6.13
XYX Boundary Beginning Violation

[Note: Perhaps this should be subsumed by XYZ.]

6.13.0
Status and history

REVISE: Derek Jones
2007-12-14, edited at OWGV meeting 7

2007-08-04, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner
6.13.1
Description of application vulnerability

A buffer underwrite condition occurs when a buffer is indexed outside its lower bounds, or pointer arithmetic results in a position before the beginning of the valid memory location.

6.13.2
Cross reference

CWE: 

124. Boundary Beginning Violation ("buffer underwrite")

6.13.3
Categorization

See clause 5.?. 
Group: Array Bounds
6.13.4
Mechanism of failure

Buffer underwrites will very likely result in the corruption of relevant memory, and perhaps instructions, leading to a crash.  If the memory corrupted memory can be effectively controlled, it may be possible to execute arbitrary code.  If the memory corrupted is data rather than instructions, the system will continue to function with improper changes, ones made in violation of a policy, whether explicit or implicit.

6.13.5
Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:
· The size and bounds of arrays and their extents might be statically determinable or dynamic. Some languages provide both capabilities. 

· Language implementations might or might not statically detect out of bound access and generate a compile-time diagnostic. 

· At run-time the implementation might or might not detect the out of bounds access and provide a notification at run-time. The notification might be treatable by the program or it might not be. 

· Accesses might violate the bounds of the entire array or violate the bounds of a particular extent. It is possible that the former is checked and detected by the implementation while the latter is not. 

· The information needed to detect the violation might or might not be available depending on the context of use. (For example, passing an array to a subroutine via a pointer might deprive the subroutine of information regarding the size of the array.) 

· Some languages provide for whole array operations that may obviate the need to access individual elements. 

· Some languages may automatically extend the bounds of an array to accommodate accesses that might otherwise have been beyond the bounds. (This may or may not match the programmer's intent.)

6.13.6
Avoiding the vulnerability or mitigating its effects

[Revise to clarify that inefficiency of dynamic checking can often be avoided.]

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:.
· Some languages have facilities or add-on options that can be used to automatically check array indexes.
· Add-on tools, such as static analyzers, can be used to detect possible violations. Coding techniques can be used and encouraged through their specification in coding guidelines that improve the analyzability of the code.
· Sanity checks should be performed on all calculated values used as index or for pointer arithmetic.

6.13.7
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

6.13.8
Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

