizations that remove the code in question.
Examples include the judicious use of volatile accesses, pragmas, or compiler switches.

e Apply standard branch coverage measurement tools and ensure by 100% coverage that all branches are
neither dead nor deactivated.

e Use static analysis tools to identify unreachable code.

6.26.6 Implications for language design and evolution
[None]

6.27 Switch statements and static analysis [CLL]

6.27.1 Description of application vulnerability

Many programming languages provide a construct, such as a C-like switch statement, that chooses among
multiple alternative control flows based upon the evaluated result of an expression. The use of such constructs
may introduce application vulnerabilities if not all possible cases appear within the switch or if control
unexpectedly flows from one alternative to another.

6.27.2 Cross reference

JSF AV Rules: 148, 193, 194, 195, and 196
MISRA C 2012: 16.3-16.6
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MISRA C++ 2008: 6-4-3, 6-4-5, 6-4-6, and 6-4-8
CERT C guidelines: MSC01-C
Ada Quality and Style Guide: 5.6.1 and 5.6.10

6.27.3 Mechanism of failure

The fundamental challenge when using a switch statement is to make sure that all possible cases are, in fact,

treated correctly.
6.27.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages that contain a construct, such as a switch statement, that provides a selection among
alternative control flows based on the evaluation of an expression.

e Languages that do not require full coverage of all possible alternatives of a switch statement.

e Languages that provide a default case (choice) in a switch statement.

6.27.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Ensure that every valid choice has a branch that covers the choice.

e Avoid default branches where it can be statically shown that each choice is covered by a branch.

e Use a default branch that initiates error processing where coverage of all choices by branches cannot be
statically shown.

e Use a restricted set of enumeration values to improve coverage analysis where the language provides
such capability.

e Avoid “flowing through” from one case to another. Even if correctly implemented, it is difficult for
reviewers and maintainers to distinguish whether the construct was intended or is an error of omission?>.

e In cases where flow-through is necessary and intended, use an explicitly coded branch to clearly mark the
intent. Provide comments explaining the intention can be helpful to reviewers and maintainers.

e Perform static analysis to determine if all cases are, in fact, covered by the code. (Note that the use of a
default case can hamper the effectiveness of static analysis since the tool cannot determine if omitted
alternatives were or were not intended for default treatment.)

e Use other means of mitigation including manual review, bounds testing, tool analysis, verification
techniques, and proofs of correctness.

6.27.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Language specifications could require compilers to ensure that a complete set of alternatives is provided
in cases where the value set of the switch variable can be statically determined.

5 Using multiple labels on individual alternatives is not a violation of this recommendation, though.
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6.28 Demarcation of control flow [EO]]
6.28.1 Description of application vulnerability

Some programming languages explicitly mark the end of an i f statement or a loop, whereas other languages
mark only the end of a block of statements. Languages of the latter category are prone to oversights by the
programmer, causing unintended sequences of control flow.

6.28.2 Cross reference

JSF AV Rules: 59 and 192

MISRA C 2012: 15.6 and 15.7

MISRA C++ 2008: 6-3-1, 6-4-1, 6-4-2, 6-4-3, 6-4-8, 6-5-1, 6-5-6, 6-6-1 to 6-6-5, and16-0-2
Hatton 18: Control flow — 1 £ structure

Ada Quality and Style Guide: 3, 5.6.1 through 5.6.10

6.28.3 Mechanism of failure

Programmers may rely on indentation to determine inclusion of statements within constructs. Testing of the
software may not reveal that statements that appear to be included in a construct (due to formatting) actually lay
outside of it because of the absence of a terminator. Moreover, for a nested i f-then-else statement the
programmer may be confused about which i f statement controls the el se part directly. This can lead to
unexpected results.

6.28.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages that contain loops and conditional statements that are not explicitly terminated by an “end”
construct.

6.28.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Where the language does not provide demarcation of the end of a control structure, adopt a convention
for marking the closing of a construct that can be checked by a tool, to ensure that program structure is
apparent.

e Adopt programming guidelines (preferably augmented by static analysis). For example, consider the rules
documented in 6.29.2.

e Use other means of assurance, such as proofs of correctness, analysis with tools, and dynamic verification
techniques.

e Use pretty-printers and syntax-aware editors to help find such problems. Be aware that such tools
sometimes disguise such errors.

e Where the language permits single statements after loops and conditional statements but permits
optional compound statements (such as C

if (...) statement else statement;
or Pascal
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if expression then statement else statement;)
always use the compound version (i.e.C's { ... } orPascal'sbegin ... end).

6.28.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Adding a mode that strictly enforces compound conditional and looping constructs with explicit
termination, such as “end 1if” or a closing bracket.

e Syntax for explicit termination of loops and conditional statements.

e Features to terminate named loops and conditionals and determine if the structure as named matches
the structure as inferred.

6.29 Loop control variables [TEX]
6.29.1 Description of application vulnerability

Many languages support a looping construct whose number of iterations is controlled by the value of a loop
control variable. Looping constructs provide a method of specifying an initial value for this loop control variable, a
test that terminates the loop and the quantity by which it should be decremented or incremented on each loop
iteration.

In some languages it is possible to modify the value of the loop control variable within the body of the loop.
Experience shows that such value modifications are sometimes overlooked by readers of the source code,
resulting in faults being introduced.

Some languages, such as C-based languages do not explicitly specify which of the variables appearing in a loop
header is the control variable for the loop. MISRA C [12] and MISRA C++ [16] have proposed algorithms for
deducing which, if any, of these variables is the loop control variable in the programming languages C and C++
(these algorithms could also be applied to other languages that support a C-like for-loop).

6.29.2 Cross reference

JSF AV Rule: 201
MISRA C 2012: 14.2
MISRA C++ 2008: 6-5-1 to 6-5-6

6.29.3 Mechanism of failure

Readers of source code often make assumptions about what has been written. A common assumption is that a
loop control variable is not modified in the body of the loop. A programmer may write incorrect code based on
this assumption.

6.29.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages that allow a loop control variable to be modified in the body of its associated loop.
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6.29.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Do not modify a loop control variable in the body of its associated loop body.

e Use a static analysis tool that identifies the modification of a loop control variable.
6.29.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e lLanguage designers should consider the addition of an identifier type for loop control that cannot be
modified by anything other than the loop control construct.

6.30 Off-by-one error [XZH]
6.30.1 Description of application vulnerability

A program uses an incorrect maximum or minimum value that is 1 more or 1 less than the correct value. This
usually arises from one of a number of situations where the bounds as understood by the developer differ from
the design, such as:

e Confusion between the need for < and <= or > and >=in a test.

e Confusion as to the index range of an algorithm, such as: beginning an algorithm at 1 when the underlying
structure is indexed from 0; beginning an algorithm at 0 when the underlying structure is indexed from 1
(or some other start point); or using the length of a structure as its bound instead of the sentinel values.

e Failing to allow for storage of a sentinel value, such as the NULL string terminator that is used in the C
and C++ programming languages.

These issues arise from mistakes in mapping the design into a particular language, in moving between languages
(such as between languages where all arrays start at 0 and other languages where arrays start at 1), and when
exchanging data between languages with different default array bounds.

The issue also can arise in algorithms where relationships exist between components, and the existence of a
bounds value changes the conditions of the test.

The existence of this possible flaw can also be a serious security hole as it can permit someone to surreptitiously
provide an unused location (such as 0 or the last element) that can be used for undocumented features or hidden
channels.

