
Technical	Report	 ISO/IEC	TR	24772-8:201X(E)	

	

©	ISO/IEC	2013	–	All	rights	reserved	 	 	 1	
	

ISO/IEC	JTC	1/SC	22	N0703	
Date:	2017-03-10	

ISO/IEC	TR	24772-8	

Edition	1	

ISO/IEC	JTC	1/SC	22/WG	23	

Secretariat:	ANSI	

	 	 	 	 	 	 DRAFT				DRAFT			DRAFT	

Information	Technology	—	Programming	languages	—	Guidance	to	avoiding	
vulnerabilities	in	programming	languages	–	Vulnerability	descriptions	for	the	
programming	language	Fortran		

	

Élément	introductif	—	Élément	principal	—	Partie	n:	Titre	de	la	partie	

	

Warning	

This	document	is	not	an	ISO	International	Standard.	It	is	distributed	for	review	and	comment.	It	is	subject	to	change	without	
notice	and	may	not	be	referred	to	as	an	International	Standard.	

Recipients	of	this	draft	are	invited	to	submit,	with	their	comments,	notification	of	any	relevant	patent	rights	of	which	they	
are	aware	and	to	provide	supporting	documentation.	

	 	

Document	type:	International	standard	
Document	subtype:	if	applicable	
Document	stage:	(10)	development	stage	
Document	language:	E	

	

Stephen Michell� 2016-3-7 11:18 AM
Deleted: 	N	0000

Stephen Michell� 2016-3-7 11:18 AM
Deleted: 5-06-19

2	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

	

Copyright	notice	

This	ISO	document	is	a	working	draft	or	committee	draft	and	is	copyright-protected	by	ISO.	While	the	
reproduction	of	working	drafts	or	committee	drafts	in	any	form	for	use	by	participants	in	the	ISO	standards	
development	process	is	permitted	without	prior	permission	from	ISO,	neither	this	document	nor	any	
extract	from	it	may	be	reproduced,	stored	or	transmitted	in	any	form	for	any	other	purpose	without	prior	
written	permission	from	ISO.	

Requests	for	permission	to	reproduce	this	document	for	the	purpose	of	selling	it	should	be	addressed	as	
shown	below	or	to	ISO’s	member	body	in	the	country	of	the	requester:	

ISO	copyright	office	
Case	postale	56,	CH-1211	Geneva	20	
Tel.	+	41	22	749	01	11	
Fax	+	41	22	749	09	47	
E-mail	copyright@iso.org	
Web	www.iso.org	

Reproduction	for	sales	purposes	may	be	subject	to	royalty	payments	or	a	licensing	agreement.	

Violators	may	be	prosecuted.	

©	ISO/IEC	2013	–	All	rights	reserved	 3	
	

Contents	 Page	

	

	 	

4	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

Foreword	

ISO	(the	International	Organization	for	Standardization)	and	IEC	(the	International	Electrotechnical	Commission)	
form	the	specialized	system	for	worldwide	standardization.	National	bodies	that	are	members	of	ISO	or	IEC	
participate	in	the	development	of	International	Standards	through	technical	committees	established	by	the	
respective	organization	to	deal	with	particular	fields	of	technical	activity.	ISO	and	IEC	technical	committees	
collaborate	in	fields	of	mutual	interest.	Other	international	organizations,	governmental	and	non-governmental,	
in	liaison	with	ISO	and	IEC,	also	take	part	in	the	work.	In	the	field	of	information	technology,	ISO	and	IEC	have	
established	a	joint	technical	committee,	ISO/IEC	JTC	1.	

International	Standards	are	drafted	in	accordance	with	the	rules	given	in	the	ISO/IEC	Directives,	Part	2.	

The	main	task	of	the	joint	technical	committee	is	to	prepare	International	Standards.	Draft	International	
Standards	adopted	by	the	joint	technical	committee	are	circulated	to	national	bodies	for	voting.	Publication	as	an	
International	Standard	requires	approval	by	at	least	75	%	of	the	national	bodies	casting	a	vote.	

In	exceptional	circumstances,	when	the	joint	technical	committee	has	collected	data	of	a	different	kind	from	that	
which	is	normally	published	as	an	International	Standard	(“state	of	the	art”,	for	example),	it	may	decide	to	publish	
a	Technical	Report.			A	Technical	Report	is	entirely	informative	in	nature	and	shall	be	subject	to	review	every	five	
years	in	the	same	manner	as	an	International	Standard.	

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	of	patent	
rights.	ISO	and	IEC	shall	not	be	held	responsible	for	identifying	any	or	all	such	patent	rights.	

ISO/IEC	TR	24772-8,	was	prepared	by	Joint	Technical	Committee	ISO/IEC	JTC	1,	Information	technology,	
Subcommittee	SC	22,	Programming	languages,	their	environments	and	system	software	interfaces.	

	 	

©	ISO/IEC	2013	–	All	rights	reserved	 5	
	

Introduction	

This	Technical	Report	provides	guidance	for	the	programming	language	Fortran	so	that	application	developers	
considering	Fortran	or	using	Fortran	will	be	better	able	to	avoid	the	programming	constructs	that	lead	to	
vulnerabilities	in	software	written	in	the	Fortran	language	and	their	attendant	consequences.		This	guidance	
can	also	be	used	by	developers	to	select	source	code	evaluation	tools	that	can	discover	and	eliminate	some	
constructs	that	could	lead	to	vulnerabilities	in	their	software.	This	technical	can	also	be	used	in	comparison	
with	companion	technical	reports	and	with	the	language-independent	report,	TR	24772-1,	to	select	a	
programming	language	that	provides	the	appropriate	level	of	confidence	that	anticipated	problems	can	be	
avoided.		

This	technical	report	part	is	intended	to	be	used	with	TR	24772-1,	which	discusses	programming	language	
vulnerabilities	in	a	language	independent	fashion.	

It	should	be	noted	that	this	Technical	Report	is	inherently	incomplete.		It	is	not	possible	to	provide	a	complete	
list	of	programming	language	vulnerabilities	because	new	weaknesses	are	discovered	continually.		Any	such	
report	can	only	describe	those	that	have	been	found,	characterized,	and	determined	to	have	sufficient	
probability	and	consequence.	

	 	

6	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

Information	Technology	—	Programming	Languages	—	Guidance	to	avoiding	
vulnerabilities	in	programming	languages	through	language	selection	and	
use	–	Vulnerability	descriptions	for	the	programming	language	Fortran		

	

1.	Scope	

This	Technical	Report	specifies	software	programming	language	vulnerabilities	to	be	avoided	in	the	development	
of	systems	where	assured	behaviour	is	required	for	security,	safety,	mission-critical	and	business-critical	software.		
In	general,	this	guidance	is	applicable	to	the	software	developed,	reviewed,	or	maintained	for	any	application.	

Vulnerabilities	described	in	this	technical	report	document	the	way	that	the	vulnerability	described	in	the	
language-independent	writeup	(in	Tr	24772-1)	are	manifested	in	Fortran.		

2.	Normative	references	

The	following	referenced	documents	are	indispensable	for	the	application	of	this	document.		For	dated	
references,	only	the	edition	cited	applies.		For	undated	references,	the	latest	edition	of	the	referenced	document	
(including	any	amendments)	applies.	

ISO/IEC	TR	24772-1	Information	Technology	—	Programming	languages	—	Guidance	to	avoiding	vulnerabilities	in	
programming	languages,	Part	1,	General	Guidance	
ISO/IEC	1539-1:2010,	Information	technology	--	Programming	languages	--	Fortran	--	Part	1:	Base	language	
ISO/IEC	1539-2:2000,	Information	technology	–	Programming	languages	–	Fortran	–	Varying	length	character	
strings		
ISO/IEC	1539-3:1999,	Information	technology	--	Programming	languages	--	Fortran	--	Part	3:	Conditional	
compilation	
ISO	80000–2:2009,	Quantities	and	units	—	Part	2:	Mathematical	signs	and	symbols	to	be	use	in	the	natural	
sciences	and	technology	
ISO/IEC	2382–1:1993,	Information	technology	—	Vocabulary	—	Part	1:	Fundamental	terms	

ISO	IEC	????	854-1987,	Radix-Independent	Floating-Point	Arithmetic,	IEEE,	1987	

3.	Terms	and	definitions,	symbols	and	conventions	

3.1	Terms	and	definitions	

For	the	purposes	of	this	document,	the	terms	and	definitions	given	in	ISO/IEC	2382–1,	in	TR	24772-1	and	the	
following	apply.		Other	terms	are	defined	where	they	appear	in	italic	type.	

The	precise	statement	of	the	following	definitions	can	be	found	in	the	Fortran	standard.	

argument	association:	association	between	an	effective	argument	and	a	dummy	argument	

©	ISO/IEC	2013	–	All	rights	reserved	 7	
	

assumed-shape	array:	a	dummy	argument	array	whose	shape	is	assumed	from	the	corresponding	actual	
argument	

assumed-size	array:	a	dummy	argument	array	whose	size	is	assumed	from	the	corresponding	actual	argument	

deleted	feature:	a	feature	that	existed	in	older	versions	of	Fortran	but	has	been	removed	from	later	versions	of	
the	standard	

explicit	interface:	an	interface	of	a	procedure	that	includes	all	the	characteristics	of	the	procedure	and	names	for	
its	dummy	arguments	

image:	one	of	a	mutually	cooperating	set	of	instances	of	a	Fortran	program;	each	has	its	own	execution	state	and	
set	of	data	objects	

implicit	typing:	an	archaic	rule	that	declares	a	variable	upon	use	according	to	the	first	letter	of	its	name	

kind	type	parameter:	a	value	that	determines	one	of	a	set	of	processor-dependent	data	representation	methods	

module:	a	separate	scope	that	contains	definitions	that	can	be	accessed	from	other	scopes	

obsolescent	feature:	a	feature	that	is	not	recommended	because	better	methods	exist	in	the	current	standard	

processor:	combination	of	computing	system	and	mechanism	by	which	programs	are	transformed	for	use	on	that	
computing	system	

processor	dependent:	not	completely	specified	in	the	Fortran	standard,	having	one	of	a	set	of	methods	and	
semantics	determined	by	the	processor	

pure	procedure:	a	procedure	subject	to	constraints	such	that	its	execution	has	no	side	effects	

type:	named	category	of	data	characterized	by	a	set	of	values,	a	syntax	for	denoting	these	values,	and	a	set	of	
operations	that	interpret	and	manipulate	the	values	

4	Language	concepts				

The	Fortran	standard	is	written	in	terms	of	a	processor which	includes	the	language	translator	(that	is,	the	
compiler	or	interpreter,	and	supporting	libraries),	the	operating	system	(affecting,	for	example,	how	files	are	
stored	or	which	files	are	available	to	a	program),	and	the	hardware	(affecting,	for	example,	the	machine	
representation	of	numbers	or	the	availability	of	a	clock).	The	Fortran	standard	specifies	how	the	contents	of	
files	are	interpreted.	The	standard	does	not	specify	the	size	or	complexity	of	a	program	that	might	cause	a	
processor	to	fail.	

A	program	conforms	to	the	Fortran	standard	if	it	uses	only	forms	specified	by	the	standard,	and	does	so	with	the	
interpretation	given	by	the	standard.	A	subprogram	is	standard-conforming	if	it	can	be	included	in	an	otherwise	
standard-conforming	program	in	a	way	that	is	standard	conforming.	

The	Fortran	standard	allows	a	processor	to	support	features	not	defined	by	the	standard,	provided	such	features	
do	not	contradict	the	standard.	Use	of	such	features,	called	extensions,	should	be	avoided.	Processors	are	able	to	
detect	and	report	the	use	of	extensions.	

8	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

Annex	B.1	of	the	Fortran	standard	lists	six	features	of	older	versions	of	Fortran	that	have	been	deleted	
because	they	were	redundant	and	considered	largely	unused.	Although	no	longer	part	of	the	standard,	they	
are	supported	by	many	processors	to	allow	old	programs	to	continue	to	run.	Annex	B.2	lists	ten	features	of	
Fortran	that	are	regarded	as	obsolescent	because	they	are	redundant	–	better	methods	are	available	in	the	
current	standard.	The	obsolescent	features	are	described	in	the	standard	using	a	small	font.	The	use	of	any	
deleted	or	obsolescent	feature	should	be	avoided.	It	should	be	replaced	by	a	modern	counterpart	for	greater	
clarity	and	reliability	(by	automated	means	if	possible).	Processors	are	able	to	detect	and	report	the	use	of	
these	features.	

The	Fortran	standard	defines	a	set	of	intrinsic	procedures	and	intrinsic	modules,	and	allows	a	processor	to	
extend	this	set	with	further	procedures	and	modules.	A	program	that	uses	an	intrinsic	procedure	or	module	
not	defined	by	the	standard	is	not	standard-conforming.	A	program	that	uses	an	entity	not	defined	by	the	
standard	from	a	module	defined	by	the	standard	is	not	standard-conforming.	Use	of	intrinsic	procedures	or	
modules	not	defined	by	the	standard	should	be	avoided.	Use	of	entities	not	defined	by	the	standard	from	
intrinsic	modules	should	be	avoided.	Processors	are	able	to	detect	and	report	the	use	of	intrinsic	procedures	
not	defined	by	the	standard.	

The	Fortran	standard	does	not	completely	specify	the	effects	of	programs	in	some	situations,	but	rather	allows	
the	processor	to	employ	any	of	several	alternatives.	These	alternatives	are	called	processor	dependencies	and	
are	summarized	in	Annex	A.2	of	the	standard.	The	programmer	should	not	rely	for	program	correctness	on	a	
particular	alternative	being	chosen	by	a	processor.	In	general,	the	representation	of	quantities,	the	results	of	
operations,	and	the	results	of	the	calculations	performed	by	intrinsic	procedures	are	all	processor-dependent	
approximations	of	their	respective	exact	mathematical	equivalent.	

Although	strenuous	efforts	have	been	made,	and	are	ongoing,	to	ensure	that	the	Fortran	standard	provides	an	
interpretation	for	all	Fortran	programs,	circumstances	occasionally	arise	where	the	standard	fails	to	do	so.	If	the	
standard	fails	to	provide	an	interpretation	for	a	program,	the	program	is	not	standard-conforming.	

Processors	are	required	to	detect	deviation	from	the	standard	so	far	as	can	be	determined	from	syntax	rules	and	
constraints	during	translation	only,	and	not	during	execution	of	a	program.	It	is	the	responsibility	of	the	program	
to	adhere	to	the	Fortran	standard.	Many	processors	offer	debugging	aids	to	assist	with	this	task.	For	example,	
most	processors	support	options	to	report	when,	during	execution,	an	array	subscript	is	found	to	be	out-of-
bounds	in	an	array	reference.	

