6.x CCB Enumerator issues

6.x.0 Status and history

2007-12-28 Edited by Stephen Michell

6.x.1 Description of application vulnerability

Enumerations are a finite list of named entities that contain a fixed mapping from a set of names to a set of integral values (called the representation) and an order between the members of the set. In some languages there are no other operations available except order, equality, first, last, previous, and next; in others the full underlying representation operators are available, such as integer “+” and “-” and bit-wise operations.

Most languages that provide enumeration types also provide mechanisms to set non-default representations. If these mechanisms do no enforce whole-type operations and check for conflicts then some members of the set may not be properly specified or may have the wrong maps. If the value-setting mechanisms are positional only, then there is a risk that improper counts or changes in relative order will result in an incorrect mapping.

For arrays indexed by enumerations with non-default representations, there is a risk of structures with holes, and if those indexes can be manipulated numerically, there is a risk of out-of-bound accesses of thise arrays.

Most of these errors can be readily detected by static analysis tools with appropriate coding standards, restrictions and annotations. Similarly mismatches in enumeration value specification can be detected statically . Without such rules, errors in the use of enumeration types are computationally hard to detect statically as well as being difficult to detect by human review..
6.x.2 Cross reference

MISRA 2004 - 9.1, 9.2, 9.3;

MISRA 32

JSF C++ Coding Standard 145;

Holzmann rule 6.
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>

6.x.4 Mechanism of failure

As a program is developed and maintained the list of items in an enumeration often changes in three basic ways: New elements are added to the list; order between the members of the set often changes; and representation (the map of values of the items) change. Expressions that depend on the full set or specific relationships between elements of the set can create value errors which could result in wrong results or in unbounded behaviours if used as array indices.

Improperly mapped representations can result in some enumeration values being unreachable, or may create “holes” in the representation where undefinable values can be propogated.

If arrays are indexed by enumerations containing nondefault representations, some implementations may leave space for values that are unreachable using the enumeration, with a possibility of lost material or a way to pass information undetected(hidden channel).
When enumerators are set and initialized explicitly and the language permits incomplete initializers, then changes to the order of enumerators or the addition or deletion of enumerators can result in the wrong values being assigned or default values being assigned improperly. Subsequent indexing or switch/case structures can result in illegal accesses and possibly unbounded behaviours.

6.x.5 Applicable language Characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

Languages that provide named syntax for representation setting and coverage analysis can eliminate the order issues and incomplete coverage issues, as long as no “others” choices are used (e.g. The “when others =>” choice in Ada.

Languages that permit incomplete mappings between enumerator specification and value assigment, or that provide a positional-only mapping require additional static analysis tools and annotations to help identify the complete mapping of every literal to its value.

Langauges that provide a trivial mapping to a type like integer require additional static analysis tools to prevent mixed type errors. They also cannot prevent illegal values from being placed into variables of such enumerator types; for example:

enum Directions {back, forward, stop};
Directions a = forward, b = forward, c = a+b;

In this example, c will have a value not defined by the enumeration, and any further use as that enumeration will lead to erroneos results.

Some languages provide no enumeration capability, leaving it to the programmer to define named constants to represent the values and ranges.

6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Use static analysis that detect inappropriate use of enumerators, such as using them as integers or bit maps, and that detect enumeration definition expressions that are incomplete or incorrect. For languages with a complete enumeration abstraction this is the compiler.
· When positional notation is the only language-provided enumeration paradigm for assigning non-default values to enumerations, the use of comments to document the mapping between literals and their values helps humans and static analysis tools identify the intent and catch errors and changes.
· If the language permits partial assignment of representations to literals, always either initialize all items or none, and be explicit about any defaults assumed.
· When arrays are specified using enumerations as the index, only use enumeration types that have the default mapping.

· Never perform numerical calculations on enumeration types
·

6.x.7 Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

Languages that currently permit arithmetic and logical operations on enumeration types could provide a mechanism to ban such operations program-wide.

Languages that provide automatic defaults or that do not enfore static matching between enumerator definitions and initialization expressions could provide a mechanism to enforce such matching.
6.x.8 Bibliography

<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