6.30.2 Cross reference

CWE:
193. Off-by-one Error

6.30.3 Mechanism of failure

An off-by-one error could lead to:
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e an out-of bounds access to an array (buffer overflow),
e incomplete comparisons or calculation mistakes,

e aread from the wrong memory location, or

e anincorrect conditional.

Such incorrect accesses can cause cascading errors or references to invalid locations, resulting in potentially
unbounded behaviour.

Off-by-one errors are not often exploited in attacks because they are difficult to identify and exploit externally,
but the cascading errors and boundary-condition errors can be severe.

6.30.4 Applicable language characteristics

As this vulnerability arises because of an algorithmic error by the developer, it can in principle arise in any
language; however, it is most likely to occur when:

e The language relies on the developer having implicit knowledge of structure start and end indices (for
example, knowing whether arrays start at 0 or 1 — or indeed some other value).
e Where the language relies upon explicit bounds values to terminate variable length arrays.

6.30.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Follow a systematic development process, use of development/analysis tools and thorough testing are all
common ways of preventing errors, and in this case, off-by-one errors.

e Use static analysis tools that warn of potential off-by-one errors.

e Where references are being made to array indices and the languages provide constructs to specify the
whole array or the starting and ending indices explicitly (for example, Ada provides the attributes 'First
and 'Last for each dimension), use the language-provided constructs instead of numeric literals. Where
the language does not provide such constructs, declare named constants and use them in preference to
numeric literals.

e Where the language does not encapsulate variable length arrays, encapsulation should be provided
through library objects and a coding standard developed that requires such arrays to only be used via
those library objects, so the developer does not need to be explicitly concerned with managing bounds
values.

6.30.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Languages should provide encapsulations for arrays that:
o Prevent the need for the developer to be concerned with explicit bounds values.
o Provide the developer with symbolic access to the array start, end and iterators.
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6.31 Structured programming [EWD]
6.31.1 Description of application vulnerability

Programs that have a convoluted control structure are likely to be more difficult to be human readable, less
understandable, harder to maintain, harder to statically analyze, more difficult to match the allocation and
release of resources, and more likely to be incorrect.

6.31.2 Cross reference

JSF AV Rules: 20, 113, 189, 190, and 191

MISRA C 2012: 15.1-15.3, and 21.4

MISRA C++ 2008: 6-6-1, 6-6-2, 6-6-3, and 17-0-5
CERT C guidelines: SIG32-C

Ada Quality and Style Guide: 3, 4,5.4,5.6,and 5.7

6.31.3 Mechanism of failure

Lack of structured programming can lead to:

e Memory or resource leaks.

e Error-prone maintenance.

e Design that is difficult or impossible to validate.

e Source code that is difficult or impossible to statically analyze.

6.31.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages that allow leaving a loop without consideration for the loop control.

e lLanguages that allow local jumps (goto statement).

e Languages that allow non-local jumps (setjmp/longjmp in the C programming language).

e Languages that support multiple entry and exit points from a function, procedure, subroutine or method.

6.31.5 Avoiding the vulnerability or mitigating its effects

Use only those features of the programming language that enforce a logical structure on the program. The
program flow follows a simple hierarchical model that employs looping constructs such as for, repeat, do, and

while.
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Avoid using language features such as goto.

e Avoid using language features such as continue and break in the middle of loops.

e Avoid using language features that transfer control of the program flow via a jump.

e Avoid the use of multiple exit points from a function/procedure/method/subroutine unless it can be
shown that the code with multiple exit points is superior.
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e Avoid multiple entry points to a function/procedure/method/subroutine.
6.31.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Languages should support and favor structured programming through their constructs to the extent
possible.

6.32 Passing parameters and return values [CS]]

6.32.1 Description of application vulnerability

Nearly every procedural language provides some method of process abstraction permitting decomposition of the
flow of control into routines, functions, subprograms, or methods. (For the purpose of this description, the term
subprogram will be used.) To have any effect on the computation, the subprogram must change data visible to
the calling program. It can do this by changing the value of a non-local variable, changing the value of a
parameter, or, in the case of a function, providing a return value. Because different languages use different
mechanisms with different semantics for passing parameters, a programmer using an unfamiliar language may
obtain unexpected results.

6.32.2 Cross reference

JSF AV Rules: 20, 116

MISRA C 2012: 8.2, 8.3,8.13, and 17.1-17.3

MISRA C++ 2008: 0-3-2, 7-1-2, 8-4-1, 8-4-2, 8-4-3, and 8-4-4
CERT C guidelines: EXP12-C and DCL33-C

Ada Quality and Style Guide: 5.2 and 8.3

6.32.3 Mechanism of failure

The mechanisms for parameter passing include: call by reference, call by copy, and call by name. The last is so
specialized and supported by so few programming languages that it will not be treated in this description.

In call by reference, the calling program passes the addresses of the arguments to the called subprogram. When
the subprogram references the corresponding formal parameter, it is actually sharing data with the calling
program. If the subprogram changes a formal parameter, then the corresponding actual argument is also
changed. If the actual argument is an expression or a constant, then the address of a temporary location is passed
to the subprogram; this may be an error in some languages.

In call by copy, the called subprogram does not share data with the calling program. Instead, formal parameters
act as local variables. Values are passed between the actual arguments and the formal parameters by copying.
Some languages may control changes to formal parameters based on labels such as in, out, or inout. There
are three cases to consider: call by value for in parameters; call by result for out parameters and function return
values; and call by value-result for inout parameters. For call by value, the calling program evaluates the actual
arguments and copies the result to the corresponding formal parameters that are then treated as local variables
by the subprogram. For call by result, the values of the locals corresponding to formal parameters are copied to
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the corresponding actual arguments. For call by value-result, the values are copied in from the actual arguments
at the beginning of the subprogram's execution and back out to the actual arguments at its termination.

The obvious disadvantage of call by copy is that extra copy operations are needed and execution time is required
to produce the copies. Particularly if parameters represent sizable objects, such as large arrays, the cost of call by
copy can be high. For this reason, many languages also provide the call by reference mechanism. The
disadvantage of call by reference is that the calling program cannot be assured that the subprogram has not
changed data that was intended to be unchanged. For example, if an array is passed by reference to a
subprogram intended to sum its elements, the subprogram could also change the values of one or more elements
of the array. However, some languages enforce the subprogram's access to the shared data based on the labeling
of actual arguments with modes—such as in, out, or inout or by constant pointers.

Another problem with call by reference is unintended aliasing. It is possible that the address of one actual
argument is the same as another actual argument or that two arguments overlap in storage. A subprogram,
assuming the two formal parameters to be distinct, may treat them inappropriately. For example, if one codes a
subprogram to swap two values using the exclusive-or method, then a call to swap (x, x) will zero the value of
x. Aliasing can also occur between arguments and non-local objects. For example, if a subprogram modifies a
non-local object as a side-effect of its execution, referencing that object by a formal parameter will result in
aliasing and, possibly, unintended results.

Some languages provide only simple mechanisms for passing data to subprograms, leaving it to the programmer
to synthesize appropriate mechanisms. Often, the only available mechanism is to use call by copy to pass small
scalar values or pointer values containing addresses of data structures. Of course, the latter amounts to using call
by reference with no checking by the language processor. In such cases, subprograms can pass back pointers to
anything whatsoever, including data that is corrupted or absent.