Generally,	the	Fortran	standard	is	written	as	specifying	what	a	correct	program	produces	as	output,	and	not	how	
such	output	is	actually	produced.	That	is,	the	standard	specifies	that	a	program	executes	as	if	certain	actions	
occur	in	a	certain	order,	but	not	that	such	actions	actually	occur.	A	means	other	than	Fortran	(for	example,	a	
debugger)	might	be	able	to	detect	such	particulars,	but	not	a	standard-specified	means	(for	example,	a	print
statement).	

The	values	of	intrinsic	data	objects	are	described	in	terms	of	a	bit	model,	an	integer	model,	and	a	floating-point	
model.	Inquiry	intrinsic	procedures	return	values	that	describe	the	model	rather	than	any	particular	hardware.	
The	Fortran	standard	places	minimal	constraints	on	the	representation	of	entities	of	type	character	and	type	
logical.	

Interoperability	of	Fortran	program	units	with	program	units	written	in	other	languages	is	defined	in	terms	of	a	
companion	processor.	A	Fortran	processor	is	its	own	companion	processor,	and	might	have	other	companion	
processors	as	well.	The	interoperation	of	Fortran	program	units	is	defined	as	if	the	companion	processor	is	
defined	by	the	C	programming	language.	

©	ISO/IEC	2013	–	All	rights	reserved	 9	
	

Fortran	is	an	inherently	parallel	programming	language,	with	program	execution	consisting	of	one	or	more	
asynchronously	executing	replications,	called	images,	of	the	program.	The	standard	makes	no	requirements	of	
how	many	images	exist	for	any	program,	nor	of	the	mechanism	of	inter-image	communication.	Inquiry	intrinsic	
procedures	are	defined	to	allow	a	program	to	detect	the	number	of	images	in	use,	and	which	replication	a	
particular	image	represents.	Synchronization	statements	are	defined	to	allow	a	program	to	synchronize	its	
images.	Within	an	image,	many	statements	involving	arrays	are	specifically	designed	to	allow	efficient	vector	
instructions.	Several	constructs	for	iteration	are	specifically	designed	to	allow	parallel	execution.	

Fortran	is	the	oldest	international	standard	programming	language	with	the	first	Fortran	processors	appearing	
over	fifty	years	ago.	During	half	a	century	of	computing,	computing	technology	has	changed	immensely	and	
Fortran	has	evolved	via	several	revisions	of	the	standard.	Also,	during	half	a	century	of	computing	and	in	response	
to	customer	demand,	some	popular	processors	supported	extensions.	There	remains	a	substantial	body	of	
Fortran	code	that	is	written	to	previous	versions	of	the	standard	or	with	extensions	to	previous	versions,	and	
before	modern	techniques	of	software	development	came	into	widespread	use.	The	process	of	revising	the	
standard	has	been	done	carefully	with	a	goal	of	protecting	applications	programmers’	investments	in	older	codes.	
Very	few	features	were	deleted	from	older	revisions	of	the	standard;	those	that	were	deleted	were	little	used,	or	
redundant	with	a	superior	alternative,	or	error-prone	with	a	safer	alternative.	Many	modern	processors	generally	
continue	to	support	deleted	features	from	older	revisions	of	the	Fortran	standard,	and	even	some	extensions	
from	older	processors,	and	do	so	with	the	intention	of	reproducing	the	original	semantics.	Also,	there	exist	
automatic	means	of	replacing	at	least	some	archaic	features	with	modern	alternatives.	Even	with	automatic	
assistance,	there	might	be	reluctance	to	change	existing	software	due	to	its	having	proven	itself	through	usage	on	
a	wider	variety	of	hardware	than	is	in	general	use	at	present,	or	due	to	issues	of	regulation	or	certification.	The	
decision	to	modernize	trusted	software	is	made	cognizant	of	many	factors,	including	the	availability	of	resources	
to	do	so	and	the	perceived	benefits.	This	document	does	not	attempt	to	specify	criteria	for	modernizing	trusted	
old	code.	

5	General	guidance	for	Fortran	

In	addition	to	the	Top	10	generic	programming	rules	from	TR	24772-1	clause	5.4,	additional	rules	from	this	section	
apply	specifically	to	the	C	programming	language.	The	recommendations	of	this	section	are	restatements	of	
recommendations	from	clause	6,	but	represent	ones	stated	frequently,	or	that	are	considered	as	particularly	
noteworthy	by	the	authors.	Clause	6	of	this	document	contains	the	full	set	of	recommendations,	as	well	as	
explanations	of	the	problems	that	led	to	the	recommendations	made.	

Every	guidance	provided	in	this	section,	and	in	the	corresponding	Part	section,	is	supported	material	in	Clause	6	of	
this	document,	as	well	as	other	important	recommendations.	

What	do	we	do	with	generic	rules	that	do	not	apply	to	this	Part?

What	guidance	do	we	give	when	the	generic	rule	is	highly	qualified	here?		
	
Number	 Recommended	avoidance	mechanism	 References	
1	 Never	use	implicit	typing.	Always	declare	all	variables.	Use	

implicit	none	to	enforce	this.	
	

2	 Use	explicit	conversion	intrinsics	for	the	conversion	of	values	
of	intrinsic	types,	even	when	the	conversion	is	within	one	type	
and	is	only	a	change	of	kind.	Doing	so	alerts	the	maintenance	
 programmer	to	the	fact	of	the	conversion,	and	that	it	is	

	

10	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

intentional.	

3	 Use	a	temporary	variable	with	a	large	range	to	read	a	value	
from	an	untrusted	source	so	that	 the	value	can	be	checked	
against	the	limits	provided	by	the	inquiry	intrinsics	for	the	type	
and	kind	of	the	variable	to	be	used.	Similarly,	use	a	temporary	
variable	with	a	large	range	to	hold	the	value	of	an	expression	
before	assigning	it	to	a	variable	of	a	type	and	kind	that	has	a	
smaller	numeric	range	to	ensure	that	the	value	of	the	
expression	is	within	the	allowed	range	for	the	variable.	When	
assigning	an	expression	of	one	type	and	kind	to	a	variable	of	a	
type	and	kind	that	might	have	a	smaller	numeric	range,	check	
that	the	value	of	the	expression	is	within	the	allowed	range	for	
the	variable.	Use	the	inquiry	intrinsics	to	supply	the	extreme	
values	allowed	for	the	variable.	

	

		4	 Use	whole	array	assignment,	operations,	and	bounds	inquiry	
intrinsics	where	possible.	

	

5	 Obtain	array	bounds	from	array	inquiry	intrinsics	wherever	
needed.	Use	explicit	interfaces	and	 assumed-shape	arrays	or	
allocatable	array	as	procedure	dummy	arguments	to	ensure	
that	array	bounds	information	is	passed	to	all	procedures	
where	needed,	including	dummy	arguments	and	automatic	
arrays.	

	

6	 Use	default	initialization	in	the	declarations	of	pointer	
components.	

	

7	 Specify	pure	(or	elemental)	for	procedures	where	possible	for	
greater	clarity	of	the	 programmer’s	intentions.	

	

8	 Code	a	status	variable	for	all	statements	that	support	one,	and	
examine	its	value	prior	to	 continuing	execution	for	faults	that	
cause	termination,	provide	a	message	to	users	of	the	program,	
perhaps	with	the	help	of	the	error	message	generated	by	the	
statement	whose	execution	generated	the	error..	

	

9	 Avoid	the	use	of	common	and	equivalence.	Use	modules	
instead	of	common	to	share	data.	Use	allocatable	data	instead	
of	equivalence.	

	

10	 Supply	an	explicit	interface	to	specify	the	external	attribute	for	
all	external	procedures	invoked.	

	

	

Stephen Michell� 2017-3-7 12:13 PM
Formatted: Font:Not Bold, English

©	ISO/IEC	2013	–	All	rights	reserved	 11	
	

6	Specific	Guidance	for	Fortran	

6.1	General		

This	clause	contains	specific	advice	for	Fortran	about	the	possible	presence	of	vulnerabilities	as	described	in	TR	
24772-1,	and	provides	specific	guidance	on	how	to	avoid	them	in	Fortran	program	code.	This	section	mirrors	TR	
24772-1	clause	6	in	that	the	vulnerability	“Type	System	[IHN]”	is	found	in	6.2	of	TR	24772-1,	and	Fortran	specific	
guidance	is	found	in	clause	6	and	subclauses	in	this	TR.		

6.2	Type	System	[IHN]	

6.2.1	Applicability	to	language	

The	Fortran	type	system	is	a	strong	type	system	consisting	of	the	data	type	and	type	parameters.	A	type	
parameter	is	an	integer	value	that	specifies	a	parameterization	of	the	type;	a	user-defined	type	need	not	have	any	
type	parameters.	Objects	of	the	same	type	that	differ	in	the	value	of	their	type	parameter(s)	might	differ	in	
representation,	and	therefore	in	the	limits	of	the	values	they	can	represent.	For	many	purposes	for	which	other	
languages	use	type,	Fortran	uses	the	type,	type	parameters,	and	rank	of	a	data	object.			A	conforming	processor	
supports	at	least	two	kinds	of	type	real	and	a	complex	kind	corresponding	to	each	supported	real	kind.	Double	
precision	real	is	required	to	provide	more	digits	of	decimal	precision	than	default	real.	A	conforming	processor	
supports	at	least	one	integer	kind	with	a	range	of	1018 or	greater.	

The	compatible	types	in	Fortran	are	the	numeric	types:	integer,	real,	and	complex.	No	coercion	exists	between	
type	logical	and	any	other	type,	nor	between	type	character	and	any	other	type.	Among	the	numeric	types,	
coercion	might	result	in	a	loss	of	information	or	an	undetected	failure	to	conform	to	the	standard.	For	example,	if	
a	double-precision	real	is	assigned	to	a	single-precision	real,	round-off	is	likely;	and	if	an	integer	operation	results	
in	a	value	outside	the	supported	range,	the	program	is	not	conforming.	This	might	not	be	detected.		Likewise,	
assigning	a	value	to	an	integer	variable	whose	range	does	not	include	the	value,	renders	the	program	not	
conforming.	

An	example	of	coercion	in	Fortran	is	(assuming	rkp names	a	suitable	real	kind	parameter):	

real(kind= rkp) :: a
integer :: i
a = a + i

which	is	automatically	treated	as	if	it	were:		

a = a + real(i, kind= rkp)	

Objects	of	derived	types	are	considered	to	have	the	same	type	when	their	type	definitions	are	the	same	instance	
of	text	(which	can	be	made	available	to	other	program	units	by	module	use).	Sequence	types	and	bind(c)	types	
represent	a	narrow	exception	to	this	rule.	Sequence	types	are	less	commonly	used	because	they	are	less	
convenient	to	use,	cannot	be	extended,	and	cannot	interoperate	with	types	defined	by	a	companion	processor.	
Bind(c)	types	are,	in	general,	only	used	to	interoperate	with	types	defined	by	a	companion	processor;	they	also	
cannot	be	extended.	

A	derived	type	can	have	type	parameters	and	these	parameters	can	be	applied	to	the	derived	type’s	components.	
Default	assignment	of	variables	of	the	same	derived	type	is	component-wise.	Default	assignment	can	be	

Stephen Michell� 2016-3-7 11:20 AM
Deleted: <#>[See	Template]	[Thoughts	
welcomed	as	to	what	could	be	provided	here.	
Possibly	an	opportunity	for	the	language	
community	to	address	issues	that	do	not	
correlate	to	the	guidance	of	section	6.	For	
languages	that	provide	non-mandatory	tools,	
how	those	tools	can	be	used	to	provide	effective	
mitigation	of	vulnerabilities	described	in	the	
following	sections]	

Stephen Michell� 2016-3-7 11:24 AM
Formatted: Font:Italic

12	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

overridden	by	an	explicitly	coded	assignment	procedure.	For	derived-type	objects,	type	changing	assignments	and	
conversion	procedures	are	required	to	be	explicitly	coded	by	the	programmer.	Other	than	default	assignment,	
each	operation	on	a	derived	type	is	defined	by	a	procedure.	These	procedures	can	contain	any	necessary	checks	
and	coercions.	

In	addition	to	the	losses	mentioned	in	Clause	6	of	ISO/IEC	TR	24772,	assignment	of	a	complex	entity	to	a	
noncomplex	variable	only	assigns	the	real	part.	

Assignment	of	an	object	of	extended	type	to	one	of	base	type	only	assigns	the	base	type	part.	

Intrinsic	functions	can	be	used	in	constant	expressions	that	compute	desired	kind	type	parameter	values.	Also,	
the	intrinsic	module	iso_fortran_env	supplies	named	constants	suitable	for	kind	type	parameters.	

6.2.2	Guidance	to	language	users	

• Use	kind	values	based	on	the	needed	range	for	integer	types	via	the	selected_int_kind	intrinsic	
procedure,	and	based	on	the	range	and	precision	needed	for	real	and	complex	types	via	the	
selected_real_kind	intrinsic	procedure.	

• Use	explicit	conversion	intrinsics	for	conversions	of	values	of	intrinsic	types,	even	when	the	conversion	is	
within	one	type	and	is	only	a	change	of	kind.	Doing	so	alerts	the	maintenance	programmer	to	the	fact	of	
the	conversion,	and	that	it	is	intentional.	

• Use	inquiry	intrinsic	procedures	to	learn	the	limits	of	a	variable’s	representation	and	thereby	take	care	to	
avoid	exceeding	those	limits.	

• Use	derived	types	to	avoid	implicit	conversions.	
• Use	compiler	options	when	available	to	detect	during	execution	when	a	significant	loss	of	information	

occurs.	

• Use	compiler	options	when	available	to	detect	during	execution	when	an	integer	value	overflows.	

6.3	Bit	Representation	[STR]	

6.3.1	Applicability	to	language	
Fortran	defines	bit	positions	by	a	bit	model	described	in	Subclause	13.3	of	the	standard.	Care	should	be	taken	to	
understand	the	mapping	between	an	external	definition	of	the	bits	(for	example,	a	control	register)	and	the	bit	
model.	The	programmer	can	rely	on	the	bit	model	regardless	of	endian,	or	other	hardware	peculiarities.	

Fortran	allows	constants	to	be	defined	by	binary,	octal,	or	hexadecimal	digits,	collectively	called	BOZ	constants.	
These	values	can	be	assigned	to	named	constants	thereby	providing	a	name	for	a	mask.	

Fortran	provides	access	to	individual	bits	within	a	storage	unit	by	bit	manipulation	intrinsic	procedures.	Of	
particular	use,	double-word	shift	procedures	are	provided	to	extract	bit	fields	crossing	storage	unit	boundaries.	

