
ISO/IEC JTC 1/SC 22/WG 23 N 0332 1

Revised proposal for separation of XYY into two descriptions 2

 3
Date 25 March 2011
Contributed by Jim Moore
Original file name
Notes Replaces N0321, Action Item #17-07

 4

Meeting #17 marked up my original proposal. Action Item #17-07 instructs me to revise the 5

proposal accordingly and submit it for inclusion in the baseline. 6

 7

6.x Arithmetic Wrap-around Error [FIF] 8

 9

6.x.1 Description of application vulnerability 10

 11
Wrap-around errors can occur whenever a value is incremented past the maximum or decremented past 12
the minimum value representable in its type and, depending upon 13

 whether the type is signed or unsigned, 14
 the specification of the language semantics and/or 15
 implementation choices, 16

"wraps around" to an unexpected value. This vulnerability is related to Logical Wrap-around Error [PIK]. 17
= = = 18
Footnote: This description is derived from Wrap-Around Error [XYY], which appeared in Edition 1 of 19
this international technical report. 20
= = = 21

6.x.2 Cross reference 22

 23

CWE: 24

128. Wrap-around Error 25

190: Integer Overflow or Wraparound 26

JSF AV Rules: 164 and 15 27

MISRA C 2004: 10.1 to 10.6, 12.8 and 12.11 28

MISRA C++ 2008: 2-13-3, 5-0-3 to 5-0-10, and 5-19-1 29

CERT C guidelines: INT30-C, INT32-C, and INT34-C 30

 31

6.x.3 Mechanism of failure 32

 33

Due to how arithmetic is performed by computers, if a variable’s value is increased past the 34

maximum value representable in its type, the system may fail to provide an overflow indication 35

to the program. One of the most common processor behaviour is to “wrap” to a very large 36

negative value, or set a condition flag for overflow or underflow, or saturate at the largest 37

representable value. 38

 39

Wrap-around often generates an unexpected negative value; this unexpected value may cause a 40

loop to continue for a long time (because the termination condition requires a value greater than 41

some positive value) or an array bounds violation. A wrap-around can sometimes trigger buffer 42

overflows that can be used to execute arbitrary code. 43

 44

It should be noted that the precise consequences of wrap-around differ depending on: 45

 Whether the type is signed or unsigned 46

 Whether the type is a modulus type 47

 Whether the type’s range is violated by exceeding the maximum representable value or 48

falling short of the minimum representable value 49

 The semantics of the language specification 50

 Implementation decisions 51

However, in all cases, the resulting problem is that the value yielded by the computation may be 52

unexpected. 53

 54

6.x.4 Applicable language characteristics 55

 56

This vulnerability description is intended to be applicable to languages with the following 57

characteristics: 58

 Languages that do not trigger an exception condition when a wrap-around error occurs. 59

 60

6.x.4 Avoiding the vulnerability or mitigating its effects 61

 62

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 63

 Determine applicable upper and lower bounds for the range of all variables and use 64

language mechanisms or static analysis to determine that values are confined to the 65

proper range. 66

 Analyze the software using static analysis looking for unexpected consequences of 67

arithmetic operations. 68

 69

6.x.6 Implications for standardization 70

 71

In future standardization activities, the following items should be considered: 72

 Language standards developers should consider providing facilities to specify either an 73

error, a saturated value, or a modulo result when numeric overflow occurs. Ideally, the 74

selection among these alternatives could be made by the programmer. 75

 76

6.y Using Shift Operations for Multiplication and Division [PIK] 77

 78

6.y.1 Description of application vulnerability 79

 80

Using shift operations as a surrogate for multiply or divide may produce an unexpected value 81

when the sign bit is changed or when value bits are lost. This vulnerability is related to 82

Arithmetic Wrap-around Error [FIF]. 83

= = = 84
Footnote: This description is derived from Wrap-Around Error [XYY], which appeared in Edition 1 of 85
this international technical report. 86
= = = 87

6.x.2 Cross reference 88

 89

CWE: 90

128. Wrap-around Error 91

190: Integer Overflow or Wraparound 92

JSF AV Rules: 164 and 15 93

MISRA C 2004: 10.1 to 10.6, 12.8 and 12.11 94

MISRA C++ 2008: 2-13-3, 5-0-3 to 5-0-10, and 5-19-1 95

CERT C guidelines: INT30-C, INT32-C, and INT34-C 96

 97

6.y.3 Mechanism of failure 98

 99

Shift operations intended to produce results equivalent to multiplication or division fail to 100

produce correct results if the shift operation affects the sign bit or shifts significant bits from the 101

value. 102

 103

Such errors often generate an unexpected negative value; this unexpected value may cause a loop 104

to continue for a long time (because the termination condition requires a value greater than some 105

positive value) or an array bounds violation. The error can sometimes trigger buffer overflows 106

that can be used to execute arbitrary code. 107

 108

6.y.4 Applicable language characteristics 109

 110

This vulnerability description is intended to be applicable to languages with the following 111

characteristics: 112

 Languages that permit logical shift operations on variables of arithmetic type. 113

 114

6.y.4 Avoiding the vulnerability or mitigating its effects 115

 116

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 117

 Determine applicable upper and lower bounds for the range of all variables and use 118

language mechanisms or static analysis to determine that values are confined to the 119

proper range. 120

 Analyze the software using static analysis looking for unexpected consequences of shift 121

operations. 122

 Avoid using shift operations as a surrogate for multiplication and division. Most 123

compilers will use the correct operation in the appropriate fashion when it is applicable. 124

 125

6.y.6 Implications for standardization 126

 127

In future standardization activities, the following items should be considered: 128

 Not providing logical shifting on arithmetic values or flagging it for reviewers. 129
 130