Some languages use call by copy for small objects, such as scalars, and call by reference for large objects, such as
arrays. The choice of mechanism may even be implementation-defined. Because the two mechanisms produce
different results in the presence of aliasing, it is very important to avoid aliasing.

An additional problem may occur if the called subprogram fails to assign a value to a formal parameter that the
caller expects as an output from the subprogram. In the case of call by reference, the result may be an
uninitialized variable in the calling program. In the case of call by copy, the result may be that a legitimate
initialization value provided by the caller is overwritten by an uninitialized value because the called program did
not make an assignment to the parameter. This error may be difficult to detect through review because the
failure to initialize is hidden in the subprogram.

An additional complication with subprograms occurs when one or more of the arguments are expressions. In such
cases, the evaluation of one argument might have side-effects that result in a change to the value of another or
unintended aliasing. Implementation choices regarding order of evaluation could affect the result of the
computation. This particular problem is described in 6.24 Side-effects and Order of Evaluation clause [SAM].

6.32.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
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e Languages that provide mechanisms for defining subprograms where the data passes between the calling
program and the subprogram via parameters and return values. This includes methods in many popular
object-oriented languages.

6.32.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Use available mechanisms to label parameters as constants or with modes like in, out, or inout.
e When a choice of mechanisms is available, pass small simple objects using call by copy.
e When a choice of mechanisms is available and the computational cost of copying is tolerable, pass larger
objects using call by copy.
e When the choice of language or the computational cost of copying forbids using call by copy, then take
safeguards to prevent aliasing:
o Minimize side-effects of subprograms on non-local objects; when side-effects are coded, ensure
that the affected non-local objects are not passed as parameters using call by reference.
o Toavoid unintentional aliasing, avoid using expressions or functions as actual arguments; instead
assign the result of the expression to a temporary local and pass the local.
Utilize tools or other forms of analysis to ensure that non-obvious instances of aliasing are absent.
Perform reviews or analysis to determine that called subprograms fulfill their responsibilities to
assign values to all output parameters.

6.32.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Programming language specifications could provide labels—such as in, out, and inout—that control
the subprogram’s access to its formal parameters, and enforce the access.

6.33 Dangling references to stack frames [DCM]

6.33.1 Description of application vulnerability

Many languages allow treating the address of a local variable as a value stored in other variables. Examples are
the application of the address operator in C or C++, or of the ‘Access or ‘Address attributes in Ada. In some
languages, this facility is also used to model the call-by-reference mechanism by passing the address of the actual
parameter by-value. An obvious safety requirement is that the stored address shall not be used after the lifetime
of the local variable has expired. This situation can be described as a “dangling reference to the stack”.

6.33.2 Cross reference

CWE:
562. Return of Stack Variable Address
JSF AV Rule: 173
MISRA C 2012: 4.1 and 18.6
MISRA C++2008: 0-3-1, 7-5-1, 7-5-2, and 7-5-3

© ISO/IEC 2013 — All rights reserved 73



WG 23/N 0751

CERT C guidelines: EXP35-C and DCL30-C
Ada Quality and Style Guide: 7.6.7, 7.6.8, and 10.7.6

6.33.3 Mechanism of failure

The consequences of dangling references to the stack come in two variants: a deterministically predictable
variant, which therefore can be exploited, and an intermittent, non-deterministic variant, which is next to
impossible to elicit during testing. The following code sample illustrates the two variants; the behaviour is not
language-specific:

struct s { .. };

typedef struct s array type[1000];
array_ type* ptr;
array_type* F()

{

struct s Arr[1000];

ptr = &Arr; // Risk of variant 1;
return &Arr; // Risk of variant 2;
}

struct s secret;

array type* ptr2;

ptr2 = F();

secret = (*ptr2)[10]; // Fault of variant 2

secret = (*ptr)[10]; // Fault of variant 1

The risk of variant 1 is the assignment of the address of Arr to a pointer variable that survives the lifetime of
Arr. The fault is the subsequent use of the dangling reference to the stack, which references memory since
altered by other calls and possibly validly owned by other routines. As part of a call-back, the fault allows
systematic examination of portions of the stack contents without triggering an array-bounds-checking violation.
Thus, this vulnerability is easily exploitable. As a fault, the effects can be most astounding, as memory gets
corrupted by completely unrelated code portions. (A life-time check as part of pointer assignment can prevent the
risk. In many cases, such as the situations above, the check is statically decidable by a compiler. However, for the
general case, a dynamic check is needed to ensure that the copied pointer value lives no longer than the
designated object.)

The risk of variant 2 is an idiom “seen in the wild” to return the address of a local variable to avoid an expensive
copy of a function result, as long as it is consumed before the next routine call occurs. The idiom is based on the
ill-founded assumption that the stack will not be affected by anything until this next call is issued. The assumption
is false, however, if an interrupt occurs and interrupt handling employs a strategy called “stack stealing”, which is,
using the current stack to satisfy its memory requirements. Thus, the value of Arr can be overwritten before it
can be retrieved after the call on F. As this fault will only occur if the interrupt arrives after the call has returned
but before the returned result is consumed, the fault is highly intermittent and next to impossible to re-create
during testing. Thus, it is unlikely to be exploitable, but also exceedingly hard to find by testing. It can begin to
occur after a completely unrelated interrupt handler has been coded or altered. Only static analysis can relatively
easily detect the danger (unless the code combines it with risks of variant 1). Some compilers issue warnings for
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this situation; such warnings need to be heeded, and some forms of static analysis are effective in identifying such
problems.

6.33.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e The address of a local entity (or formal parameter) of a routine can be obtained and stored in a variable
or can be returned by this routine as a result.

e No check is made that the lifetime of the variable receiving the address is no larger than the lifetime of
the designated entity.

6.33.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Do not use the address of locally declared entities as storable, assignable or returnable value (except
where idioms of the language make it unavoidable). When such an address is stored, ensure that the
lifetime of the variable containing the address is completely enclosed by the lifetime of the designated
object.

e Never return the address of a local variable as the result of a function call.

6.33.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Do not provide means to obtain the address of a locally declared entity as a storable value; or

e Define implicit checks to implement the assurance of enclosed lifetime expressed in sub-clause 5 of this
vulnerability. Note that, in many cases, the check is statically decidable, for example, when the address of
a local entity is taken as part of a return statement or expression.

6.34 Subprogram signature mismatch [OTR]
6.34.1 Description of application vulnerability

If a subprogram is called with a different number of parameters than it expects, or with parameters of different
types than it expects, then the results will be incorrect. Depending on the language, the operating environment,
and the implementation, the error might be as benign as a diagnostic message or as extreme as a program
continuing to execute with a corrupted stack. The possibility of a corrupted stack provides opportunities for
penetration.

6.34.2 Cross reference

CWE:
628. Function Call with Incorrectly Specified Arguments
686. Function Call with Incorrect Argument Type
683. Function Call with Incorrect Order of Arguments
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JSF AV Rule: 108

MISRA C 2012: 8.2-8.4,17.1, and 17.3

MISRA C++ 2008: 0-3-2, 3-2-1, 3-2-2, 3-2-3, 3-2-4, 3-3-1, 3-9-1, 8-3-1, 8-4-1, and 8-4-2
CERT C guidelines: DCL31-C, and DCL35-C

6.34.3 Mechanism of failure

When a subprogram is called, the actual arguments of the call are pushed on to the execution stack. When the
subprogram terminates, the formal parameters are popped off the stack. If the number and type of the actual
arguments do not match the number and type of the formal parameters, then depending upon the calling
mechanism used by the language translator, the push and the pop will not be consistent and, if so, the stack will
be corrupted. Stack corruption can lead to unpredictable execution of the program and can provide opportunities
for execution of unintended or malicious code.