The	bit	model	does	not	provide	an	interpretation	for	negative	integer	values.	There	are	distinct	shift	intrinsic	
procedures	to	interpret,	or	not	interpret,	the	left-most	bit	as	the	sign	bit.	

6.3.2	Guidance	to	language	users		

• Use	the	intrinsic	procedure	bit_size	to	determine	the	size	of	the	bit	model	supported	by	the	kind	of	
integer	in	use.	

• Be	aware	that	the	Fortran	standard	uses	the	term	“left-most”	to	refer	to	the	highest-order	bit,	

©	ISO/IEC	2013	–	All	rights	reserved	 13	
	

and	the	term	“left”	to	mean	towards	(as	in	shiftl),	or	from	(as	in	maskl),	the	highest-order	
bit.	

• Be	aware	that	the	Fortran	standard	uses	the	term	“right-most”	to	refer	to	the	lowest-order	bit,	and	the	
term	“right”	to	mean	towards	(as	in	shiftr),	or	from	(as	in	maskr),	the	lowest-order	bit.	

• Avoid	bit	constants	made	by	adding	integer	powers	of	two	in	favour	of	those	created	by	the	bit	
intrinsic	procedures	or	encoded	by	BOZ	constants.	

• Use	bit	intrinsic	procedures	to	operate	on	individual	bits	and	bit	fields,	especially	those	that	occupy	more	
than	one	storage	unit.	Choose	shift	intrinsic	procedures	cognizant	of	the	need	to	affect	the	sign	bit,	or	
not.	

• Create	objects	of	derived	type	to	hide	use	of	bit	intrinsic	procedures	within	defined	operators	and	to	
separate	those	objects	subject	to	arithmetic	operations	from	those	objects	subject	to	bit	operations.	

6.4	Floating-point	Arithmetic	[PLF]	

6.4.1	Applicability	to	language	

Fortran	supports	floating-point	data.	Furthermore,	most	processors	support	parts	of	the	IEEE	754	standard	and	
facilities	are	provided	for	the	programmer	to	detect	the	extent	of	conformance.	

The	rounding	mode	in	effect	during	translation	might	differ	from	the	rounding	mode	in	effect	during	
execution;	the	rounding	mode	could	change	during	execution.	A	separate	rounding	mode	is	provided	for	
input/output	formatting	conversions,	this	rounding	mode	could	also	change	during	execution.	

Fortran	provides	intrinsic	procedures	to	give	values	describing	the	limits	of	any	representation	method	in	use,	to	
provide	access	to	the	parts	of	a	floating-point	quantity,	and	to	set	the	parts.	

6.4.2	Guidance	to	language	users	

• Use	procedures	from	a	trusted	library	to	perform	calculations	where	floating-point	accuracy	is	needed.	
Understand	the	use	of	the	library	procedures	and	test	the	diagnostic	status	values	returned	to	ensure	the	
calculation	proceeds	as	expected.	

• Avoid	creating	a	logical	value	from	a	test	for	equality	or	inequality	between	two	floating-point	
expressions.	Use	compiler	options	where	available	to	detect	such	usage.	

• Do	not	use	floating-point	variables	as	loop	indices;	use	integer	variables	instead.	(This	relies	on	a	deleted	
feature.)	A	floating-point	value	can	be	computed	from	the	integer	loop	variable	as	needed.	

• Use	intrinsic	inquiry	procedures	to	determine	the	limits	of	the	representation	in	use	when	needed.	
• Avoid	the	use	of	bit	operations	to	get	or	to	set	the	parts	of	a	floating	point	quantity.	Use	intrinsic	

procedures	to	provide	the	functionality	when	needed.	
• Use	the	intrinsic	module	procedures	to	determine	the	limits	of	the	processor’s	conformance	to	IEEE	754,	

and	to	determine	the	limits	of	the	representation	in	use,	where	the	IEEE	intrinsic	modules	and	the	IEEE	
real	kinds	are	in	use.	

• Use	the	intrinsic	module	procedures	to	detect	and	control	the	available	rounding	modes	and	exception	
flags,	where	the	IEEE	intrinsic	modules	are	in	use.	

Stephen Michell� 2016-3-7 11:26 AM
Comment [1]: Confirm	that	the	FP	issues	
updated	in	-1	at	the	June	2015	meeting	are	
reflected	here.	

14	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

6.5	Enumerator	Issues	[CCB]	

6.5.1	Applicability	to	language	

Fortran	provides	enumeration	values	for	interoperation	with	C	programs	that	use	C	enums.	Their	use	is	expected	
most	often	to	occur	when	a	C	enum	appears	in	the	function	prototype	whose	interoperation	requires	a	Fortran	
interface.	

The	Fortran	enumeration	values	are	integer	constants	of	the	correct	kind	to	interoperate	with	the	corresponding	
C	enum.	The	Fortran	variables	to	be	assigned	the	enumeration	values	are	of	type	integer	and	the	correct	kind	to	
interoperate	with	C	variables	of	C	type	enum.		

6.5.2	Guidance	to	language	users		

• Use	enumeration	values	in	Fortran	only	when	interoperating	with	C	procedures	that	have	enumerations	
as	formal	parameters	and/or	return	enumeration	values	as	function	results.	

• Ensure	the	interoperability	of	the	C	and	Fortran	definitions	of	every	enum	type	used.	
• Ensure	that	the	correct	companion	processor	has	been	identified,	including	any	companion	processor	

options	that	affect	enum	definitions.	

• Do	not	use	variables	assigned	enumeration	values	in	arithmetic	operations,	or	to	receive	the	results	of	
arithmetic	operations	if	subsequent	use	will	be	as	an	enumerator.	

6.6	Numeric	Conversion	Errors	[FLC]	

6.6.1	Applicability	to	language	

Fortran	processors	are	required	to	support	two	kinds	of	type	real	and	are	required	to	support	a	complex	kind	for	
every	real	kind	supported.	Fortran	processors	are	required	to	support	at	least	one	integer	kind	with	a	range	of	
1018	or	greater	and	most	processors	support	at	least	one	integer	kind	with	a	smaller	range.	

Automatic	conversion	among	these	types	is	allowed.	

6.6.2	Guidance	to	language	users	

• Use	the	kind	selection	intrinsic	procedures	to	select	sizes	of	variables	supporting	the	required	
operations	and	values.	

• Use	a	temporary	variable	with	a	large	range	to	read	a	value	from	an	untrusted	source	so	that	the	
value	can	be	checked	against	the	limits	provided	by	the	inquiry	intrinsics	for	the	type	and	kind	of	the	
variable	to	be	used.	

• Use	a	temporary	variable	with	a	large	range	to	hold	the	value	of	an	expression	before	assigning	it	to	a	
variable	of	a	type	and	kind	that	has	a	smaller	numeric	range	to	ensure	that	the	value	of	the	
expression	is	within	the	allowed	range	for	the	variable.	Use	the	inquiry	intrinsics	to	supply	the	
extreme	values	allowed	for	the	variable.	

• When	assigning	an	expression	of	one	type	and	kind	to	a	variable	of	a	type	and	kind	that	might	have	a	
smaller	numeric	range,	check	that	the	value	of	the	expression	is	within	the	allowed	range	for	the	
variable.	Use	the	inquiry	intrinsics	to	supply	the	extreme	values	allowed	for	the	variable.	

• Use	derived	types	and	put	checks	in	the	applicable	defined	assignment	procedures.	
• Use	static	analysis	to	identify	whether	numeric	conversion	will	lose	information.	

©	ISO/IEC	2013	–	All	rights	reserved	 15	
	

• Use	compiler	options	when	available	to	detect	during	execution	when	a	significant	loss	of	information	
occurs.	

• Use	compiler	options	when	available	to	detect	during	execution	when	an	integer	value	overflows.	

6.7	String	Termination	[CJM]	

This	vulnerability	is	not	applicable	to	Fortran	since	strings	are	not	terminated	by	a	special	character.	

	

6.8	Buffer	Boundary	Violation	(Buffer	Overflow)	[HCB]	

A	Fortran	program	might	be	affected	by	this	vulnerability	in	two	situations.	The	first	is	that	an	array	subscript	
could	be	outside	its	bounds,	and	the	second	is	that	a	character	substring	index	could	be	outside	its	length.	The	
Fortran	standard	requires	that	each	array	subscript	be	separately	within	its	bounds,	not	simply	that	the	resulting	
offset	be	within	the	array	as	a	whole.	

Fortran	does	not	mandate	array	subscript	checking	to	verify	in-bounds	array	references,	nor	character	substring	
index	checking	to	verify	in-bounds	substring	references.	

The	Fortran	standard	requires	that	array	shapes	conform	for	whole	array	assignments	and	operations	where	the	
left-hand	side	is	not	an	allocatable	object.	However,	Fortran	does	not	mandate	that	array	shapes	be	checked	
during	whole-array	assignments	and	operations.	

When	a	whole-array	assignment	occurs	to	define	an	allocatable	array,	the	allocatable	array	is	resized,	if	needed,	
to	the	correct	size.	When	a	whole	character	assignment	occurs	to	define	an	allocatable	character,	the	allocatable	
character	is	resized,	if	needed,	to	the	correct	size.	

When	a	character	assignment	occurs	to	define	a	non-allocatable	character	entity	and	a	length	mismatch	occurs,	
the	assignment	has	a	blank-fill	(if	the	value	is	too	short)	or	truncate	(if	the	value	is	too	long)	semantic.	Otherwise,	
the	variable	defined	is	resized,	if	needed,	to	the	correct	size.	

Most	implementations	include	an	optional	facility	for	bounds	checking.	These	are	likely	to	be	incomplete	for	
a	dummy	argument	that	is	an	explicit-shape	or	assumed-size	array	because	of	passing	only	the	address	of	
such	an	object,	or	because	the	local	declaration	of	the	bounds	might	be	inconsistent	with	those	of	the	actual	
argument.	It	is	therefore	preferable	to	use	an	assumed-shape	array	as	a	procedure	dummy	argument.	The	
performance	of	operations	involving	assumed-shape	arrays	is	improved	by	the	use	of	the	contiguous
attribute.	

Fortran	provides	a	set	of	array	bounds	intrinsic	inquiry	procedures	which	can	be	used	to	obtain	the	bounds	of	
arrays	where	such	information	is	available.	Fortran	also	provides	character	length	intrinsic	inquiry	intrinsics	so	the	
length	of	character	entities	can	be	reliably	found.		

6.8.2	Guidance	to	language	users		

• Ensure	that	consistent	bounds	information	about	each	array	is	available	throughout	a	program.	
• Enable	bounds	checking	throughout	development	of	a	code.	Disable	bounds	checking	during	production	

runs	only	for	program	units	that	are	critical	for	performance.	
• Use	whole	array	assignment,	operations,	and	bounds	inquiry	intrinsics	where	possible.	
• Obtain	array	bounds	from	array	inquiry	intrinsic	procedures	wherever	needed.	Use	explicit	interfaces	and	

16	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

assumed-shape	arrays	or	allocatable	
• dummy	arguments	to	ensure	that	array	shape	information	is	passed	to	all	procedures	where	needed,	and	

can	be	used	to	dimension	local	automatic	arrays.	
• Use	allocatable	arrays	where	array	operations	involving	differently-sized	arrays	might	occur	so	the	left-

hand	side	array	is	reallocated	as	needed.	
• Use	allocatable	character	variables	where	assignment	of	strings	of	widely-varying	sizes	is	expected	so	the	

left-hand	side	character	variable	is	reallocated	as	needed.	
• Use	intrinsic	assignment	rather	than	explicit	loops	to	assign	data	to	statically-sized	character	variables	so	

the	truncate-or-blank-fill	semantic	protects	against	storing	outside	the	assigned	variable.	

	

6.9	Unchecked	Array	Indexing	[XYZ]	

6.9.1	Applicability	to	language	

A	Fortran	program	might	be	affected	by	this	vulnerability	in	the	situation	an	array	subscript	could	be	outside	its	
bounds.	The	Fortran	standard	requires	that	each	array	subscript	be	separately	within	its	bounds,	not	simply	that	
the	resulting	offset	be	within	the	array	as	a	whole.	

Fortran	does	not	mandate	that	array	sizes	be	checked	during	whole-array	assignment	to	a	non-allocatable	array.	

When	a	whole-array	assignment	occurs	to	define	an	allocatable	array,	the	allocatable	array	is	resized,	if	needed,	
to	the	correct	size.	When	a	whole	character	assignment	occurs	to	define	an	allocatable	character,	the	allocatable	
character	is	resized,	if	needed.	

Most	processors	include	an	optional	facility	for	bounds	checking.	These	are	likely	to	be	incomplete	for	a	
dummy	argument	that	is	an	explicit-shape	or	assumed-size	array	because	of	passing	only	the	address	of	such	
an	object,	or	because	the	local	declaration	of	the	bounds	might	be	inconsistent	with	those	of	the	actual	
argument.	It	is	therefore	preferable	to	use	an	assumed-shape	array	as	a	procedure	argument.	The	
performance	of	operations	involving	assumed-shape	arrays	is	improved	by	the	use	of	the	contiguous
attribute.	

Fortran	provides	a	set	of	array	bounds	intrinsic	inquiry	procedures	which	can	obtain	the	bounds	of	arrays	where	
such	information	is	available.	

6.9.2	Guidance	to	language	users	

• Ensure	that	consistent	bounds	information	about	each	array	is	available	throughout	a	program.	
• Enable	bounds	checking	throughout	development	of	a	code.	Disable	bounds	checking	during	production	

runs	only	for	program	units	that	are	critical	for	performance.	
• Use	whole	array	assignment,	operations,	and	bounds	inquiry	intrinsics	where	possible.	
• Obtain	array	bounds	from	array	inquiry	intrinsic	procedures	wherever	needed.	Use	explicit	interfaces	and	

assumed-shape	arrays	or	allocatable	arrays	as	procedure	dummy	arguments	to	ensure	that	array	shape	
information	is	passed	to	all	procedures	where	needed,	and	can	be	used	to	dimension	local	automatic	
arrays.	

• Use	allocatable	arrays	where	arrays	operations	involving	differently-sized	arrays	might	occur	so	the	
left-hand	side	array	is	reallocated	as	needed.	

• Declare	the	lower	bound	of	each	array	extent	to	fit	the	problem,	thus	minimizing	the	use	of	subscript	

©	ISO/IEC	2013	–	All	rights	reserved	 17	
	

arithmetic.	
• Arrays	can	be	declared	in	modules	which	makes	their	bounds	information	available	wherever	the	array	is	

available.		

6.10	Unchecked	Array	Copying	[XYW]	

Fortran	provides	array	assignment,	so	this	vulnerability	applies.	

