6.x DCM Dangling references to stack frames

<No text should appear here—in the space between 6.x and 6.x.1. This is simply an explanation of the header.>

<Exception: Some vulnerabilities—those judged to be application vulnerabilities rather than programming language vulnerabilities—will have a clause number of 7 rather than 6.>

<The number "x" depends on the order in which the vulnerabilities are listed in Clause 6. It will be assigned by the editor.>

<The "unique immutable identifier" is intended to provide an enduring identifier for each of the vulnerability descriptions, even if their order is changed in the document. It is invented by the proposer as a unique three-letter alphabetic code; airport codes work nicely. A new code is to be manufactured when proposed vulnerability descriptions are merged or subdivided.>

<The "short title" should be a noun phrase summarizing the description of the application vulnerability.> 
6.x.0 Status and history

2007-12-06: first version by Erhard Ploedereder

2007-10-15: Needs to be written.

2007-10-15, Decided at OWGV #6: We decide to write a new vulnerability, Pointer Arithmetic, RVG, for 17.1 thru 17.4. Don't do 17.5. We also want to create DCM to deal with dangling references to stack frames, 17.6. XYK deals with dangling pointers. Deal with MISRA 2004 rules 17.1, 17.2, 17.3, 17.4, 17.5, 17.6; JSF rule 175.

6.x.1 Description of application vulnerability

Many systems implementation languages allow treating the address of a local variable as a value stored in other variables. Examples are the application of the address operator in C or C++, or of the ‘Access or ‘Address attributes in Ada. In the C-family of languages, this facility is also used to model the call-by-reference mechanism by passing the address of the actual parameter by-value. An obvious safety requirement is that the stored address shall not be used after the lifetime of the local variable has expired. Technically, the stack frame, in which the local variable lived, has been popped and memory may have been reused for a subsequent call. Unfortunately the invalidity of the stored address is very difficult to decide. This situation can be described as a “dangling reference to the stack”. See also XYK “dangling references to the heap”. 

6.x.2 Cross reference

CWE: <Replace this one or more CWE identifiers—both number and short title. At a later date, other cross-references may be added.>
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.x.4 Mechanism of failure

The consequences of dangling references to the stack come in two flavors: a deterministically predictable flavor, which therefore can be exploited, and an intermittent, non-deterministic flavor, which are next to impossible to elicit during testing. The following code sample illustrates the two flavors; the behavior is not language-specific:

struct s (*ptr)[1000], *ptr2, fs;

struct s* F()

{

   struct s Arr[1000];

   ptr = &Arr;    // Risk of flavor 1;

   return &Arr;    // Risk of flavor 2;
}

…

   ptr2 = F();

   fs = ptr2[10];   // Fault of flavor 2

…

   fs = (*ptr)[10];   // Fault of flavor 1

The risk of flavor 1 is the assignment of the address of Arr to a pointer variable that survives the lifetime of Arr. The fault is the subsequent use of the dangling reference to the stack, which references memory since altered by other calls and possibly validly owned by other routines. As part of a call-back, the faults allows systematic examination of portions of the stack contents without triggering a buffer overflow detection. Thus, this vulnerability is easily exploitable. As a fault, the effects can be most astounding, as memory gets corrupted by completely unrelated code portions. Particularly interesting are deallocations erroneously called on the pointer into the stack, as from then on there is a risk that the respective memory portion is returned as the result of an allocation; now heap blocks and stack frames share a portion of memory actively operated upon in either capacity. 

The risk of flavor 2 is an idiom “seen in the wild” to return the address of a local variable in order to avoid an expensive copy of a function result, as long as it is consumed before the next routine call occurs. The idiom is based on the ill-founded assumption that the stack will not be affected by anything until this next call is issued. The assumption is false, however, if an interrupt occurs and interrupt handling employs a strategy called “stack stealing”, i.e., using the current stack to satisfy its memory requirements. Thus, the value of Arr can be overwritten before it can be retrieved after the call on F. As this fault will only occur if the interrupt arrives after the call has returned but before the returned result is consumed, the fault is highly intermittent and next to impossible to (re-)create during testing. Thus, it is unlikely to be exploitable, but also exceedingly hard to find by testing. It can begin to occur after a completely unrelated interrupt handler has been coded or altered. Only static analysis can relatively easily detect the danger.

6.x.5 Range of language characteristics considered

<Exception: This section is omitted from vulnerability descriptions in Clause 7. The subsequent subclauses are, of course, to be renumbered.>
This vulnerability description is intended to be applicable to languages with the following characteristics:

· The address of a local entity (or formal parameter) of a routine can be obtained and stored in a variable or can be returned by this routine as a result; and

· no check is made that the lifetime of the variable receiving the address is no larger than the lifetime of the designated entity.

6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Do not use the address of declared entities as storable, assignable or returnable value (except where idioms of the language make it unavoidable).

· Where unavoidable, ensure that the lifetime of the variable containing the address is completely enclosed by the lifetime of the designated object.

· Never return the address of a local variable as the result of a function call. (No excuses.)  

6.x.7 Implications for standardization

Language designers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Do not provide means to obtain the address of a declared entity as a storable value; or

· Define implicit checks to implement the assurance of enclosed lifetime expressed in 6.x.6. Note that, in many cases, the check is statically decidable, e.g., in the return case. 

6.x.8 Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

>