The compilation systems for many languages and implementations can check to ensure that the list of actual
parameters and any expected return match the declared set of formal parameters and return value (the
subprogram signature) in both number and type. (In some cases, programmers should observe a set of
conventions to ensure that this is true.) However, when the call is being made to an externally compiled
subprogram, an object-code library, or a module compiled in a different language, the programmer must take
additional steps to ensure a match between the expectations of the caller and the called subprogram.

6.34.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages that do not require their implementations to ensure that the number and types of actual
arguments are equal to the number and types of the formal parameters.

e Implementations that permit programs to call subprograms that have been externally compiled (without
a means to check for a matching subprogram signature), subprograms in object code libraries, and any
subprograms compiled in other languages.

6.34.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Use language or compiler support or static analysis tools to detect mismatches in calling signatures and
the actual subprogram, particularly in multilingual environments.

e Take advantage of any mechanism provided by the language to ensure that subprogram signatures
match.

e Avoid any language features that permit variable numbers of actual arguments without a method of
enforcing a match for any instance of a subprogram call.

e Take advantage of any language or implementation feature that would guarantee matching the
subprogram signature in linking to other languages or to separately compiled modules.

e Intensively review subprogram calls where the match is not guaranteed by tooling.

e Ensure that only a trusted source is used when using non-standard imported modules.
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6.34.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Language specifiers could ensure that the signatures of subprograms match within a single compilation
unit and could provide features for asserting and checking the match with externally compiled
subprograms.

6.35 Recursion [GDL]
6.35.1 Description of application vulnerability

Recursion is an elegant mathematical mechanism for defining the values of some functions. It is tempting to write
code that mirrors the mathematics. However, the use of recursion in a computer can have a profound effect on
the consumption of finite resources, leading to denial of service.

6.35.2 Cross reference

CWE:
674. Uncontrolled Recursion
JSF AV Rule: 119
MISRA C 2012: 17.2
MISRA C++ 2008: 7-5-4
CERT C guidelines: MEMO05-C
Ada Quality and Style Guide: 5.6.6

6.35.3 Mechanism of failure

Recursion provides for the economical definition of some mathematical functions. However, economical
definition and economical calculation are two different subjects. It is tempting to calculate the value of a recursive
function using recursive subprograms because the expression in the programming language is straightforward

and easy to understand. However, the impact on finite computing resources can be profound. Each invocation of
a recursive subprogram may result in the creation of a new stack frame, complete with local variables. If stack
space is limited and the calculation of some values will lead to an exhaustion of resources resulting in the program
terminating.

In calculating the values of mathematical functions the use of recursion in a program is usually obvious, but this is
not true when considering computer operations generally, especially when processing error conditions. For
example, finalization of a computing context after treating an error condition might result in recursion (such as
attempting to recover resources by closing a file after an error was encountered in closing the same file).
Although such situations may have other problems, they typically do not result in exhaustion of resources but
may otherwise result in a denial of service.

6.35.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
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e Any language that permits the recursive invocation of subprograms.
6.35.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Minimize the use of recursion.

e Converting recursive calculations to the corresponding iterative calculation. In principle, any recursive
calculation can be remodeled as an iterative calculation which will have a smaller impact on some
computing resources but which may be harder for a human to comprehend. The cost to human
understanding must be weighed against the practical limits of computing resource.

e In cases where the depth of recursion can be shown to be statically bounded by a tolerable number, then
recursion may be acceptable, but should be documented for the use of maintainers.

It should be noted that some languages or implementations provide special (more economical) treatment of a
form of recursion known as tail-recursion. In this case, the impact on computing economy is reduced. When using
such a language, tail recursion may be preferred to an iterative calculation.

6.35.6 Implications for language design and evolution
[None]

6.36 Ignored error Status and unhandled exceptions [OYB]
6.36.1 Description of application vulnerability

Unpredicted faults and exceptional situations arise during the execution of code, preventing the intended
functioning of the code. They are detected and reported by the language implementation or by explicit code
written by the user. Different strategies and language constructs are used to report such errors and to take
remedial action. Serious vulnerabilities arise when detected errors are reported but ignored or not properly
handled.

6.36.2 Cross reference

CWE:

754. Improper Check for Unusual or Exceptional Conditions
JSF AV Rules: 115 and 208

MISRA C 2012: 4.7

MISRA C++ 2008: 15-3-2 and 19-3-1

CERT C guidelines: DCL0O9-C, ERR00O-C, and ERR02-C

6.36.3 Mechanism of failure

The fundamental mechanism of failure is that the program does not react to a detected error or reacts
inappropriately to it. Execution may continue outside the envelope provided by its specification, making
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additional errors or serious malfunction of the software likely. Alternatively, execution may terminate. The
mechanism can be easily exploited to perform denial-of-service attacks.

The specific mechanism of failure depends on the error reporting and handling scheme provided by a language or
applied idiomatically by its users.

In languages that expect routines to report errors via status variables, return codes, or thread-local error
indicators, the error indications need to be checked after each call. As these frequent checks cost execution time
and clutter the code immensely to deal with situations that may occur rarely, programmers are reluctant to apply
the scheme systematically and consistently. Failure to check for and handle an arising error condition continues
execution as if the error never occurred. In most cases, this continued execution in an ill-defined program state
will sooner or later fail, possibly catastrophically.

The raising and handling of exceptions was introduced into languages to address these problems. They bundle the
exceptional code in exception handlers, they need not cost execution time if no error is present, and they will not
allow the program to continue execution by default when an error occurs, since upon raising the exception,
control of execution is automatically transferred to a handler for the exception found on the call stack. The risk
and the failure mechanism is that there is no such handler (unless the language enforces restrictions that
guarantees its existence), resulting in the termination of the current thread of control. Also, a handler that is
found might not be geared to handle the multitude of error situations that are vectored to it. Exception handling
is therefore in practice more complex for the programmer than, for example, the use of status parameters.
Furthermore, different languages provide exception-handling mechanisms that differ in details of their design,
which in turn may lead to misunderstandings by the programmer.

The cause for the failure might be simply laziness or ignorance on the part of the programmer, or, more
commonly, a mismatch in the expectations of where fault detection and fault recovery is to be done. Particularly
when components meet that employ different fault detection and reporting strategies, the opportunity for
mishandling recognized errors increases and creates vulnerabilities.

Another cause of the failure is the scant attention that many library providers pay to describe all error situations
that calls on their routines might encounter and report. In this case, the caller cannot possibly react sensibly to all
error situations that might arise. As yet another cause, the error information provided when the error occurs may
be insufficiently complete to allow recovery from the error.

Different error handling mechanisms have different strengths and weaknesses. Dealing with exception handling in
some languages can stress the capabilities of static analysis tools and can, in some cases, reduce the effectiveness
of their analysis. Inversely, the use of error status variables can lead to confusingly complicated control structures,
particularly when recovery is not possible locally. Therefore, for situations where the highest of reliability is
required, the decision for or against exception handling deserves careful thought. In any case, exception-handling
mechanisms should be reserved for truly unexpected situations and other situations where no local recovery is
possible. Situations which are merely unusual, like the end of file condition, should be treated by explicit testing—
either prior to the call which might raise the error or immediately afterward. In general, error detection,
reporting, correction, and recovery should not be a late opportunistic add-on, but should be an integral part of a
system design.
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6.36.4 Applicable language characteristics

Whether supported by the language or not, error reporting and handling is idiomatically present in all languages.
Of course, vulnerabilities caused by exceptions require a language that supports exceptions.