An	array	assignment	with	shape	disagreement	is	prohibited,	but	the	standard	does	not	require	the	processor	to	
check	for	this.	

When	a	whole-array	assignment	occurs	to	define	a	non-coarray	allocatable	array,	the	non-coarray	allocatable	
array	is	resized,	if	needed,	to	the	correct	size.	When	a	whole	character	assignment	occurs	to	define	a	non-coarray	
allocatable	character,	the	non-coarray	allocatable	character	is	resized,	if	needed.	

Most	implementations	include	an	optional	facility	for	bounds	checking.	These	are	likely	to	be	incomplete	for	a	
dummy	argument	that	is	an	explicit-shape	or	assumed-size	array	because	of	passing	only	the	address	of	such	an	
object,	and/or	the	reliance	on	local	declaration	of	the	bounds.	It	is	therefore	preferable	to	use	an	assumed-shape	
or	allocatable	array	as	a	procedure	dummy	argument.	The	performance	of	operations	involving	assumed-shape	
arrays	is	improved	by	the	use	of	the	contiguous	attribute.	

Fortran	provides	a	set	of	array	bounds	intrinsic	inquiry	procedures	which	can	be	used	to	obtain	the	bounds	
of	arrays	where	such	information	is	available.		

6.10.2	Guidance	to	language	users		

• Ensure	that	consistent	bounds	information	about	each	array	is	available	throughout	a	program.	
• Enable	bounds	checking	throughout	development	of	a	code.	Disable	bounds	checking	during	production	

runs	only	for	program	units	that	are	critical	for	performance.	
• Use	whole	array	assignment,	operations,	and	bounds	inquiry	intrinsics	where	possible.	
• Obtain	array	bounds	from	array	inquiry	intrinsics	wherever	needed.	Use	explicit	interfaces	and	assumed-

shape	arrays	or	allocatable	array	as	procedure	dummy	arguments	to	ensure	that	array	bounds	
information	is	passed	to	all	procedures	where	needed,	including	dummy	arguments	and	automatic	arrays.	

• Use	allocatable	arrays	where	arrays	operations	involving	differently-sized	arrays	might	occur	so	the	left-
hand	side	array	is	reallocated	as	needed.	

6.11	Pointer	Type	Conversions	[HFC]	

6.11.1	Applicability	to	language		

This	vulnerability	is	not	applicable	to	Fortran	in	most	circumstances.	There	is	no	mechanism	for	associating	a	data	
pointer	with	a	procedure	pointer.	A	non-polymorphic	pointer	is	declared	with	a	type	and	can	be	associated	only	
with	an	object	of	its	type.	A	polymorphic	pointer	that	is	not	unlimited	polymorphic	is	declared	with	a	type	and	can	
be	associated	only	with	an	object	of	its	type	or	an	extension	of	its	type.	An	unlimited	polymorphic	pointer	can	be	
used	to	reference	its	target	only	by	using	a	type	with	which	the	type	of	its	target	is	compatible	in	a	select	type	
construct.	These	restrictions	are	enforced	during	compilation.	An	unlimited	polymorphic	pointer	can	also	be	
assigned	to	a	sequence	type	or	bind(c)	type	pointer;	this	is	unsafe,	and	cannot	be	checked	during	compilation.	

18	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

When	an	unlimited	polymorphic	pointer	has	a	target	of	a	sequence	type	or	an	interoperable	derived	type,	a	type-
breaking	cast	might	occur.	

A	pointer	appearing	as	an	argument	to	the	intrinsic	module	procedure	c_f_pointer	effectively	has	its	
type	changed	to	the	intrinsic	type	c_ptr.	Further	casts	could	be	made	if	the	pointer	is	processed	by	
procedures	written	in	a	language	other	than	Fortran.	

6.11.2	Guidance	to	language	users	

• Avoid	C	interoperability	features	in	programs	that	do	not	interoperate	with	other	languages.	
• Avoid	use	of	sequence	types.		

6.12	Pointer	Arithmetic	[RVG]	

This	vulnerability	is	not	applicable	to	Fortran.	There	is	no	mechanism	for	pointer	arithmetic	in	Fortran.	

6.13	Null	Pointer	Dereference	[XYH]	

A	Fortran	pointer	should	not	be	referenced	when	its	status	is	disassociated.	

A	Fortran	pointer	by	default	is	initially	undefined	and	not	nullified.	A	pointer	is	only	nullified	when	it	is	done	
explicitly,	either	by	pointer	assigning	the	result	of	the	null	intrinsic	procedure	or	by	the	nullify	statement.	

The	Fortran	intrinsic	procedure	associated	determines	whether	a	pointer	that	is	not	undefined	has	a	valid	
target,	or	whether	it	is	associated	with	a	particular	target.	

Some	processors	include	an	optional	facility	for	pointer	checking.		

6.13.2	Guidance	to	language	users		

• Use	compiler	options	where	available	to	enable	pointer	checking	during	development	of	a	code	
throughout.	Disable	pointer	checking	during	production	runs	only	for	program	units	that	are	critical	for	
performance.	

• Use	the	associated	intrinsic	procedure	before	referencing	a	target	through	the	pointer	if	there	is	any	
possibility	of	it	being	disassociated.	

• Associate	pointers	before	referencing	them.	
• Use	default	initialization	in	the	declarations	of	pointer	components.	

• Use	initialization	in	the	declarations	of	all	pointers	that	have	the	save	attribute.		

6.14	Dangling	Reference	to	Heap	[XYK]	

6.14.1	Applicability	to	language	

This	vulnerability	is	applicable	to	Fortran	because	it	has	pointers,	and	separate	allocate	and	deallocate	
statements	for	them.	

6.14.2	Guidance	to	language	users	

• Use	allocatable	objects	in	preference	to	pointer	objects	whenever	the	facilities	of	allocatable	objects	are	
sufficient.	

• Use	compiler	options	where	available	to	detect	dangling	references.	

Stephen Michell� 2016-3-7 11:29 AM
Formatted: Font:Bold
Stephen Michell� 2016-3-7 11:29 AM
Formatted: Heading 2

©	ISO/IEC	2013	–	All	rights	reserved	 19	
	

• Use	compiler	options	where	available	to	enable	pointer	checking	throughout	development	of	a	code.	
Disable	pointer	checking	during	production	runs	only	for	program	units	that	are	critical	for	performance.	

• Do	not	pointer-assign	a	pointer	to	a	target	if	the	pointer	might	have	a	longer	lifetime	than	the	target	or	
the	target	attribute	of	the	target.	Check	actual	arguments	that	are	argument	associated	with	dummy	
arguments	that	are	given	the	target	attribute	within	the	referenced	procedure.	

• Check	for	successful	deallocation	when	deallocating	a	pointer	by	using	the	stat=	specifier.	

6.15	Arithmetic	Wrap-around	Error	[FIF]		

6.15.1	Applicability	to	language	

This	vulnerability	is	applicable	to	Fortran	for	integer	values.	Some	processors	have	an	option	to	detect	this	
vulnerability	at	run	time.		

6.15.2	Guidance	to	language	users		

• Use	the	intrinsic	procedure	selected_int_kind	to	select	an	integer	kind	value	that	will	be	adequate	
for	all	anticipated	needs.	

• Use	compiler	options	where	available	to	detect	during	execution	when	an	integer	value	overflows.	

6.16	Using	Shift	Operations	for	Multiplication	and	Division	[PIK]	

6.16.1	Applicability	to	language	

Fortran	provides	bit	manipulation	through	intrinsic	procedures	that	operate	on	integer	variables.	Specifically,	
both	shifts	that	replicate	the	left-most	bit	and	shifts	that	do	not	are	provided	as	intrinsic	procedures	with	integer	
operands.	

6.16.2	Guidance	to	language	users		

• Separate	integer	variables	into	those	on	which	bit	operations	are	performed	and	those	on	which	integer	
arithmetic	is	performed.	

• Do	not	use	shift	intrinsics	where	integer	multiplication	or	division	is	intended.	

6.17	Choice	of	Clear	Names	[NAI]	

6.17.1	Applicability	to	language	

Fortran	is	a	single-case	language;	upper	case	and	lower	case	are	treated	identically	by	the	standard	in	names.	

A	name	can	include	underscore	characters,	except	in	the	initial	position.	The	number	of	consecutive	
underscores	is	significant	but	might	be	difficult	to	see.	

When	implicit	typing	is	in	effect,	a	misspelling	of	a	name	results	in	a	new	variable.	Implicit	typing	can	
be	disabled	by	use	of	the	implicit	none	statement.	

Fortran	has	no	reserved	names.	Language	keywords	are	permitted	as	names.	

20	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

6.17.2	Guidance	to	language	users		

• Declare	all	variables	and	use	implicit	none	to	enforce	this.	
• Do	not	attempt	to	distinguish	names	by	case	only.	
• Do	not	use	consecutive	underscores	in	a	name.	
• Do	not	use	keywords	as	names	when	there	is	any	possibility	of	confusion.	

6.18	Dead	store	[WXQ]	

6.18.1	Applicability	to	language	

Fortran	provides	assignment	so	this	is	applicable.	

6.18.2	Guidance	to	Language	Users	

• Use	a	compiler,	or	other	analysis	tool,	that	provides	a	warning	for	this.	
• Use	the	volatile	attribute	where	a	variable	is	assigned	a	value	to	communicate	with	a	device	or	process	

unknown	to	the	processor.	
• Do	not	use	similar	names	in	nested	scopes.	

6.19	Unused	Variable	[YZS]	

6.19.1	Applicability	to	language	

Fortran	has	separate	declaration	and	use	of	variables	and	does	not	require	that	all	variables	declared	be	used,	so	
this	vulnerability	applies.	

6.19.2	Guidance	to	language	users	

• Use	a	processor	that	can	detect	a	variable	that	is	declared	but	not	used	and	enable	the	processor’s	option	
to	do	so	at	all	times.	

• 	Use	processor	options	where	available	or	a	static	analysis	to	detect	variables	to	which	a	value	is	assigned	
but	are	not	referenced.		

6.20	Identifier	Name	Reuse	[YOW]	

6.20.1	Applicability	to	language	
Fortran	has	several	situations	where	nested	scopes	occur.	These	include:	

• Module	procedures	have	a	nested	scope	within	their	module	host.	
• Internal	procedures	have	a	nested	scope	within	their	(procedure)	host.	
• A	block	construct	might	have	a	nested	scope	within	the	host	scope.	
• An	array	constructor	might	have	a	nested	scope.	

The	index	variables	of	some	constructs,	such	as	or	do	concurrent,	forall,	or	array	constructor	implied	do	
loops,	are	local	to	the	construct.	A	select	name	in	an	associate	or	select type	construct	is	local	to	the	
construct.	

©	ISO/IEC	2013	–	All	rights	reserved	 21	
	

6.20.2	Guidance	to	language	users	

• Do	not	reuse	a	name	within	a	nested	scope.	
• Clearly	comment	the	distinction	between	similarly-named	variables,	wherever	they	occur	in	nested	

scopes.	

6.21	Namespace	Issues	[BJL]		
6.21.1	Applicability	to	language	

Fortran	does	not	have	namespaces.	However,	when	implicit	typing	is	used	within	a	scope,	and	a	module	is	
accessed	via	use	association	without	an	only	list,	a	similar	issue	could	arise.	

Specifically,	a	variable	that	appears	in	the	local	scope	but	is	not	explicitly	declared,	might	have	a	name	that	is	the	
same	as	a	name	that	was	added	to	the	module	after	the	module	was	first	used.	This	can	cause	the	declaration,	
meaning,	and	the	scope	of	the	affected	variable	to	change.	

6.21.2	Guidance	to	language	users		

• Never	use	implicit	typing.	Always	declare	all	variables.	Use	implicit none	to	enforce	this.	
• Use	a	global	private	statement	in	all	modules	to	require	explicit	specification	of	the	public	attribute.	
• Use	an	only	clause	on	every	use	statement.	
• Use	renaming	when	needed	to	avoid	name	collisions.	

6.22	Initialization	of	Variables	[LAV]	

6.22.1	Applicability	to	language	

The	value	of	a	variable	that	has	never	been	given	a	value	is	undefined.	It	is	the	programmer’s	responsibility	to	
guard	against	use	of	uninitialized	variables.	

6.22.2	Guidance	to	language	users	

• Favour	explicit	initialization	for	objects	of	intrinsic	type	and	default	initialization	for	objects	of	derived	
type.	When	providing	default	initialization,	provide	default	values	for	all	components.	

• Use	type	value	constructors	to	provide	values	for	all	components.	
• Use	compiler	options,	where	available,	to	find	instances	of	use	of	uninitialized	variables.	
• Use	other	tools,	for	example,	a	debugger	or	flow	analyzer,	to	detect	instances	of	the	use	of	uninitialized	

variables.	

6.23	Operator	Precedence	and	Associativity	[JCW]	

6.23.1	Applicability	to	language	

Fortran	specifies	an	order	of	precedence	for	operators.	The	order	for	the	intrinsic	operators	is	well	known	except	
among	the	logical	operators	.not.,	.and.,	.or.,	.eqv.,	and	.neqv..	In	addition,	any	monadic	defined	
operator,	the	intrinsic	operator	//,	and	any	dyadic	defined	operator	have	a	position	in	this	order,	but	these	
positions	are	not	well	known.	

Stephen Michell� 2017-3-7 12:23 PM
Formatted: Heading 2
Stephen Michell� 2017-3-7 12:23 PM
Deleted:

Stephen Michell� 2016-3-7 11:30 AM
Deleted: /Order	of	Evaluation

22	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

6.23.2	Guidance	to	language	users	

• Use	parentheses	and	partial-result	variables	within	expressions	to	avoid	any	reliance	on	a	precedence	
that	is	not	well	known.	

6.24	Side-effects	and	Order	of	Evaluation	[SAM]	

6.24.1	Applicability	to	language	

Fortran	functions	are	permitted	to	have	side	effects,	unless	the	function	is	declared	to	have	the	pure attribute.	
Within	some	expressions,	the	order	of	invocation	of	functions	is	not	specified.	The	standard	explicitly	requires	
that	evaluating	any	part	of	an	expression	does	not	change	the	value	of	any	other	part	of	the	expression,	but	there	
is	no	requirement	for	this	to	be	diagnosed	by	the	processor.	

Further,	the	Fortran	standard	allows	a	processor	to	ignore	any	part	of	an	expression	that	is	not	needed	to	
compute	the	value	of	the	expression.	Processors	vary	as	to	how	aggressively	they	take	advantage	of	this	
permission.	

