6.7
XYW Buffer Overflow
[Note: Recommend merging this with XZB.]

6.7.0
Status and history

2008-02-13, Edited by Derek Jones

2007-12-14, edited at OWGV meeting 7.
2007-08-03, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.7.1
Description of application vulnerability

A buffer overflow occurs when a Standard library function is called to copy N bytes (or other units of storage) from one buffer to another and the amount being read/written is greater than is allocated for the source or destination buffer .

6.7.2
Cross reference

CWE:

[stack overflow is caused by deep nesting of function calls, so not applicable]
6.7.3
Categorization

See clause 5.?.

Group: Array Bounds

6.7.4
Mechanism of failure

Many languages and some third party libraries provide functions which efficiently copy one area of storage to another area of storage. Most of these libraries do not perform any checks to ensure that the copied from/to storage area is large enough to accommodate the amount of data being copied.

The arguments to these library functions include the addresses of the two storage areas and the number of bytes (or some other measure) to copy Passing the appropriate combination of incorrect start addresses or number of bytes to copy makes it is possible to read or write outside of the storage allocated to the source/destination area. When passed incorrect parameters the library function performs one or more unchecked array index accesses, as described in XYZ Unchecked Array Indexing.

6.7.5
Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Languages that contain Standard library functions for performing bulk copying of storage areas.

· The same range of languages having the characteristics listed in XYZ Unchecked Array Indexing
·
·
·
·
·
·
·
·
6.7.6
Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Only use library functions that perform checks on the arguments to ensure no buffer overrun can occur (perhaps by writing a wrapper for the Standard provided functions).
· Perform checks on the argument expressions prior to calling the Standard library function to ensure that no buffer overrun will occur.
·
· Use of static analysis to verify that the appropriate library functions are only called with arguments that do not result in a buffer overrun. Such analysis may require that source code contain certain kinds of information, e.g., that the bounds of all declared arrays be explicitly specified, or that pre- and post-conditions be specified.
6.7.7
Implications for standardization

<
Language specifications should provide Standard library functions that perform bounds checking on their arguments.
6.7.8
Bibliography

[List some buffer bounds checking papers]