6.36.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Reserve exception-handling mechanisms for truly unexpected situations and other situations where no
local recovery is possible.

e Handle exceptions by the exception handlers of an enclosing construct as close as possible to the origin of
the exception but as far out as necessary to be able to deal with the error. Consider preventing implicit
exceptions by checking the error condition in the code prior to executing the construct that causes the
exception.

e Equally, check error return values or auxiliary status variables following a call to a subprogram, unless it is
demonstrated that the error condition is impossible.

e When functions return error values, check the error return values before processing any other returned
data.

e For each routine, document all error conditions, matching error detection and reporting needs, and
provide sufficient information for handling the error situation.

e Use static analysis tools to detect and report missing or ineffective error detection or handling.

e When execution within a particular context is abandoned due to an exception or error condition, finalize
the context by closing open files, releasing resources and restoring any invariants associated with the
context.

e Retreat to a context where the fault can be handled completely (after finalizing and terminating the
current context) when it is not appropriate to repair an error situation and retry the operation.

e Always enable error checking provided by the language, the software system, or the hardware in the
absence of a conclusive analysis that the error condition is rendered impossible.

e Carefully review all error handling mechanisms, because of the complexity of error handling.

e In applications with the highest requirements for reliability, use defense-in-depth approaches, for
example, checking and handling errors even if thought to be impossible.

6.36.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Astandardized set of mechanisms for detecting and treating error conditions should be developed so that
all languages to the extent possible could use them. This does not mean that all languages should use the
same mechanisms as there should be a variety, but each of the mechanisms should be standardized.
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6.37 Type-breaking reinterpretation of data [AMV]
6.37.1 Description of application vulnerability

In most cases, objects in programs are assigned locations in processor storage to hold their value. If the same
storage space is assigned to more than one object—either statically or temporarily—then a change in the value of
one object will have an effect on the value of the other. Furthermore, if the representation of the value of an
object is reinterpreted as being the representation of the value of an object with a different type, unexpected
results may occur.

6.37.2 Cross reference

JSF AV Rules 153 and183

MISRA 2012: 19.1, and 19.2

MISRA C++ 2008: 4-5-1 to 4-5-3, 4-10-1, 4-10-2, and 5-0-3 to 5-0-9
CERT C guidelines: MEMO08-C

Ada Quality and Style Guide: 7.6.7 and 7.6.8

6.37.3 Mechanism of failure

Sometimes there is a legitimate need for applications to place different interpretations upon the same stored
representation of data. The most fundamental example is a program loader that treats a binary image of a
program as data by loading it, and then treats it as a program by invoking it. Most programming languages permit
type-breaking reinterpretation of data, however, some offer less error-prone alternatives for commonly
encountered situations.

Unintentional or malicious reinterpretation of data can cause overwriting or disclosure of arbitrary memory
regions. In addition, type-breaking reinterpretation of representation presents obstacles to human understanding
of the code, the ability of tools to perform effective static analysis, and the ability of code optimizers to do their
job.

Examples include:

e Providing alternative mappings of objects into blocks of storage performed either statically (such as
Fortran common) or dynamically (such as pointers).

e Union types, particularly unions that do not have a discriminant stored as part of the data structure.
(Discriminants are additional components of the data structure that determine the layout of the rest of
the data. If the discriminant capability is not provided by the language, then it is the programmer’s
responsibility to ensure consistency).

e Operations that permit a stored value to be interpreted as a different type (such as treating the
representation of a pointer as an integer).

In all of these cases accessing the value of an object may produce an unanticipated result.
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A related problem, the aliasing of parameters, occurs in languages that permit call by reference because
supposedly distinct parameters might refer to the same storage area, or a parameter and a non-local object might
refer to the same storage area. That vulnerability is described in 6.32 Passing Parameters and Return Values [CSJ].

It is easier to avoid operations that reinterpret the same stored value as representing a different type when the
language clearly identifies them. For example, Ada forces the programmer to explicitly declare the conversion to

be an instantiation of Unchecked Conversion.

A much more difficult situation occurs when pointers are used to achieve type reinterpretation. Many languages
perform type-checking of pointers and place restrictions on the ability of pointers to access arbitrary locations in
storage.

6.37.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
e A programming language that permits multiple interpretations of the same bit pattern.

6.37.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Avoid reinterpretation performed as a matter of convenience; for example, avoid an integer pointer to
manipulate character string data. When type-breaking reinterpretation is necessary, document it carefully
in the code.

e When using union types, use discriminated unions in preference to non-discriminated unions

e Avoid operations that reinterpret the same stored value as representing a different type.

e When pointers with different underlying types are used to reinterpret data, use language-defined
capabilities to flag and check such usage (such as Ada’s ‘Valid attribute), or use static analysis to show that
the operation always succeeds.

e Use static analysis tools to locate situations where unintended reinterpretation occurs.

e Asthe presence of reinterpretation greatly complicates static analysis for other problems, consider
segregating intended reinterpretation operations into distinct subprograms.

6.37.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Because the ability to perform reinterpretation is sometimes necessary, but the need for it is rare,
programming language designers might consider putting caution labels on operations that permit
reinterpretation. For example, the operation in Ada that permits unconstrained reinterpretation is called
Unchecked Conversion.

e Because of the difficulties with non-discriminated unions, programming language designers might
consider offering union types that include distinct discriminants with appropriate enforcement of access
to objects.
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6.38 Deep vs. shallow copying [YAN]

6.39.1 Description of application vulnerability

When structures containing references as data components are copied, one must decide whether the references
are to be copied (shallow copy) or, instead, the objects designated by the references are to be copied and a
reference to the newly created object used as the component value of the copied structure (deep copy). Almost
all languages define structure-copying operations as shallow copies, i.e., the copied structure references the same
object. Deep copying is algorithmically more challenging, since no object shall be copied twice although it may be
reachable by multiple paths within the graph spanned by the references. Further, deep copying may be expensive
in time and memory consumption. If, however, a shallow copy is made where a deep copy was needed, serious
aliasing problems can arise in the objects that are part of the graphs spanned by the copied references.
Subsequent modification of such an object is visible via both the old and the new structure.

An identical problem arises when array indices are stored as component values (in lieu of pointers or references)
and used to access objects in an array outside the copied data structure.

6.38.2 Cross reference

CWE: << TBD >>

JSF AV Rule 76, 77, 80

CERT C guidelines: <<TBD>>

Ada Quality and Style Guide: <<TBD>>

6.38.3 Mechanism of failure

Problems with shallow copying arise when values in the objects (transitively) referenced by the original or the
copy are assigned to: in a deep copy, such assignments affect only the original or the copy of the graph,
respectively; in a shallow copy, the value of the object is changed in both graphs, which may not have been the
intention of the programmer. Consequently, the problem may manifest itself only during maintenance when, for
the first time, such as assignment to a contained object is introduced, while shallow copying was originally chosen
for reasons of efficiency but relying on the absence of assignments.

Knowledge of the use of shallow copying in lieu of deep copying can be exploited in attacks by causing unintended
changes in data structures via the described aliasing effect.

