6.x NYY Dynamically-linked code and self-modifying code (was Self-modifying Code)
6.x.0 Status and history

REVISE: Tom Plum

2007-12-13, considered at OWGV meeting 7

2007-11-22, edited by Plum

6.x.1 Description of application vulnerability

On some platforms, and in some languages, instructions can modify other instructions in the code space (“self-modifying code”). [This appears to be a Clause 6 issue.]
Somewhat more analyzable, dynamically-linked code (dynamic class libraries in Java or C++, DLLs, etc) still poses significant challenges for analysis. Development and test methodologies for safety-critical applications usually require that all components have been designed and tested together, a requirement that becomes harder to verify if some components are dynamically-linked. [Is this the reason for the restriction?] [This appears to be a Clause 7 issue. If you use DLLs, then you need some way to ensure that you are using the correct ones.]
6.x.2 Cross reference

JSF AV rule 2: No self-modifying code.

6.x.3 Categorization

[tbd].

6.x.4 Mechanism of failure

[tbd].

6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Self-modifying code;
· Dynamically-linked libraries.
6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Avoid implementation languages that allow self-modifying code.
· [tbd re dynamic linking]
6.x.7 Implications for standardization

[tbd]
6.x.8 Bibliography