6.24.2	Guidance	to	language	users	

• Replace	any	function	with	a	side	effect	by	a	subroutine	so	that	its	place	in	the	sequence	of	computation	is	
certain.	

• Assign	function	values	to	temporary	variables	and	use	the	temporary	variables	in	the	original	expression.	
• 	Declare	a	function	as	pure whenever	possible.	

6.25	Likely	Incorrect	Expression	[KOA]	

6.25.1	Applicability	to	language	

While	Fortran	is	not	as	susceptible	to	this	issue	as	some	languages	(largely	because	assignment = is	not	an	
operator),	nevertheless,	some	situations	exist	where	a	single	character,	present	or	absent,	could	change	the	
meaning	of	an	expression.	For	example,	assignment	could	be	confused	with	pointer	assignment	when	the	name	
on	the	left-hand	side	has	the	pointer	attribute	and	the	name	on	the	right-hand	side	has	the	target	attribute.	

Some	processors	allow	a	dyadic	operator	immediately	preceding	a	unary	operator,	which	should	be	avoided.	
However,	this	can	be	detected	by	using	processor	options	to	detect	violations	of	the	standard.	

Fortran	is	not	susceptible	to	the	“dangling	else”	version	of	this	problem	because	each	construct	has	a	
unique	end-of-construct	statement.	

6.25.2	Guidance	to	language	users	

• Use	an	automatic	tool	to	simplify	expressions.	
• Check	for	assignment	versus	pointer	assignment	carefully	when	assigning	to	names	having	the	pointer	

attribute.	
• Use	dummy	argument	intents	to	assist	the	processor’s	ability	to	detect	such	occurrences.	

©	ISO/IEC	2013	–	All	rights	reserved	 23	
	

6.26	Dead	and	Deactivated	Code	[XYQ]	

6.26.1	Applicability	to	language	

There	is	no	requirement	in	the	Fortran	standard	for	processors	to	detect	code	that	cannot	be	executed.	It	is	
entirely	the	task	of	the	programmer	to	remove	such	code.	

The	developer	should	justify	each	case	of	statements	not	being	executed.	

If	desirable	to	preserve	older	code	for	documentation	(for	example,	of	an	older	numerical	method),	the	code	
should	be	converted	to	comments.	Alternatively,	a	source	code	control	package	can	be	used	to	preserve	the	text	
of	older	versions	of	a	program.	

6.26.2	Guidance	to	language	users	

• Use	a	compiler,	or	other	tool,	that	can	detect	dead	or	deactivated	code.	
• Use	a	coverage	tool	to	check	that	the	test	suite	causes	every	statement	to	be	executed.	
• Use	an	editor	or	other	tool	that	can	transform	a	block	of	code	to	comments	to	do	so	with	dead	or	

deactivated	code.	
• Use	a	version	control	tool	to	maintain	older	versions	of	code	when	needed	to	preserve	development	

history.	

6.27	Switch	Statements	and	Static	Analysis	[CLL]	

6.27.1	Applicability	to	language	

Fortran	has	a	select	case	construct,	but	control	never	flows	from	one	alternative	to	another.	

Fortran	has	a	computed	go	to	statement	that	allows	control	to	flow	from	one	alternative	to	another,	and	allows	
other	unexpected	flow	of	control.	

6.27.2	Guidance	to	language	users	

• Cover	cases	that	are	expected	never	to	occur	with	a	case	default	clause	to	ensure	that	unexpected	cases	
are	detected	and	processed,	perhaps	emitting	an	error	message.	

• Avoid	the	use	of	computed	go	to	statements.	

6.28	Demarcation	of	Control	Flow	[EOJ]		

6.28.1	Applicability	to	language	

	Modern	Fortran	supports	block	constructs	for	choice	and	iteration,	which	have	separate	end	statements	for	do,	
select,	and	if	constructs.	Furthermore,	these	constructs	can	be	named	which	reduces	visual	confusion	when	
blocks	are	nested.	

There	are	archaic	forms	of	loops	and	choices	that	should	be	avoided.	

6.28.2	Guidance	to	language	users		

• Use	the	block	form	of	the	do-loop,	together	with	cycle	and	exit	statements,	rather	than	the	non-block	do-

24	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

loop.	
• Use	the	if	construct	or	select case	construct	whenever	possible,	rather	than	statements	

that	rely	on	labels,	that	is,	the	arithmetic	if	and	go to	statements.	
• Use	names	on	block	constructs	to	provide	matching	of	initial	statement	and	end	statement	for	each	

construct.	

6.29	Loop	Control	Variables	[TEX]		

6.29.1	Applicability	to	language	

A	Fortran	enumerated	do	loop	has	the	trip	increment	and	trip	count	established	when	the	do	statement	is	
executed.	These	do	not	change	during	the	execution	of	the	loop.	

The	program	is	prohibited	from	changing	the	value	of	an	iteration	variable	during	execution	of	the	loop.	The	
processor	is	usually	able	to	detect	violation	of	this	rule,	but	there	are	situations	where	this	is	difficult	or	requires	
use	of	a	processor	option;	for	example,	an	iteration	variable	might	be	changed	by	a	procedure	that	is	referenced	
within	the	loop.		

6.29.2	Guidance	to	language	users	

• Ensure	that	the	value	of	the	iteration	variable	is	not	changed	other	than	by	the	loop	control	mechanism	
during	the	execution	of	a	do	loop.	

• 	Verify	that	where	the	iteration	variable	is	an	actual	argument,	it	is	associated	with	an	intent(in)	or	a	
value	dummy	argument.	

6.30	Off-by-one	Error	[XZH]	

6.30.1	Applicability	to	language	

Fortran	is	not	very	susceptible	to	this	vulnerability	because	it	permits	explicit	declarations	of	upper	and	lower	
bounds	of	arrays,	which	allows	bounds	that	are	relevant	to	the	application	to	be	used.	For	example,	latitude	can	
be	declared	with	bounds	-90	to	90,	while	longitude	can	be	declared	with	bounds	-180	to	180.	Thus,	user-written	
arithmetic	on	subscripts	can	be	minimized.	

	This	vulnerability	is	applicable	to	a	mixed-language	program	containing	both	Fortran	and	C,	since	arrays	in	C	
always	have	the	lower	bound	0,	and	it	might	reduce	the	overall	amount	of	explicit	subscript	arithmetic	to	
declare	the	Fortran	arrays	with	lower	bounds	of	zero	when	they	would	otherwise	be	given	different	lower	
bounds.	

6.30.2	Guidance	to	language	users	

• Declare	array	bounds	to	fit	the	natural	bounds	of	the	problem.	
• 	Declare	interoperable	arrays	with	the	lower	bound	0	so	that	the	subscript	values	correspond	between	

languages,	where	doing	so	reduces	the	overall	amount	of	explicit	subscript	arithmetic.	

©	ISO/IEC	2013	–	All	rights	reserved	 25	
	

6.31	Structured	Programming	[EWD]	

6.31.1	Applicability	to	language	

As	the	first	language	to	be	formally	standardized,	Fortran	has	older	constructs	that	allow	an	unstructured	
programming	style	to	be	employed.	

These	features	have	been	superseded	by	better	methods.	The	Fortran	standard	continues	to	support	
these	archaic	forms	to	allow	older	programs	to	function.	Some	of	them	are	obsolescent,	which	means	
that	the	processor	is	required	to	be	able	to	detect	and	report	their	usage.	

Automatic	tools	are	the	preferred	method	of	refactoring	unstructured	code.	Only	where	automatic	tools	are	
unable	to	do	so	should	refactoring	be	done	manually.	

Refactoring	efforts	should	always	be	thoroughly	checked	by	testing	of	the	new	code.	

6.31.2	Guidance	to	language	users	

• Use	a	tool	to	automatically	refactor	unstructured	code.	
• Replace	unstructured	code	manually	with	modern	structured	alternatives	only	where	automatic	tools	are	

unable	to	do	so.	
• Use	the	compiler	or	other	tool	to	detect	archaic	usage.	

6.32	Passing	Parameters	and	Return	Values	[CSJ]	

6.32.1	Applicability	to	language	

Fortran	does	not	specify	the	argument	passing	mechanism,	but	rather	specifies	the	rules	of	argument	association.	
These	rules	are	generally	implemented	either	by	pass-by-reference,	by	value,	by	copy-in/copy-out,	by	descriptor,	
or	by	copy-in.	

More	restrictive	rules	apply	to	coarrays	and	to	arrays	with	the	contiguous	attribute.	Rules	for	procedures	
declared	to	have	a	C	binding	follow	the	rules	of	C.	

Module	procedures,	intrinsic	procedures,	and	internal	procedures	have	explicit	interfaces.	An	external	
procedure	has	an	explicit	interface	only	when	one	is	provided	by	a	procedure	declaration	or	interface	body.	
Such	an	interface	body	could	be	generated	automatically	using	a	software	tool.	Explicit	interfaces	allow	
processors	to	check	the	type,	kind,	and	rank	of	arguments	and	result	variables	of	functions.	

6.32.2	Guidance	to	language	users	

• Specify	explicit	interfaces	by	placing	procedures	in	modules	where	the	procedure	is	to	be	used	in	more	
than	one	scope,	or	by	using	internal	procedures	where	the	procedure	is	to	be	used	in	one	scope	only.	

• Specify	argument	intents	to	allow	further	checking	of	argument	usage.	
• Specify	pure (or	elemental)	for	procedures	where	possible	for	greater	clarity	of	the	programmer’s	

intentions.	
• 	Use	a	compiler	or	other	tool	to	automatically	create	explicit	interfaces	for	external	procedures.	

26	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

6.33	Dangling	References	to	Stack	Frames	[DCM]	

6.33.1	Applicability	to	language	

A	Fortran	pointer	is	vulnerable	to	this	issue	when	a	local	target	does	not	have	the	save attribute	and	the	
pointer	has	a	lifetime	longer	than	the	target.	However,	the	intended	functionality	is	often	available	with	
allocatables,	which	do	not	suffer	from	this	vulnerability.	The	Fortran	standard	explicitly	states	that	the	lifetime	of	
an	allocatable	function	result	extends	to	its	use	in	the	expression	that	invoked	the	call.	

6.33.2	Guidance	to	language	users	

• Do	not	pointer-assign	a	pointer	to	a	target	if	the	pointer	association	might	have	a	longer	lifetime	than	the	
target	or	the	target attribute	of	the	target.	

• Use	allocatable variables	in	preference	to	pointers	wherever	they	provide	sufficient	functionality.	

6.34	Subprogram	Signature	Mismatch	[OTR]	

6.34.1	Applicability	to	language	

The	Fortran	term	denoting	a	procedure’s	signature	is	its	interface.	

The	Fortran	standard	requires	that	interfaces	match,	but	does	not	require	that	the	processor	diagnoses	
mismatches.	However,	processors	do	check	this	when	the	interface	is	explicit.	Some	processors	can	check	
interfaces	if	inter-procedural	analysis	is	requested.	

Explicit	interfaces	are	provided	automatically	for	intrinsic	procedures	or	when	procedures	are	placed	in	modules	
or	are	internal	procedures	within	other	procedures.	

6.34.2	Guidance	to	language	users	

• Use	explicit	interfaces,	preferably	by	placing	procedures	inside	a	module	or	another	procedure.	
• Use	a	processor	that	checks	all	interfaces,	especially	if	this	can	be	checked	during	compilation	with	no	

execution	overhead.	
• 	Use	a	processor	or	other	tool	to	create	explicit	interface	bodies	for	external	procedures.	

6.35	Recursion	[GDL]	

6.35.1	Applicability	to	language	

Fortran	supports	recursion,	so	this	vulnerability	applies.	Possibly	recursive	procedures	are	marked	with	the	
recursive attribute,	thereby	leaving	some	documentation	of	the	programmer’s	intentions.	

Recursive	calculations	are	attractive	in	some	situations	due	to	their	close	resemblance	to	the	most	compact	
mathematical	formula	of	the	quantity	to	be	computed.	

6.35.2	Guidance	to	language	users	

• Prefer	iteration	to	recursion,	unless	it	can	be	proved	that	the	depth	of	recursion	can	never	be	large.	

©	ISO/IEC	2013	–	All	rights	reserved	 27	
	

6.36	Ignored	Error	Status	and	Unhandled	Exceptions	[OYB]	

6.36.1	Applicability	to	language	

Many	Fortran	statements	and	some	intrinsic	procedures	return	a	status	value.	In	most	circumstances,	status	error	
values	returned	from	statements	that	are	not	received	by	the	invoking	program	result	in	the	error	termination	of	
the	program.	Some	programmers,	however,	in	order	to	“keep	going”	accept	the	status	value	but	do	not	examine	
it.	This	results	in	a	program	crash	without	an	explanation	when	subsequent	steps	in	the	program	rely	upon	the	
previous	statements	having	completed	successfully.	

Fortran	consistently	uses	a	scheme	of	status	values	where	zero	indicates	success,	a	positive	value	indicates	an	
error,	and	a	negative	value	indicates	some	other	information.	

Other	than	via	the	IEEE	intrinsic	modules,	Fortran	does	not	support	exception	handling.	

6.36.2	Guidance	to	language	users	

• Code	a	status	variable	for	all	statements	that	support	one,	and	examine	its	value	prior	to	continuing	
execution	for	faults	that	cause	termination,	provide	a	message	to	users	of	the	program,	perhaps	with	the	
help	of	the	error	message	generated	by	the	statement	whose	execution	generated	the	error.	

• Appropriately	treat	all	status	values	that	might	be	returned	by	an	intrinsic	procedure	or	by	a	library	
procedure.		

6.37	Type-breaking	Reinterpretation	of	Data	[AMV]	

6.37.1	Applicability	to	language	

Storage	association	via	common	or	equivalence	statements,	or	via	the	transfer	intrinsic	procedure	can	cause	a	
type-breaking	reinterpretation	of	data.	Type-breaking	reinterpretation	via	common	and	equivalence	is	not	
standard-conforming.	

6.37.2	Guidance	to	language	users	

• Do	not	use	common	to	share	data.	Use	modules	instead.	
• Do	not	use	equivalence	to	save	storage	space.	Use	allocatable	data	instead.	
• Avoid	use	of	the	transfer	intrinsic	unless	its	use	is	unavoidable,	and	then	document	the	use	carefully.	

Use	compiler	options	where	available	to	detect	violation	of	the	rules	for	common	and	equivalence.	