The exposure and effects are similar to any other unintended aliasing, such as CSJ Passing Parameters and Return
Values.

6.38.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages that have pointers or references as part of composite data structures.

e Languages that support arrays.
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6.38.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Use shallow copying only where the aliasing caused is intended.

e Use deep copying if there is any possibility that the aliasing of a shallow copy would affect the application
adversely, or if in doubt.

e Use abstractions to ensure deep copies where needed, e.g., by (re-)defining assighment operations,
constructors, and other operations that copy component values.

6.38.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Provide mechanisms to create abstractions that guarantee deep copying where needed.
6.39 Memory leaks and heap fragmentation [XYL]
6.39.1 Description of application vulnerability

A memory leak occurs when software does not release allocated memory after it ceases to be used. Repeated
occurrences of a memory leak can consume considerable amounts of available memory. A memory leak can be
exploited by attackers to generate denial-of-service by causing the program to execute repeatedly a sequence
that triggers the leak. Moreover, a memory leak can cause any long-running critical program to shutdown
prematurely.

6.39.2 Cross reference

CWE:
401. Failure to Release Memory Before Removing Last Reference (aka ‘Memory Leak’)
JSF AV Rule: 206
MISRA C 2012: 4.12
CERT C guidelines: MEMO00-C and MEM31-C
Ada Quality and Style Guide: 5.4.5,5.9.2, and 7.3.3

6.39.3 Mechanism of failure

As a process or system runs, any memory taken from dynamic memory and not returned or reclaimed (by the
runtime system, the application, or a garbage collector) after it ceases to be used, may result in future memory
allocation requests failing for lack of free space.

Alternatively, memory claimed and returned can cause the heap to fragment into progressively smaller blocks,
which, with the usual allocators, will result in a higher memory consumption and steadily increasing search times
for blocks of suitable size, until the system spends most of the CPU-time for searching the heap for suitable
blocks.
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Either condition can thus result in a memory exhaustion exception, progressively slower performance by the
allocating application, program termination or a system crash.

If an attacker can determine the cause of an existing memory leak or can increase the allocation rate for blocks of
different sizes, the attacker will be able to cause the application to leak or fragment quickly and therefore cause
the application to crash or fail to perform within acceptable time limits. Denial-of-Service attacks can thus occur.

6.39.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages reclaim memory under programmer control can exhibit heap fragmentation and memory
leaks.

e Languages that support mechanisms to dynamically allocate memory and employ garbage collection can
exhibit memory leaks.

6.39.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Use garbage collectors that reclaim memory no longer accessible by the application. Some garbage
collectors are part of the language while others are add-ons.

e In systems with garbage collectors, set all non-local pointers or references to null, when the designated
data is no longer needed, since the data transitively reachable from such a pointer or reference will not
be garbage-collected otherwise, effectively causing memory leaks.

e In systems without garbage collectors, cause deallocation of the data before the last pointer or reference
to the data is lost.

e Allocate and free memory at the same level of abstraction, and ideally in the same code module.
Allocating and freeing memory in different modules and levels of abstraction may make it difficult for
developers to match requests to free storage with the appropriate storage allocation request. This may
cause confusion regarding when and if a block of memory has been allocated or freed, leading to memory
leaks.

e Use Storage pools when available in combination with strong typing. Storage pools are a specialized
memory mechanism where all of the memory associated with a class of objects is allocated from a
specific bounded region such that storage exhaustion in one pool does not affect the code operating on
other memory.

e Use storage pools of equally-sized blocks to avoid fragmentation within each storage pool. If necessary,
provide application-specific (de-)allocators to achieve this functionality.

e Avoid the use of dynamically allocated storage entirely, or allocate only during system initialization and
never allocate once the main execution commences, particularly in safety-critical systems and long
running systems.

e Use static analysis, which can sometimes detect when allocated storage is no longer used and has not
been freed.
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6.39.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Languages can provide syntax and semantics to guarantee program-wide that dynamic memory is not
used (such as the configuration pragmas feature offered by some programming languages).

e Languages can document or specify that implementations must document choices for dynamic memory
management algorithms, to hope designers decide on appropriate usage patterns and recovery
techniques as necessary

6.40 Templates and generics [SYM]

6.40.1 Description of application vulnerability

Many languages provide a mechanism that allows objects and/or functions to be defined parameterized by type
and then instantiated for specific types. In C++ and related languages, these are referred to as “templates”, and in
Ada and Java, “generics”. To avoid having to keep writing ‘templates/generics’, in this clause these will simply be
referred to collectively as generics.

Used well, generics can make code clearer, more predictable and easier to maintain. Used badly, they can have
the reverse effect, making code difficult to review and maintain, leading to the possibility of program error.

6.40.2 Cross reference

JSF AV Rules: 101, 102, 103, 104, and 105

MISRA C++ 2008: 14-6-1, 14-6-2, 14-7-1 to 14-7-3, 14-8-1, and 14-8-2
CERT C++:

Ada Quality and Style Guide: 8.3.1 through 8.3.8, and 8.4.2

6.40.3 Mechanism of failure

The value of generics comes from having a single piece of code that supports some behaviour in a type
independent manner. This simplifies development and maintenance of the code. It should also assist in the
understanding of the code during review and maintenance, by providing the same behaviour for all types with
which it is instantiated.

Problems arise when the use of a generic actually makes the code harder to understand during review and
maintenance, by not providing consistent behaviour.

In most cases, the generic definition will have to make assumptions about the types it can legally be instantiated
with. For example, a sort function requires that the elements to be sorted can be copied and compared. If these
assumptions are not met, the result is likely to be a compiler error. For example if the sort function is instantiated
with a user defined type that does not have a relational operator. Where ‘misuse’ of a generic leads to a compiler
error, this can be regarded as a development issue, and not a software vulnerability.

Confusion, and hence potential vulnerability, can arise where the instantiated code is apparently invalid, but does
not result in a compiler error. For example, a generic class defines a set of members, a subset of which rely on a
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particular property of the instantiation type (such as a generic container class with a sort member function, only
the sort function relies on the instantiating type having a defined relational operator). In some languages, such as
C++, if the generic is instantiated with a type that does not meet all the requirements but the program never
subsequently makes use of the subset of members that rely on the property of the instantiating type, the code
will compile and execute (for example, the generic container is instantiated with a user defined class that does
not define a relational operator, but the program never calls the sort member of this instantiation). When the
code is reviewed the generic class will appear to reference a member of the instantiating type that does not exist.

The problem as described in the two prior paragraphs can be reduced by a language feature (such as the concepts
language feature being designed by the C++ committee). (RESEARCH — Al Clive.).

Similar confusion can arise if the language permits specific methods of an instance of a generic to be explicitly
defined, rather than using the common code, so that behaviour is not consistent for all instantiations. For
example, for the same generic container class, the sort member normally sorts the elements of the container into
ascending order. In some languages, a ‘special case’ can be created for the instantiation of the generic with a
particular type. For example, the sort member for a ‘float’ container may be explicitly defined to provide different
behaviour, say sorting the elements into descending order. Specialization that does not affect the apparent
behaviour of the instantiation is not an issue.

(C++-specific text, move when appropriate — Al Clive.).Again, for C++, there are some irregularities in the
semantics of arrays and pointers that can lead to the generic having different behaviour for different, but
apparently very similar, types. In such cases, specialization can be used to enforce consistent behaviour.

