
6.x Library Signature [NSQ]

6.x.0 Status and history

2009-02-14 – Edits from editor’s teleconference 28th Jan
2008-10-05 – Revised draft provided by Dan Nagle
2008-09 – Considered at Stuttgart meeting

6.x.1 Description of application vulnerability

Programs written in modern languages may use libraries written in other languages than the program
implementation language. If the library is large, the effort of adding signatures for all of the functions
use by hand may be tedious and error-prone. Portable cross-language signatures will require detailed
understanding of both languages, which a programmer may lack.

Integrating two or more programming languages into a single executable relies upon knowing how to
interface the function calls, argument list and global data structures so the symbols match in the object
code during linking.

Byte alignment can be a source of data corruption if memory boundaries between the programming
languages are different. Each language may also align structure data differently.

6.x.2 Cross reference
MISRA C 2004: 1.3
MISRA C++ 2008: 1-0-2

6.x.3 Mechanism of failure

When the library and the application in which it is to be used are written in different languages, the
specification of signatures is complicated by inter-language issues.

As used in this vulnerability description, the term library includes the interface to the operating system,
which may be specified only for the language used to code the operating system itself. In this case, any
program written in any other language faces the inter-language interoperability issue of creating a fully-
functional signature.

When the application language and the library language are different, then the ability to specify
signatures according to either standard may not exist, or be very difficult. Thus, a translator-by-
translator solution may be needed, which maximizes the probability of incorrect signatures (since the
solution must be recreated for each translator pair). Incorrect signatures may or may not be caught
during the linking phase.

6.x.4 Applicable language characteristics

Languages that do not specify how to describe signatures for subprograms written in other languages.

6.x.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use tools to create the signatures.
• Avoid using translator options or language features to reference library subprograms without

proper signatures.

MOOREJ
Note
Remove "tedious and"

MOOREJ
Note
change clause to "which is an expensive solution to the problem (since the solution must be recreated for each translator pair)."

6.x.6 Implications for standardization

In future standardization activities, the following items should be considered::

• Provide correct linkage even in the absence of correctly specified procedure signatures. (Note
that this may be very difficult where the original source code is unavailable.)

• Provide specified means to describe the signatures of subprograms.

6.x.7 Bibliography