6.38	Deep	vs.	Shallow	Copying	[YAN]	
6.38.1	Applicability	to	language	

TBD	

6.38.2	Guidance	to	language	users	

TBD	

Stephen Michell� 2017-3-7 12:29 PM
Moved (insertion) [1]
Stephen Michell� 2017-3-7 12:29 PM
Deleted: 8

Stephen Michell� 2017-3-7 12:29 PM
Deleted: 8

Stephen Michell� 2017-3-7 12:29 PM
Deleted: 8

Stephen Michell� 2017-3-7 12:30 PM
Formatted: Normal
Stephen Michell� 2017-3-7 12:30 PM
Formatted: English (US)

Stephen Michell� 2017-3-7 12:30 PM
Formatted: Normal

Stephen Michell� 2017-3-7 12:30 PM
Formatted: English (US)

28	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

	

	

	

	

• 	
• 	
• 	
• 	

6.39	Type-breaking	Reinterpretation	of	Data	

TBD	

6.39	Memory	Leaks	and	Heap	Fragmentation	[XYL]	

6.39.1	Applicability	to	language	

The	misuse	of	pointers	in	Fortran	can	cause	a	memory	leak.	However,	the	intended	functionality	is	often	available	
with	allocatables,	which	do	not	suffer	from	this	vulnerability.	

6.39.2	Guidance	to	language	users	

• Use	allocatable	data	items	rather	than	pointer	data	items	whenever	possible.	
• Use	final	routines	to	free	memory	resources	allocated	to	a	data	item	of	derived	type.		
• Use	a	tool	during	testing	to	detect	memory	leaks.	

6.40	Templates	and	Generics	[SYM]	

Fortran	does	not	support	templates	or	generics,	so	this	vulnerability	does	not	apply.	

6.41	Inheritance	[RIP]	

6.41.1	Applicability	to	language		

Fortran	supports	inheritance	so	this	vulnerability	applies.	

Fortran	supports	single	inheritance	only,	so	the	complexities	associated	with	multiple	inheritance	do	not	apply.	

6.41.2	Guidance	to	language	users		

• Declare	a	type-bound	procedure	to	be	non overridable	when	necessary	to	ensure	that	it	is	not	
overridden.	

• Provide	a	private	component	to	store	the	version	control	identifier	of	the	derived	type,	together	with	an	
accessor	routine.	

Stephen Michell� 2017-3-7 12:31 PM
Deleted: 6.37	Fault	Tolerance	and	Failure	
Strategies	[REW] ... [1]

Stephen Michell� 2017-3-7 12:29 PM
Moved up [1]: 6.38	Type-breaking	
Reinterpretation	of	Data	[AMV]

Stephen Michell� 2016-3-7 11:37 AM
Formatted: Normal
Stephen Michell� 2016-3-7 11:37 AM
Deleted: 39

Stephen Michell� 2016-3-7 11:37 AM
Deleted: 39

Stephen Michell� 2016-3-7 11:37 AM
Deleted: 39

Stephen Michell� 2016-3-7 11:38 AM
Deleted: 0

Stephen Michell� 2016-3-7 11:38 AM
Deleted: 1

Stephen Michell� 2016-3-7 11:38 AM
Deleted: 1

Stephen Michell� 2016-3-7 11:38 AM
Deleted: 1

©	ISO/IEC	2013	–	All	rights	reserved	 29	
	

6.42	Violations	of	the	Liskov	Substitution	Principle	or	the	Contract	Model	[BLP]		

6.42.1	Applicability	to	language		

TBD	

6.42.2	Guidance	to	language	users	

TBD	

	

6.43	Redispatching	[PPH]	

6.43.1	Applicability	to	language		

TBD	

6.43.	2	Guidance	to	language	users	
	

TBD	

6.44	Polymorphic	Variables	

6.44.1	Applicability	to	language		

TBD	

6.44.	2	Guidance	to	language	users	
TBD	

6.45	Extra	Intrinsics	[LRM]		

6.45.1	Applicability	to	language	

Fortran	permits	a	processor	to	supply	extra	intrinsic	procedures.	

The	processor	that	provides	extra	intrinsic	procedures	might	be	standard-conforming;	the	program	that	uses	one	
is	not.	

6.45.2	Guidance	to	language	users	

• Specify	that	an	intrinsic	or	external	procedure	has	the	intrinsic or	external attribute,	
respectively,	in	the	scope	where	the	reference	occurs.	

• Use	compiler	options	to	detect	use	of	non-standard	intrinsic	procedures.	

Stephen Michell� 2016-3-7 11:39 AM
Formatted: Heading 2

Stephen Michell� 2016-3-7 11:41 AM
Formatted: Font:11 pt

Stephen Michell� 2017-3-7 12:34 PM
Formatted: Normal

Stephen Michell� 2016-3-7 11:42 AM
Formatted: Normal

Stephen Michell� 2016-3-7 11:40 AM
Formatted: Heading 3

Stephen Michell� 2016-3-7 11:41 AM
Deleted: 2

Stephen Michell� 2016-3-7 11:42 AM
Deleted: 2

Stephen Michell� 2016-3-7 11:42 AM
Deleted: 2

30	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

6.46	Argument	Passing	to	Library	Functions	[TRJ]		

6.46.1	Applicability	to	language	

Fortran	allows	use	of	libraries	so	this	vulnerability	applies.	

6.46.2	Guidance	to	language	users	

• Use	libraries	from	reputable	sources	with	reliable	documentation	and	understand	the	documentation	to	
appreciate	the	range	of	acceptable	input.	

• Verify	arguments	to	library	procedures	when	their	validity	is	in	doubt.	
• Use	condition	constructs	such	as	if and	where to	prevent	invocation	of	a	library	procedure	with	

invalid	arguments.	
• Provide	explicit	interfaces	for	library	procedures.	If	the	library	provides	a	module	containing	interface	

bodies,	use	the	module.	

6.47	Inter-language	Calling	[DJS]	

6.47.1	Applicability	to	Language	

Fortran	supports	interoperating	with	functions	and	data	that	can	be	specified	by	means	of	the	C	programming	
language.	The	facilities	limit	the	interactions	and	thereby	limit	the	extent	of	this	vulnerability.	

6.47.2	Guidance	to	Language	Users	

• Correctly	identify	the	companion	processor,	including	any	options	affecting	its	types.	
• Use	the	iso_c_binding	module,	and	use	the	correct	constants	therein	to	specify	the	type	kind	

values	needed.	
• Use	the	value	attribute	as	needed	for	dummy	arguments.	

6.48	Dynamically-linked	Code	and	Self-modifying	Code	[NYY]			

6.48.1	Applicability	to	language	

The	Fortran	standard	does	not	discuss	the	means	of	program	translation,	so	any	use	or	misuse	of	dynamically	
linked	libraries	is	processor	dependent.	Fortran	does	not	permit	self-modifying	code.	

6.48.2	Guidance	to	language	users	

• Use	compiler	options	to	effect	a	static	link.	

6.49	Library	Signature	[NSQ]	

6.49.1	Applicability	to	language	

Fortran	allows	the	use	of	libraries,	so	this	vulnerability	applies.	

6.49.2	Guidance	to	language	users	

• Use	explicit	interfaces	for	the	library	code	if	they	are	available.	Avoid	libraries	that	do	not	provide	explicit	

Stephen Michell� 2016-3-7 11:43 AM
Deleted: 3

Stephen Michell� 2016-3-7 11:43 AM
Deleted: 3

Stephen Michell� 2016-3-7 11:43 AM
Deleted: 3

Stephen Michell� 2016-3-7 11:43 AM
Deleted: 4

Stephen Michell� 2016-3-7 11:43 AM
Deleted: 4

Stephen Michell� 2016-3-7 11:43 AM
Deleted: 4

Stephen Michell� 2016-3-7 11:43 AM
Deleted: 5

Stephen Michell� 2016-3-7 11:43 AM
Deleted: 5

Stephen Michell� 2016-3-7 11:43 AM
Deleted: 5

Stephen Michell� 2016-3-7 11:43 AM
Deleted: 46

Stephen Michell� 2016-3-7 11:43 AM
Deleted: 46

Stephen Michell� 2016-3-7 11:43 AM
Deleted: 46

©	ISO/IEC	2013	–	All	rights	reserved	 31	
	

interfaces.	
• Carefully	construct	explicit	interfaces	for	the	library	procedures	where	library	modules	are	not	provided.	

• Prefer	libraries	that	provide	procedures	as	module	procedures	rather	than	as	external	procedures.	

6.50	Unanticipated	Exceptions	from	Library	Routines	[HJW]	

6.50.1	Applicability	to	language	

Fortran	allows	the	use	of	libraries	so	this	vulnerability	applies.	

6.50.2	Guidance	to	language	users	

• Check	any	return	flags	present	and,	if	an	error	is	indicated,	take	appropriate	actions	when	calling	a	library	
procedure.		

6.51	Pre-Processor	Directives	[NMP]		

6.51.1	Applicability	to	language	

The	Fortran	standard	does	not	include	pre-processing,	so	this	vulnerability	does	not	apply	to	standard	programs.	
However,	some	Fortran	programmers	employ	the	C	pre-processor	cpp,	or	other	pre-processors.	

The	C	pre-processor,	as	defined	by	the	C	language,	is	unaware	of	several	Fortran	source	code	properties.	
Some	suppliers	of	Fortran	processors	also	supply	a	Fortran-aware	version	of	cpp.	Unless	a	Fortran-aware	
version	of	cpp is	used,	unexpected	results,	not	always	easily	detected,	can	occur.	

Other	pre-processors	might	or	might	not	be	aware	of	Fortran	source	code	properties.	Not	all	pre-processors	have	
a	Fortran-aware	mode	that	could	be	used	to	reduce	the	probability	of	erroneous	results.		

6.51.2	Guidance	to	language	users	

• Avoid	use	of	the	C	pre-processor	cpp.	
• Avoid	pre-processors	generally.	Where	deemed	necessary,	a	Fortran	mode	should	be	set.	
• Use	processor-specific	modules	in	place	of	pre-processing	wherever	possible.	

6.52	Suppression	of	Language-defined	Run-time	Checking	[MXB]	

6.52.1	Applicability	to	Language	

The	Fortran	standard	has	many	requirements	that	cannot	be	statically	checked.	While	many	processors	provide	
options	for	run-time	checking,	the	standard	does	not	require	that	any	such	checks	be	provided.	

6.52.2	Guidance	to	Language	Users	

• Use	all	run-time	checks	that	are	available	during	development.	
• Use	all	run-time	checks	that	are	available	during	production	running,	except	where	performance	is	

critical.	
• Use	several	processors	during	development	to	check	as	many	conditions	as	possible.	

Stephen Michell� 2016-3-7 11:44 AM
Deleted: 48

Stephen Michell� 2016-3-7 11:44 AM
Deleted: 48

Stephen Michell� 2016-3-7 11:44 AM
Deleted: 47

Stephen Michell� 2016-3-7 11:44 AM
Deleted: 48

Stephen Michell� 2016-3-7 11:44 AM
Deleted: 48

Stephen Michell� 2016-3-7 11:45 AM
Deleted: 48

Stephen Michell� 2016-3-7 11:45 AM
Deleted: 49

Stephen Michell� 2016-3-7 11:45 AM
Deleted: 49

Stephen Michell� 2016-3-7 11:45 AM
Deleted: 49

32	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

6.53	Provision	of	Inherently	Unsafe	Operations	[SKL]	

6.53.1	Applicability	to	Language	

The	types	of	actual	arguments	and	corresponding	dummy	arguments	are	required	to	agree,	but	few	processors	
check	this	unless	the	procedure	has	an	explicit	interface.	

The	intrinsic	function	transfer	provides	the	facility	to	transform	an	object	of	one	type	to	an	object	of	
another	type	that	has	the	same	physical	representation.	

A	variable	of	one	type	can	be	storage	associated	through	the	use	of	common	and	equivalence	with	a	variable	of	
another	type.	Defining	the	value	of	one	causes	the	value	of	the	other	to	become	undefined.	A	processor	might	
not	be	able	to	detect	this.	

There	are	facilities	for	invoking	C	functions	from	Fortran	and	Fortran	procedures	from	C.	While	there	are	rules	
about	type	agreement	for	the	arguments,	it	is	unlikely	that	processors	will	check	them.		

6.53.2	Guidance	to	language	users	

• Provide	an	explicit	interface	for	each	external	procedure	or	replace	the	procedure	by	an	internal	or	
module	procedure.	

• Avoid	the	use	of	the	intrinsic	function	transfer.	
• Avoid	the	use	of	common	and	equivalence.	
• Use	the	compiler	or	other	automatic	tool	for	checking	the	types	of	the	arguments	in	calls	between	

Fortran	and	C,	make	use	of	them	during	development	and	in	production	running	except	where	
performance	would	be	severely	affected.	

6.54	Obscure	Language	Features	[BRS]	

6.54.1	Applicability	to	language	

Any	use	of	deleted	and	obsolescent	features,		see	6.58	Deprecated	Language	Features,	might	produce	semantic	
results	not	in	accord	with	the	modern	programmer’s	expectations.	They	might	be	beyond	the	knowledge	of	
modern	code	reviewers.	

Variables	can	be	storage	associated	through	the	use	of	common	and	equivalence.	Defining	the	value	of	one	alters	
the	value	of	the	other.	They	might	be	of	different	types,	in	which	case	defining	the	value	of	one	causes	the	value	
of	the	other	to	become	undefined.	

Supplying	an	initial	value	for	a	local	variable	implies	that	it	has	the	save	attribute,	which	might	be	unexpected	by	
the	developer.	

If	implicit	typing	is	used,	a	simple	spelling	error	might	unexpectedly	introduce	a	new	name.	The	intended	effect	
on	the	given	variable	will	be	lost	without	any	processor	diagnostic.	

6.54.2	Guidance	to	language	users	

• Use	the	processor	to	detect	and	identify	obsolescent	or	deleted	features	and	replace	them	by	better	
methods.	

• Avoid	the	use	of	common	and	equivalence.	

Stephen Michell� 2016-3-7 11:45 AM
Deleted: 0

Stephen Michell� 2016-3-7 11:45 AM
Deleted: 0

Stephen Michell� 2016-3-7 11:45 AM
Deleted: 0

Stephen Michell� 2016-3-7 11:45 AM
Deleted: 1

Stephen Michell� 2016-3-7 11:46 AM
Deleted: 1

Stephen Michell� 2017-3-9 2:50 PM
Deleted: see	

Stephen Michell� 2017-3-9 2:50 PM
Deleted: 5

Stephen Michell� 2017-3-9 2:50 PM
Deleted: 	(Error!	Reference	source	not	found.)

Stephen Michell� 2016-3-7 11:46 AM
Deleted: 1

©	ISO/IEC	2013	–	All	rights	reserved	 33	
	

• Specify	the	save	attribute	when	supplying	an	initial	value.	
• Use	implicit	none	to	require	explicit	declarations.	

6.55	Unspecified	Behaviour	[BQF]	

This	vulnerability	is	described	by	Implementation-defined	Behaviour	[FAB].		

