6.<x> XYY Wrap-around Error

6.x.0 Status and history

PENDING
2007-07-30, Edited by Larry Wagoner
2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.<x>.1 Description of application vulnerability

Wrap around errors occur whenever a value is incremented past the maximum value for its type and therefore "wraps around" to a very small, negative, or undefined value.

6.<x>.2 Cross reference

CWE: 

128. Wrap-around Error
6.<x>.3 Categorization

See clause 5.?. 
Group: Arithmetic
6.<x>.4 Mechanism of failure

Due to how arithmetic is performed by computers, if a primitive is incremented past the maximum value possible for its storage space, the system will fail to recognize this [not categorically correct], and therefore increment each bit as if it still had extra space. Because of how negative numbers are represented in binary, primitives interpreted as signed may "wrap" to very large negative values.

Wrap-around errors generally lead to undefined behavior and infinite loops, and therefore crashes.  If the value in question is important to data (as opposed to flow), data corruption will occur.  If the wrap around results in other conditions such as buffer overflows, further memory corruption may occur.  A wrap-around can sometimes trigger buffer overflows which can be used to execute arbitrary code.

6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:
· Some languages trigger an exception condition when a wrap-around error occurs.
6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· The choice could be made to use a language that is not susceptible to these issues.
· Provide clear upper and lower bounds on the scale of any protocols designed. 

· Place sanity checks on all incremented variables to ensure that they remain within reasonable bounds.
· Analyze the software using static analysis.








6.x.7 Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>
6.x.8 Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004




