7.11
XZP Resource Exhaustion

7.11.0
Status and history

OK: No one is assigned
2007-12-15, status noted, Jim Moore
2007-08-04, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner
7.11.1
Description of application vulnerability

The application is susceptible to generating and/or accepting an excessive amount of requests that could potentially exhaust limited resources, such as memory, file system storage, database connection pool entries, or CPU.  This can ultimately lead to a denial of service that could prevent valid users from accessing the application. 

7.11.2
Cross reference

CWE: 

400. Resource Exhaustion (file descriptor, disk space, sockets,...)

7.11.3
Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>

7.11.4
Mechanism of failure

There are two primary failures associated with resource exhaustion.  The most common result of resource exhaustion is denial of service.  In some cases it may be possible to force a system to "fail open" in the event of resource exhaustion.

Resource exhaustion issues are generally understood but are far more difficult to successfully prevent. Taking advantage of various entry points, an attacker could craft a wide variety of requests that would cause the site to consume resources. Database queries that take a long time to process are good DoS targets. An attacker would only have to write a few lines of Perl code to generate enough traffic to exceed the site's ability to keep up. This would effectively prevent authorized users from using the site at all.

Resources can be exploited simply by ensuring that the target machine must do much more work and consume more resources in order to service a request than the attacker must do to initiate a request. Prevention of these attacks requires either that the target system either recognizes the attack and denies that user further access for a given amount of time or uniformly throttles all requests in order to make it more difficult to consume resources more quickly than they can again be freed. The first of these solutions is an issue in itself though, since it may allow attackers to prevent the use of the system by a particular valid user. If the attacker impersonates the valid user, he may be able to prevent the user from accessing the server in question. The second solution is simply difficult to effectively institute and even when properly done, it does not provide a full solution. It simply makes the attack require more resources on the part of the attacker.

The final concern that must be discussed about issues of resource exhaustion is that of systems which "fail open." This means that in the event of resource consumption, the system fails in such a way that the state of the system — and possibly the security functionality of the system — is compromised. A prime example of this can be found in old switches that were vulnerable to "macof" attacks (so named for a tool developed by Dugsong). These attacks flooded a switch with random IP and MAC address combinations, therefore exhausting the switch's cache, which held the information of which port corresponded to which MAC addresses. Once this cache was exhausted, the switch would fail in an insecure way and would begin to act simply as a hub, broadcasting all traffic on all ports and allowing for basic sniffing attacks.

7.11.5
Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Implement throttling mechanisms into the system architecture. The best protection is to limit the amount of resources that an unauthorized user can cause to be expended. A strong authentication and access control model will help prevent such attacks from occurring in the first place. The login application should be protected against DoS attacks as much as possible. Limiting the database access, perhaps by caching result sets, can help minimize the resources expended. To further limit the potential for a DoS attack, consider tracking the rate of requests received from users and blocking requests that exceed a defined rate threshold.

· Other ways to avoid the vulnerability are to ensure that protocols have specific limits of scale placed on them, ensure that all failures in resource allocation place the system into a safe posture and to fail safely when a resource exhaustion occurs.
7.11.6
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

7.11.7
Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