6.56	Undefined	Behaviour	[EWF]	

6.56.1	Applicability	to	language	

A	Fortran	processor	is	unconstrained	unless	the	program	uses	only	those	forms	and	relations	specified	by	the	
Fortran	standard,	and	gives	them	the	meaning	described	therein.	

The	behaviour	of	non-standard	code	can	change	between	processors.	

A	processor	is	permitted	to	provide	additional	intrinsic	procedures.	One	of	these	might	be	invoked	instead	of	an	
intended	external	procedure	with	the	same	name.	

6.56.2	Guidance	to	language	users	

• Use	processor	options	to	detect	and	report	use	of	non-standard	features.	
• Obtain	diagnostics	from	more	than	one	source,	for	example,	use	code	checking	tools.	
• Supply	an	explicit	interface	to	specify	the	external attribute	for	all	external	procedures	invoked.	
• Avoid	use	of	non-standard	intrinsic	procedures.	
• Specific	the	intrinsic attribute	for	all	non-standard	intrinsic	procedures.	

6.57	Implementation-Defined	Behaviour	[FAB]	

6.57.1	Applicability	to	language	

Implementation-defined	behaviour	is	known	within	the	Fortran	standard	as	processor-dependent.	Annex	A.2	of	
ISO/IEC	1539-1	(2010)	contains	a	list	of	processor	dependencies.	

Different	processors	might	process	processor	dependencies	differently.	Relying	on	one	behaviour	is	not	
guaranteed	by	the	Fortran	standard.	

Reliance	on	one	behaviour	where	the	standard	explicitly	allows	several	is	not	portable.	The	behaviour	is	liable	to	
change	between	different	processors.	

6.57.2	Guidance	to	language	users		

• Use	processor	options	to	detect	and	report	use	of	non-standard	features.	
• Obtain	diagnostics	from	more	than	one	source,	for	example,	use	code	checking	tools.	
• Supply	an	explicit	interface	to	specify	the	external attribute	for	all	external	procedures	invoked.	
• Avoid	use	of	non-standard	intrinsic	procedures.	
• Specific	the	intrinsic attribute	for	all	non-standard	intrinsic	procedures.		

Stephen Michell� 2016-3-7 11:46 AM
Deleted: 2

Stephen Michell� 2016-3-7 11:46 AM
Deleted: 3

Stephen Michell� 2016-3-7 11:46 AM
Deleted: 3

Stephen Michell� 2016-3-7 11:46 AM
Deleted: 3

Stephen Michell� 2016-3-7 11:46 AM
Deleted: 4

Stephen Michell� 2016-3-7 11:46 AM
Deleted: 4

Stephen Michell� 2016-3-7 11:47 AM
Deleted: 4

34	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

6.58	Deprecated	Language	Features	[MEM]	

6.58.1	Applicability	to	language		
Because	they	are	still	used	in	some	programs,	many	processors	support	features	of	previous	revisions	of	the	
Fortran	standard	that	were	deleted	in	later	versions	of	the	Fortran	standard.	These	are	listed	in	Annex	B.1	of	the	
Fortran	standard.	In	addition,	there	are	features	of	earlier	revisions	of	Fortran	that	are	still	in	the	standard	but	are	
redundant	and	might	be	replaced	by	better	methods.	They	are	described	in	small	font	in	the	standard	and	are	
summarized	in	Annex	B.2.	Any	use	of	these	deleted	and	obsolescent	features	might	produce	semantic	results	not	
in	accord	with	the	modern	programmer’s	expectations.	They	might	be	beyond	the	knowledge	of	modern	code	
reviewers.	

6.58.2	Guidance	to	language	users		

• Use	the	processor	to	detect	and	identify	obsolescent	or	deleted	features	and	replace	them	by	better	
methods.	

6.59	Concurrency	–	Activation	[CGA]	

TBD	

6.59.1	Applicability	to	language	

TBD	

6.59.2	Guidance	to	language	users	

TBD	

6.60	Concurrency	–	Directed	termination	[CGT]	
TBD	

	

6.60.1	Applicability	to	language	

TBD	

6.60.2	Guidance	to	language	users	

	
6.61	Concurrent	Data	Access	[CGX]		
	

	

6.61.1	Applicability	to	language	

TBD	

Stephen Michell� 2016-3-7 11:47 AM
Deleted: 5

Stephen Michell� 2016-3-7 11:47 AM
Deleted: 5

Stephen Michell� 2016-3-7 11:47 AM
Deleted: 5

Stephen Michell� 2016-3-7 11:47 AM
Deleted: 56

Stephen Michell� 2017-3-7 12:41 PM
Formatted: Normal
Stephen Michell� 2017-3-7 12:41 PM
Deleted:

Stephen Michell� 2016-3-7 11:47 AM
Deleted: 56

Stephen Michell� 2017-3-7 12:41 PM
Formatted: Normal
Stephen Michell� 2016-3-7 11:47 AM
Deleted: 56

Stephen Michell� 2016-3-7 11:47 AM
Deleted: 57

Stephen Michell� 2016-3-7 11:47 AM
Deleted: 57

Stephen Michell� 2016-3-7 11:47 AM
Deleted: 57

Stephen Michell� 2016-3-7 11:47 AM
Deleted: 58

Stephen Michell� 2017-3-9 2:58 PM
Moved down [2]: TBD

Stephen Michell� 2016-3-7 11:48 AM
Deleted: 58

Stephen Michell� 2017-3-9 2:58 PM
Moved (insertion) [2]

©	ISO/IEC	2013	–	All	rights	reserved	 35	
	

6.61.2	Guidance	to	language	users	

TBD	

	

6.62	Concurrency	–	Premature	Termination	[CGS]	
	
6.62.1	Applicability	to	language	

TBD	

6.62.2	Guidance	to	language	users	

TBD	

6.63	Protocol	Lock	Errors	[CGM]	
	
6.63.1	Applicability	to	language	

TBD	

6.63.2	Guidance	to	language	users	

TBD	

6.64	Uncontrolled	Format	String		[SHL]	
	

TBD	

7	Language	specific	vulnerabilities	for	Fortran	
	

8	Implications	for	standardization		

Future	standardization	efforts	should	consider:	

• Requiring	that	processors	have	the	ability	to	detect	and	report	the	occurrence	within	a	submitted	
program	unit	of	integer	overflows	during	program	execution.	

• Requiring	that	processors	have	the	ability	to	detect	and	report	the	occurrence	within	a	submitted	
program	unit	of	out-of-bounds	subscripts	and	array-shape	mismatches	in	assignment	statements	during	
program	execution.	

• Requiring	that	processors	have	the	ability	to	detect	and	report	the	occurrence	within	a	submitted	
program	unit	of	invalid	pointer	references	during	program	execution.	

• Requiring	that	processors	have	the	ability	to	detect	and	report	the	occurrence	within	a	submitted	
program	unit	of	an	invalid	use	of	character	constants	as	format	specifiers.	

• Requiring	that	processors	have	the	ability	to	detect	and	report	the	occurrence	within	a	submitted	
program	unit	of	tests	for	equality	between	two	objects	of	type	real	or	complex.	

Stephen Michell� 2016-3-7 11:48 AM
Deleted: 58

Stephen Michell� 2016-3-7 11:48 AM
Deleted: 59

Stephen Michell� 2017-3-9 2:58 PM
Deleted: TBD

Stephen Michell� 2016-3-7 11:48 AM
Deleted: 59

Stephen Michell� 2016-3-7 11:48 AM
Deleted: 59

Stephen Michell� 2016-3-7 11:48 AM
Deleted: 60

Stephen Michell� 2017-3-9 2:58 PM
Deleted: TBD

Stephen Michell� 2016-3-7 11:48 AM
Deleted: 0

Stephen Michell� 2016-3-7 11:48 AM
Deleted: 0

Stephen Michell� 2016-3-7 11:48 AM
Deleted: 1

36	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

• Requiring	that	processors	have	the	ability	to	detect	and	report	the	occurrence	within	a	submitted	
program	unit	of	pointer	assignment	of	a	pointer	whose	lifetime	is	known	to	be	longer	than	the	lifetime	of	
the	target	or	the	target attribute	of	the	target.	

• Requiring	that	processors	have	the	ability	to	detect	and	report	the	occurrence	within	a	submitted	
program	unit	of	the	reuse	of	a	name	within	a	nested	scope.	

• Providing	a	means	to	specify	explicitly	a	limited	set	of	entities	to	be	accessed	by	host	association.	
• Identifying,	deprecating,	and	replacing	features	whose	use	is	problematic	where	there	is	a	safer	and	

clearer	alternative	in	the	modern	revisions	of	the	language	or	in	current	practice	in	other	languages.	

	 	

©	ISO/IEC	2013	–	All	rights	reserved	 37	
	

Bibliography	

[1]	 ISO/IEC	Directives,	Part	2,	Rules	for	the	structure	and	drafting	of	International	Standards,	2004	

[2]	 ISO/IEC	TR	10000-1,	Information	technology	—	Framework	and	taxonomy	of	International	Standardized	
Profiles	—	Part	1:	General	principles	and	documentation	framework	

[3]	 ISO	10241	(all	parts),	International	terminology	standards	

	[7]	 ISO/IEC/IEEE	60559:2011,	Information	technology	–	Microprocessor	Systems	–	Floating-Point	arithmetic	

	[9]	 ISO/IEC	8652:1995,	Information	technology	—	Programming	languages	—	Ada	

	[11]	 R.	Seacord,	The	CERT	C	Secure	Coding	Standard.	Boston,MA:	Addison-Westley,	2008.	

	[14]	 ISO/IEC	TR	15942:2000,	Information	technology	—	Programming	languages	—	Guide	for	the	use	of	the	
	 Ada	programming	language	in	high	integrity	systems	

	[17]	 ISO/IEC	TR	24718:	2005,	Information	technology	—	Programming	languages	—	Guide	for	the	use	of	the	
Ada	Ravenscar	Profile	in	high	integrity	systems	

	[19]	 ISO/IEC	15291:1999,	Information	technology	—	Programming	languages	—	Ada	Semantic	Interface	
Specification	(ASIS)	

[20]	 Software	Considerations	in	Airborne	Systems	and	Equipment	Certification.	Issued	in	the	USA	by	the	
Requirements	and	Technical	Concepts	for	Aviation	(document	RTCA	SC167/DO-178B)	and	in	Europe	by	the	
European	Organization	for	Civil	Aviation	Electronics	(EUROCAE	document	ED-12B).December	1992.	

[21]	 IEC	61508:	Parts	1-7,	Functional	safety:	safety-related	systems.	1998.	(Part	3	is	concerned	with	software).	

[22]	 ISO/IEC	15408:	1999	Information	technology.	Security	techniques.	Evaluation	criteria	for	IT	security.	

[23]	 J	Barnes,	High	Integrity	Software	-	the	SPARK	Approach	to	Safety	and	Security.	Addison-Wesley.	2002.	

1. Lecture	Notes	on	Computer	Science	5020,	“Ada	2012	Rationale:	The	Language,	the	Standard	Libraries,”	
John	Barnes,	Springer,	2012.		???????	

	
	[25]	 Steve	Christy,	Vulnerability	Type	Distributions	in	CVE,	V1.0,	2006/10/04	

	[29]	 Lions,	J.	L.	ARIANE	5	Flight	501	Failure	Report.	Paris,	France:	European	Space	Agency	(ESA)	&	National	
Center	for	Space	Study	(CNES)	Inquiry	Board,	July	1996.	

	[33]	 The	Common	Weakness	Enumeration	(CWE)	Initiative,	MITRE	Corporation,	(http://cwe.mitre.org/)	

[34]	 Goldberg,	David,	What	Every	Computer	Scientist	Should	Know	About	Floating-Point	Arithmetic,	ACM	
Computing	Surveys,	vol	23,	issue	1	(March	1991),	ISSN	0360-0300,	pp	5-48.	

[35]	 IEEE	Standards	Committee	754.	IEEE	Standard	for	Binary	Floating-Point	Arithmetic,	ANSI/IEEE	Standard	
754-2008.	Institute	of	Electrical	and	Electronics	Engineers,	New	York,	2008.	

[36]	 Robert	W.	Sebesta,	Concepts	of	Programming	Languages,	8th	edition,	ISBN-13:	978-0-321-49362-0,	ISBN-
10:	0-321-49362-1,	Pearson	Education,	Boston,	MA,	2008	

38	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

[37]	 Bo	Einarsson,	ed.	Accuracy	and	Reliability	in	Scientific	Computing,	SIAM,	July	2005	
http://www.nsc.liu.se/wg25/book	

[38]	 GAO	Report,	Patriot	Missile	Defense:	Software	Problem	Led	to	System	Failure	at	Dhahran,	Saudi	Arabia,	B-
247094,	Feb.	4,	1992,	http://archive.gao.gov/t2pbat6/145960.pdf	

[39]	 Robert	Skeel,	Roundoff	Error	Cripples	Patriot	Missile,	SIAM	News,	Volume	25,	Number	4,	July	1992,	page	
11,	http://www.siam.org/siamnews/general/patriot.htm	

	[41]	 Holzmann,	Garard	J.,	Computer,	vol.	39,	no.	6,	pp	95-97,	Jun.,	2006,	The	Power	of	10:	Rules	for	Developing	
Safety-Critical	Code	

[42]	 P.	V.	Bhansali,	A	systematic	approach	to	identifying	a	safe	subset	for	safety-critical	software,	ACM	SIGSOFT	
Software	Engineering	Notes,	v.28	n.4,	July	2003	

[43]	 Ada	95	Quality	and	Style	Guide,	SPC-91061-CMC,	version	02.01.01.	Herndon,	Virginia:	Software	
Productivity	Consortium,	1992.		Available	from:	http://www.adaic.org/docs/95style/95style.pdf	

[44]	 Ghassan,	A.,	&	Alkadi,	I.	(2003).	Application	of	a	Revised	DIT	Metric	to	Redesign	an	OO	Design.	Journal	of	
Object	Technology	,	127-134.	

[45]	 Subramanian,	S.,	Tsai,	W.-T.,	&	Rayadurgam,	S.	(1998).	Design	Constraint	Violation	Detection	in	Safety-
Critical	Systems.	The	3rd	IEEE	International	Symposium	on	High-Assurance	Systems	Engineering	,	109	-	
116.	