6.40.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:

e Languages that permit definitions of objects or functions to be parameterized by type, for later
instantiation with specific types, such as:
o Templates in C++
o Generics in Ada, Java.

6.40.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Document the properties of an instantiating type necessary for a generic to be valid.

e If an instantiating type has the required properties, ensure that all operations of the generic are valid or
are unavailable, whether actually used in the program or not.

e Avoid, or carefully document, any ‘special cases’ where a generic is instantiated with a specific type but
does not behave as it does for other types.

6.40.6 Implications for language design and evolution

In future language design and evolution activities, the following items should be considered:
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e Language specifiers should standardize on a common, uniform terminology to describe
generics/templates so that programmers experienced in one language can reliably learn and refer to the
type system of another language that has the same concept, but with a different name.

e Language specifiers should design generics in such a way that any attempt to instantiate a generic with
constructs that do not provide the required capabilities results in a compile-time error.

e Language specifiers should provide an assertion mechanism for checking properties at run-time, for those
properties that cannot be checked at compile time. It should be possible to inhibit assertion checking if
efficiency is a concern.

6.41 Inheritance [RIP]

6.41.1 Description of application vulnerability

Inheritance, the ability to create enhanced and/or restricted object classes based on existing object classes can
introduce a number of vulnerabilities, both inadvertent and malicious. Because Inheritance allows the overriding
of methods of the parent class and because object oriented systems are designed to separate and encapsulate
code and data, it can be difficult to determine where in the hierarchy an invoked method is actually defined. Also,
since an overriding method does not need to call the method in the parent class that has been overridden,
essential initialization and manipulation of class data may be bypassed. This can be especially dangerous during
constructor and destructor methods.

Languages that allow multiple inheritance add additional complexities to the resolution of method invocations.
Different object brokerage systems may resolve the method identity to different classes, based on how the
inheritance tree is traversed.

6.41.2 Cross reference

JSF AV Rules: 78, 79, 80, 81, 86, 87, 88, 89, 89, 90, 91, 92, 93, 94, 95, 96 and 97
MISRA C++ 2008: 0-1-12, 8-3-1, 10-1-1 to 10-1-3, and 10-3-1 to 10-3-3

CERT C++ guidelines:

Ada Quality and Style Guide: 9 (complete clause)

6.41.3 Mechanism of failure

The use of inheritance can lead to an exploitable application vulnerability or negatively impact system safety in
several ways:

e Execution of malicious redefinitions, this can occur through the insertion of a class into the class hierarchy
that overrides commonly called methods in the parent classes.

e Accidental redefinition, where a method is defined that inadvertently overrides a method that has already
been defined in a parent class.

e Accidental failure of redefinition, when a method is incorrectly named or the parameters are not defined
properly, and thus does not override a method in a parent class.

e Breaking of class invariants, this can be caused by redefining methods that initialize or validate class data
without including that initialization or validation in the overriding methods.
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e Consider the interaction of automatically generated member functions with the direct reading and writing
of visible class members.

These vulnerabilities can increase dramatically as the complexity of the hierarchy increases, especially in the use
of multiple inheritance.

As methods are inherited from multiple chains of ancestors, the determination of which methods
implementations exist and are being called, becomes increasingly more difficult for the programmer.
Understanding which methods and data components apply to a given (sub)class becomes exceedingly difficult if
these methods or components are inherited homographs (i.e., data components with identical names or methods
with identical signatures). Different languages have different rules to resolve the resulting ambiguities.
Misunderstandings lead to inadvertent coding errors. The complexity increases even more when multiple
inheritance is used to model , has-a“-relationships (\see\ also << reference to BLP, Liskov>>): methods never

{ Comment [SGM3]: Put in reference!!!

intended to be applicable to instances of a subclass are inherited nevertheless. For example, an instance of class
aircraftCarrier may be ,turn“ed merely because it obtained its propulsion screw by a ,,has-a“-inheritance with
,turn” being an obviously meaningful method for the class of propulsionScrew. Meanwhile the user has a quite
different expectation of what it means to turn an aircraft carrier. The complications increase if the carrier inherits
twice from the class propulsionScrew because it has two propulsion screws.

Finally, if ambiguities in method or component namings are resolved by preference rules, changes in the
execution of methods can be introduced by adding yet another unrelated but homographic method or data
declaration anywhere is the hierarchies of ancestor classes during maintenance of the code. Malicious
implementations can thus be added with each release of an object-oriented library and affect the behavior of
previously verified code. (\see also << reference to BJL, name spaces»)\

{ Comment [SGM4]: Insert reference!!!

The mechanism of failure for these additional dangers caused by multiple inheritance is the inadvertent use of the
wrong data components or methods. Knowledge of such incorrect use might be exploitable, as instances of the
affected (sub)class may be corrupted by inappropriate operations.

6.41.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
e Languages that allow single and multiple inheritances.

6.41.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Avoid the use of multiple inheritance whenever possible.

e Provide complete documentation of all encapsulated data, and how each method affects that data for
each object in the hierarchy.

e Inherit only from trusted sources, and, whenever possible, check the version of the parent classes during
compilation and/or initialization.

e Provide a method that provides versioning information for each class.

e Prohibit the use of visible inheritance for “has-a” relationships.
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e Use components of the respective class for “has-a”-relationships.
® Avoid the creation of base classes that are both virtual and non-virtual in the same hierarchy. (Clive - C++)

e Delegate initialization of the parent’s data components by calling the initialization operation of the parent

type, particularly if the parent has private data components|

6.41.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Language specification should include the definition of a common versioning method.
o Compilers should provide an option to report the class in which a resolved method resides.
e Runtime environments should provide a trace of all runtime method resolutions.

6.42 Violations of the Liskov substitution principle or the contract model [BLP]

6.42.1 Description of application vulnerability

Object orientation typically allows polymorphic variables containing values of subclasses of the declared class of
the variable. Methods of the declared class of a receiving object can be invoked and the caller has the right to
expect that the semantics of the interface called upon are observed regardless of the precise nature of the value
of the receiving object. Similarly, the existence of accessed components of the declared class needs to be
ensured. Instances of subclasses thus need to be both technically and logically specialized instances of the parent
class. This is the basis of the Liskov principle.

The Liskov Principle states that an instance of a subclass is always an instance of the superclass as well if one
ignores the added specializations. It implies that inheritance is used only if there is a logical “is-a”-relationship
between the subclass and the superclass. Moreover, preconditions of methods can at most be weakened and
never strengthened as they are redefined for a subclass. Inversely, postconditions can at most be strengthened
and never be weakened by such a redefinition. The caller of an interface needs to guarantee only the
preconditions of the interface and is allowed to rely on its postconditions. The rules stated make sure of this
property which is also known as the Contract Model.

Violations of the Liskov Principle or the Contract Model can result in system malfunctions as additional
preconditions of redefinitions or promised postconditions of interfaces are not met.

An alternative inheritance semantics is that of “has-a”-relationships, usually appearing in programs in languages
with multiple inheritance, where the paradigm is sometimes referred to as a “mix-in”. It is in stark conflict with
the Liskow Principle: A polymorphic variable motor of class engine should not be able to hold a car, merely
because the subclass car was created by a mix-in of the class engine to the class vehicle.

The principles stated above apply to implicit as well as explicit preconditions and postconditions. Explicit
conditions permit formal reasoning tools to be applied.

6.42.2 Cross reference
CWE: (cwe)

JSF AV Rules: 89, 91, 92, 93
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CERT C++ guidelines: (Clive??)
Ada Quality and Style Guide®none)

6.42.3 Mechanism of failure

When a client calls the method of a class which redispatches to the implementation of a subclass with a
strengthened precondition, the client has mechanism to know about the added preconditions to be satisfied.
Hence the call may fail on a violated precondition. Similarly, if the called implementation has a weaker
postcondition, the postcondition asserted to the client might not be satisfied. As a consequence, the client may
fail. Failing to meet preconditions or to guarantee postconditions is bound to cause exceptions or system failures.
The specific scenarios are extensive and range from faults that happen to be handled by the system to complete
loss of security and safety.

Using visible inheritance to implement a “has-a”-relationships deteriorates class design and thereby may be the
cause of consequential errors. There is no immediate failure mode, however.

6.42.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages that have polymorphic variables, particularly object-oriented languages.
e Languages that provide inheritance among classes.

6.42.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Obey all preconditions and postconditions of each method, whether they are specified in the language or
not.

e Prohibit the strengthening of preconditions (specified or not) by redefinitions of methods.

e Prohibit the weakening of postconditions (specified or not) by redefinitions of methods.

e Prohibit the use of visible inheritance for “has-a” relationships. Use components of the respective class
for “has-a”-relationships instead.

e Use static analysis tools that identify misuse of inheritance in the contract model.

6.42.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Provide language mechanisms to formally specify preconditions and postconditions.
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6.43 Redispatching [PPH]
6.43.1 Description of application vulnerability

When very similar functionality is provided by methods or interfaces with varying parameter structures, a
frequently found implementation strategy is to designate one of them as the “work horse” and have all others call
on it to perform the (common) work. A prime example are constructor or initialization methods where different
sets of initial values for certain components are provided and the remaining components are set to default values.

When the semantics of inner calls of dispatching methods ask for dispatching in turn, the call is said to be
“redispatching”. In this case, the following scenario can evolve: In class C, the implementation of method A
dispatches to method B, the work horse. In a derived class CD, the implementation of B needs to be changed. The
programmer finds the signature of the inherited method A matching his needs and calls A as part of the
redefinition of B. The outcome of a previously correct dispatching call on B in C for a polymorphic variable of class
C holding a reference to an object of class CD now causes infinite recursion between the redefined method B and
the inherited method A of class CD.

This vulnerability is not restricted to the example above, but can happen whenever the design calls for multiple
services converging to a single implementation.

6.43.2 Cross reference

CWE: (none)

JSF AV Rules: (none)

MISRA C++: (none)

CERT C++ guidelines: (none)

Ada Quality and Style Guide: (none)

6.43.3 Mechanism of failure

The mechanism is the intrinsic call semantics of the language. If it demands dispatching for nested method calls,
the failure scenario is guaranteed. While the example above is tractable, the infinite recursion can involve
multiple objects along a reference chain and, thus, it becomes quickly undecidable whether such a situation exists
or not. Even for simple cases, avoidance requires knowledge about the implementation of all called methods
inherited from superclasses and needs to apply this knowledge transitively. Such a requirement is diametrically
opposed to fundamental software engineering axioms.

It has been shown that released libraries have contained many instances of infinite recursions.

Malicious exploit of the vulnerability adds a subclass that contains this infinite recursion conditionally on some
trigger value. The recursion can be sufficiently obscured so that no analysis tool or reviewer can detect it with any
certainty. The system can then be caused to fault with a stack overflow anytime this trigger is used. The
vulnerability can thus be used for Denial-of-Service attacks.
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6.43.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

e Languages that demand or allow dispatching for calls within dispatching operations.

6.43.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

. \Enforce a principle that, even across class hierarchies, converging services use a single implementation

e Agree on and document a redispatch hierarchy within groups of methods, such as initializers or
constructors, and use it consistently throughout the class hierarchy.

e Avoid dispatching calls in methods where possible. See upcast consequences in subclause 6.44
Polymorphic Variables [BKK].

6.43.6 Implications for language design and evolution

In future language design and evolution activities, the following items should be considered:

e NIL
6.44 Polymorphic variables [BKK]
6.44.1 Description of application vulnerability

Object-oriented languages allow polymorphic variables, in which values of different classes can be stored at
different times. In most of these languages, variables are declared to be of some class, while the actual value may
be of a more specialized subclass. Polymorphic variables go hand in hand with method selection at run time,
when the method defined for the actual subclass of the receiving object or controlling argument is invoked. This
approach is safe, as method implementation and actual type of the object match by construction. If, however, the
language permits casting of the polymorphic reference to process the object as if it were of the class casted to,
several vulnerabilities arise. We distinguish the following casts:

e “upcasts”, where the cast is to a superclass

e “downcasts”, where the cast is to a subclass and a check is made that the object is indeed of the target
class of the cast (or a subclass thereof)

e unsafe casts, where there is no assurance that the object is of the casted class.

Distinct vulnerabilities arise for each of these cast types:

Upcasts are needed so that redefined methods can call upon the corresponding method of the parent class to
achieve the respective portion of the needed functionality and then complete it for the extensions added by the
subclass. Without calling the parent’s implementation of a method in the redefined method, the private
components of the parent class are inaccessible to the redefined method. Hence there is a risk that they are no
longer consistent with the overall state of the object. Inversely, if the issue is avoided by inheriting rather than
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redefining the method for a subclass, there is the risk that the subclass-specific parts are inconsistent with the
overall state of the object or even uninitialized.

Downcasts carry the risk that the object is not of the correct class. If checked by the language, as language-
defined downcasts typically are, an exception will occur in this case.

Unchecked casts allow arbitrary breaches of safety and security. See _6.11 Pointer Casting and Pointer Type

{ Deleted: |

Changes [HFC].

Note that some languages also have implicit upcasts and downcasts as part of the language semantics. The same
issues apply as for explicit casts.

6.44.2 Cross reference

CWE: (none)
JSF AV Rules:
67 Make all data members private
78 Virtual method and virtual destructor
94 redefinition of an inherited non-virtual function
178 Limited downcast
179 Pointer casts
185 Use C++ upcasts in place of C casts
CERT C++ guidelines: (none)
Ada Quality and Style Guide: (none)

6.44.3 Mechanism of failure

Obijects left in an inconsistent state by means of an upcast and a subsequent legitimate method call of the parent
class can be exploited to cause system malfunctions.

Exceptions raised by failing downcasts allow Denial-of-Service attacks. Typical scenarios include the addition of
objects of some unexpected subclasses in generic containers.

Unchecked casts to classes with the needed components allow reading and modifying arbitrary memory areas.
See 6.11 Pointer Casting and Pointer Type Changes [HFC] for more details.

6.44.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

e lLanguages that have polymorphic variables, particularly object-oriented languages.
e Languages that permit upcasts, downcasts, or unchecked casts.
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6.44.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

e Forbid the use of unchecked casts.

e When upcasting, ensure functional consistency of the subclass-specific data to the changes affected via
the upcasted reference.

e Tryto avoid downcasts. Where a downcast is necessary, make sure that you handle any resulting error
situation.

6.44.6 Implications for language design and evolution
In future language design and evolution activities, the following items should be considered:

e Do not allow unchecked casts.

6.45 Extra intrinsics [LRM]
6.45.1 Description of application vulnerability

Most languages define intrinsic procedures, which are easily available, or always "simply available", to any
translation unit. If a translator extends the set of 