[46]	 Lundqvist,	K	and	Asplund,	L.,	“A	Formal	Model	of	a	Run-Time	Kernel	for	Ravenscar”,	The	6th	International	
Conference	on	Real-Time	Computing	Systems	and	Applications	–	RTCSA	1999	

	 	

©	ISO/IEC	2013	–	All	rights	reserved	 39	
	

Index	

	

		
Ada,	13,	59,	63,	73,	76	
AMV	–	Type-breaking	Reinterpretation	of	Data,	72	
API	

Application	Programming	Interface,	16	
APL,	48	
Apple	

OS	X,	120	
application	vulnerabilities,	9	
Application	Vulnerabilities	

Adherence	to	Least	Privilege	[XYN],	113	
Authentication	Logic	Error	[XZO],	135	
Cross-site	Scripting	[XYT],	125	
Discrepancy	Information	Leak	[XZL],	129	
Distinguished	Values	in	Data	Types	[KLK],	112	
Download	of	Code	Without	Integrity	Check	[DLB],	137	
Executing	or	Loading	Untrusted	Code	[XYS],	116	
Hard-coded	Password	[XYP],	136	
Improper	Restriction	of	Excessive	Authentication	

Attempts	[WPL],	140	
Improperly	Verified	Signature	[XZR],	128	
Inclusion	of	Functionality	from	Untrusted	Control	

Sphere	[DHU],	139	
Incorrect	Authorization	[BJE],	138	
Injection	[RST],	122	
Insufficiently	Protected	Credentials	[XYM],	133	
Memory	Locking	[XZX],	117	
Missing	or	Inconsistent	Access	Control	[XZN],	134	
Missing	Required	Cryptographic	Step	[XZS],	133	
Path	Traversal	[EWR],	130	
Privilege	Sandbox	Issues	[XYO],	114	
Resource	Exhaustion	[XZP],	118	
Resource	Names	[HTS],	120	
Sensitive	Information	Uncleared	Before	Use	[XZK],	130	
Unquoted	Search	Path	or	Element	[XZQ],	127	
Unrestricted	File	Upload	[CBF],	119	
Unspecified	Functionality	[BVQ],	111	
URL	Redirection	to	Untrusted	Site	('Open	Redirect')	

[PYQ],	140	
Use	of	a	One-Way	Hash	without	a	Salt	[MVX],	141	

application	vulnerability,	5	
Ariane	5,	21	
		
bitwise	operators,	48	
BJE	–	Incorrect	Authorization,	138	
BJL	–	Namespace	Issues,	43	
black-list,	120,	124	
BQF	–	Unspecified	Behaviour,	92,	94,	95	

break,	60	
BRS	–	Obscure	Language	Features,	91	
buffer	boundary	violation,	23	
buffer	overflow,	23,	26	
buffer	underwrite,	23	
BVQ	–	Unspecified	Functionality,	111	
		
C,	22,	48,	50,	51,	58,	60,	63,	73	
C++,	48,	51,	58,	63,	73,	76,	86	
C11,	192	
call	by	copy,	61	
call	by	name,	61	
call	by	reference,	61	
call	by	result,	61	
call	by	value,	61	
call	by	value-result,	61	
CBF	–	Unrestricted	File	Upload,	119	
CCB	–	Enumerator	Issues,	18	
CGA	–	Concurrency	–	Activation,	98	
CGM	–	Protocol	Lock	Errors,	105	
CGS	–	Concurrency	–	Premature	Termination,	103	
CGT	-	Concurrency	–	Directed	termination,	100	
CGX	–	Concurrent	Data	Access,	101	
CGY	–	Inadequately	Secure	Communication	of	

Shared	Resources,	107	
CJM	–	String	Termination,	22	
CLL	–	Switch	Statements	and	Static	Analysis,	54	
concurrency,	2	
continue,	60	
cryptologic,	71,	128	
CSJ	–	Passing	Parameters	and	Return	Values,	61,	82	
		
dangling	reference,	31	
DCM	–	Dangling	References	to	Stack	Frames,	63	
Deactivated	code,	53	
Dead	code,	53	
deadlock,	106	
DHU	–	Inclusion	of	Functionality	from	Untrusted	

Control	Sphere,	139	
Diffie-Hellman-style,	136	
digital	signature,	84	
DJS	–	Inter-language	Calling,	81	
DLB	–	Download	of	Code	Without	Integrity	Check,	

137	
DoS	

Denial	of	Service,	118	
dynamically	linked,	83	

40	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

		
EFS	–	Use	of	unchecked	data	from	an	uncontrolled	

or	tainted	source,	109	
encryption,	128,	133	
endian	

big,	15	
little,	15	

endianness,	14	
Enumerations,	18	
EOJ	–	Demarcation	of	Control	Flow,	56	
EWD	–	Structured	Programming,	60	
EWF	–	Undefined	Behaviour,	92,	94,	95	
EWR	–	Path	Traversal,	124,	130	
exception	handler,	86	
		
FAB	–	Implementation-defined	Behaviour,	92,	94,	95	
FIF	–	Arithmetic	Wrap-around	Error,	34,	35	
FLC	–	Numeric	Conversion	Errors,	20	
Fortran,	73	
		
GDL	–	Recursion,	67	
generics,	76	
GIF,	120	
goto,	60	
		
HCB	–	Buffer	Boundary	Violation	(Buffer	Overflow),	

23,	82	
HFC	–	Pointer	Casting	and	Pointer	Type	Changes,	28	
HJW	–	Unanticipated	Exceptions	from	Library	

Routines,	86	
HTML	

Hyper	Text	Markup	Language,	124	
HTS	–	Resource	Names,	120	
HTTP	

Hypertext	Transfer	Protocol,	127	
		
IEC	60559,	16	
IEEE	754,	16	
IHN	–Type	System,	12	
inheritance,	78	
IP	address,	119	
		
Java,	18,	50,	52,	76	
JavaScript,	125,	126,	127	
JCW	–	Operator	Precedence/Order	of	Evaluation,	47	
		
KLK	–	Distinguished	Values	in	Data	Types,	112	
KOA	–	Likely	Incorrect	Expression,	50	
		
language	vulnerabilities,	9	
Language	Vulnerabilities	

Argument	Passing	to	Library	Functions	[TRJ],	80	
Arithmetic	Wrap-around	Error	[FIF],	34	

Bit	Representations	[STR],	14	
Buffer	Boundary	Violation	(Buffer	Overflow)	[HCB],	23	
Choice	of	Clear	Names	[NAI],	37	
Concurrency	–	Activation	[CGA],	98	
Concurrency	–	Directed	termination	[CGT],	100	
Concurrency	–	Premature	Termination	[CGS],	103	
Concurrent	Data	Access	[CGX],	101	
Dangling	Reference	to	Heap	[XYK],	31	
Dangling	References	to	Stack	Frames	[DCM],	63	
Dead	and	Deactivated	Code	[XYQ],	52	
Dead	Store	[WXQ],	39	
Demarcation	of	Control	Flow	[EOJ],	56	
Deprecated	Language	Features	[MEM],	97	
Dynamically-linked	Code	and	Self-modifying	Code	

[NYY],	83	
Enumerator	Issues	[CCB],	18	
Extra	Intrinsics	[LRM],	79	
Floating-point	Arithmetic	[PLF],	xvii,	16	
Identifier	Name	Reuse	[YOW],	41	
Ignored	Error	Status	and	Unhandled	Exceptions	[OYB],	

68	
Implementation-defined	Behaviour	[FAB],	95	
Inadequately	Secure	Communication	of	Shared	

Resources	[CGY],	107	
Inheritance	[RIP],	78	
Initialization	of	Variables	[LAV],	45	
Inter-language	Calling	[DJS],	81	
Library	Signature	[NSQ],	84	
Likely	Incorrect	Expression	[KOA],	50	
Loop	Control	Variables	[TEX],	57	
Memory	Leak	[XYL],	74	
Namespace	Issues	[BJL],	43	
Null	Pointer	Dereference	[XYH],	30	
Numeric	Conversion	Errors	[FLC],	20	
Obscure	Language	Features	[BRS],	91	
Off-by-one	Error	[XZH],	58	
Operator	Precedence/Order	of	Evaluation	[JCW],	47	
Passing	Parameters	and	Return	Values	[CSJ],	61,	82	
Pointer	Arithmetic	[RVG],	29	
Pointer	Casting	and	Pointer	Type	Changes	[HFC],	28	
Pre-processor	Directives	[NMP],	87	
Protocol	Lock	Errors	[CGM],	105	
Provision	of	Inherently	Unsafe	Operations	[SKL],	90	
Recursion	[GDL],	67	
Side-effects	and	Order	of	Evaluation	[SAM],	49	
Sign	Extension	Error	[XZI],	36	
String	Termination	[CJM],	22	
Structured	Programming	[EWD],	60	
Subprogram	Signature	Mismatch	[OTR],	65	
Suppression	of	Language-defined	Run-time	Checking	

[MXB],	89	

©	ISO/IEC	2013	–	All	rights	reserved	 41	
	

Switch	Statements	and	Static	Analysis	[CLL],	54	
Templates	and	Generics	[SYM],	76	
Termination	Strategy	[REU],	70	
Type	System	[IHN],	12	
Type-breaking	Reinterpretation	of	Data	[AMV],	72	
Unanticipated	Exceptions	from	Library	Routines	[HJW],	

86	
Unchecked	Array	Copying	[XYW],	27	
Unchecked	Array	Indexing	[XYZ],	25	
Uncontrolled	Fromat	String	[SHL],	110	
Undefined	Behaviour	[EWF],	94	
Unspecified	Behaviour	[BFQ],	92	
Unused	Variable	[YZS],	40	
Use	of	unchecked	data	from	an	uncontrolled	or	tainted	

source	[EFS],	109	
Using	Shift	Operations	for	Multiplication	and	Division	

[PIK],	35	
language	vulnerability,	5	
LAV	–	Initialization	of	Variables,	45	
LHS	(left-hand	side),	241	
Linux,	120	
livelock,	106	
longjmp,	60	
LRM	–	Extra	Intrinsics,	79	
		
MAC	address,	119	
macof,	118	
MEM	–	Deprecated	Language	Features,	97	
memory	disclosure,	130	
Microsoft	

Win16,	121	
Windows,	117	
Windows	XP,	120	

MIME	
Multipurpose	Internet	Mail	Extensions,	124	

MISRA	C,	29	
MISRA	C++,	87	
mlock(),	117	
MVX	–	Use	of	a	One-Way	Hash	without	a	Salt,	141	
MXB	–	Suppression	of	Language-defined	Run-time	

Checking,	89	
		
NAI	–	Choice	of	Clear	Names,	37	
name	type	equivalence,	12	
NMP	–	Pre-Processor	Directives,	87	
NSQ	–	Library	Signature,	84	
NTFS	

New	Technology	File	System,	120	
NULL,	31,	58	
NULL pointer,	31	
null-pointer,	30	

NYY	–	Dynamically-linked	Code	and	Self-modifying	
Code,	83	

		
OTR	–	Subprogram	Signature	Mismatch,	65,	82	
OYB	–	Ignored	Error	Status	and	Unhandled	

Exceptions,	68,	163	
		
Pascal,	82	
PHP,	124	
PIK	–	Using	Shift	Operations	for	Multiplication	and	

Division,	34,	35,	197	
PLF	–	Floating-point	Arithmetic,	xvii,	16	
POSIX,	99	
pragmas,	75,	96	
predictable	execution,	4,	8	
PYQ	–	URL	Redirection	to	Untrusted	Site	('Open	

Redirect'),	140	
		
real	numbers,	16	
Real-Time	Java,	105	
resource	exhaustion,	118	
REU	–	Termination	Strategy,	70	
RIP	–	Inheritance,	xvii,	78	
rsize_t,	22	
RST	–	Injection,	109,	122	
runtime-constraint	handler,	191	
RVG	–	Pointer	Arithmetic,	29	
		
safety	hazard,	4	
safety-critical	software,	5	
SAM	–	Side-effects	and	Order	of	Evaluation,	49	
security	vulnerability,	5	
SeImpersonatePrivilege,	115	
setjmp,	60	
SHL	–	Uncontrolled	Format	String,	110	
size_t,	22	
SKL	–	Provision	of	Inherently	Unsafe	Operations,	90	
software	quality,	4	
software	vulnerabilities,	9	
SQL	

Structured	Query	Language,	112	
STR	–	Bit	Representations,	14	
strcpy,	23	
strncpy,	23	
structure	type	equivalence,	12	
switch,	54	
SYM	–	Templates	and	Generics,	76	
symlink,	131	
		
tail-recursion,	68	
templates,	76,	77	
TEX	–	Loop	Control	Variables,	57	
thread,	2	

42	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

TRJ	–	Argument	Passing	to	Library	Functions,	80	
type	casts,	20	
type	coercion,	20	
type	safe,	12	
type	secure,	12	
type	system,	12	
		
UNC	

Uniform	Naming	Convention,	131	
Universal	Naming	Convention,	131	

Unchecked_Conversion,	73	
UNIX,	83,	114,	120,	131	
unspecified	functionality,	111	
Unspecified	functionality,	111	
URI	

Uniform	Resource	Identifier,	127	
URL	

Uniform	Resource	Locator,	127	
		
VirtualLock(),	117	
		
white-list,	120,	124,	127	
Windows,	99	
WPL	–	Improper	Restriction	of	Excessive	

Authentication	Attempts,	140	
WXQ	–	Dead	Store,	39,	40,	41	
		
XSS	

Cross-site	scripting,	125	
XYH	–	Null	Pointer	Deference,	30	
XYK	–	Dangling	Reference	to	Heap,	31	
XYL	–	Memory	Leak,	74	
XYM	–	Insufficiently	Protected	Credentials,	9,	133	
XYN	–Adherence	to	Least	Privilege,	113	
XYO	–	Privilege	Sandbox	Issues,	114	
XYP	–	Hard-coded	Password,	136	
XYQ	–	Dead	and	Deactivated	Code,	52	
XYS	–	Executing	or	Loading	Untrusted	Code,	116	
XYT	–	Cross-site	Scripting,	125	
XYW	–	Unchecked	Array	Copying,	27	
XYZ	–	Unchecked	Array	Indexing,	25,	28	
XZH	–	Off-by-one	Error,	58	
XZI	–	Sign	Extension	Error,	36	
XZK	–	Senitive	Information	Uncleared	Before	Use,	

130	
XZL	–	Discrepancy	Information	Leak,	129	
XZN	–	Missing	or	Inconsistent	Access	Control,	134	
XZO	–	Authentication	Logic	Error,	135	
XZP	–	Resource	Exhaustion,	118	
XZQ	–	Unquoted	Search	Path	or	Element,	127	
XZR	–	Improperly	Verified	Signature,	128	
XZS	–	Missing	Required	Cryptographic	Step,	133	
XZX	–	Memory	Locking,	117	
		
YOW	–	Identifier	Name	Reuse,	41,	44	
YZS	–	Unused	Variable,	39,	40	

	

