6.x REU Termination strategy
6.x.0 Status and history

2008-01-10 Edited by Larry Wagoner

NEEDS TO BE REVISED: Larry Wagoner. Tom Plum will provide additional ideas. Also, Dan Nagle. Tom will describe "run time constraint handler" from 24731-1.
2007-12-13: Considered by OWGV, meeting 7: Try to keep this one in Clause 6, rather than 7. Discuss issues involved in clean-up to terminate the program or selected parts of the program.
2007-11-27: Drafted in part by Larry Wagoner

2007-10-15 Decided at OWGV meeting 6: Write a new description, REU, that discusses abnormal termination of programs, fail-soft, fail-hard, fail-safe. You need to have a strategy and select appropriate language features and library components. Deal with MISRA 2004 rule 20.11.

6.x.1 Description of application vulnerability

Expectations that a system will be dependable are based on the confidence that the system will operate as expected and not fail in normal use. The dependability of a system and its fault tolerance can be measured through the component part's reliability, availability, safety and security. Reliability is the ability of a system or component to perform its required functions under stated conditions for a specified period of time [IEEE 1990 glossary]. Availability is how timely and reliable the system is to its intended users. Both of these factors matter highly in systems used for safety and security. In spite of the best intentions, systems will encounter a failure, either from internally poorly written software or external forces such as power outages/variations, floods, or other natural disasters. The reaction to a fault can affect the performance of a system and in particular, the safety and security of the system and its users.

When a fault is detected, there are many ways in which a system can react. The quickest and most noticeable way is to fail hard, also known as fail fast or fail stop. The reaction to a detected fault is to immediately halt the system. Alternatively, the reaction to a detected fault could be to fail soft. The system would keep working with the faults present, but the performance of the system would be degraded. Systems used in a high availability environment such as telephone switching centers, e-commerce, etc. would likely use a fail soft approach. What is actually done in a fail soft approach can vary depending on whether the system is used for safety critical or security critical purposes. For fail safe systems, such as flight controllers, traffic signals, or medical monitoring systems, there would be no effort to meet normal operational requirements, but rather to limit the damage or danger caused by the fault. A system that fails securely, such as cryptologic systems, would maintain maximum security when a fault is detected, possibly through a denial of service.

6.x.2 Cross reference

MISRA 2004: 20.11
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.x.4 Mechanism of failure

The reaction to a fault in a system can depend on the criticality of the part in which the fault originates.
When a program consists of several tasks, the tasks each may be critical, or not. If a task is critical, it may or may not be restartable by the rest of the program. Ideally, a task which detects a fault within itself should be able to halt leaving its resources available for use by the rest of the program, halt clearing away its resources, or halt the entire program. The latency of any such communication, and whether other tasks can ignore such a communication, should be clearly specified. Having inconsistent reactions to a fault, such as the fault reaction to a crypto fault, can potentially be a vulnerability.

6.x.5 Range of language characteristics considered

<Exception: This section is omitted from vulnerability descriptions in Clause 7. The subsequent subclauses are, of course, to be renumbered.>
This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· A strategy for fault handling should be decided. Consistency in fault handling should be the same with respect to critically similar parts.
· A multi-tiered approach of fault prevention, fault detection and fault reaction should be used.
· System-defined components that assist in uniformity of fault handling should be used when available. For one example, designing a "runtime constraint handler" (as described in ISO/IEC TR 24731-1) permits the application to intercept various erroneous situations and perform one consistent response, such as flushing a previous transaction and re-starting at the next one.
· When there are multiple tasks, a fault-handling policy should be specified whereby a task may

· halt, and keep its resources available for other tasks (perhaps permitting restarting of the faulting task)

· halt, and remove its resources (perhaps to allow other tasks to use the resources so freed, or to allow a recreation of the task)

· halt, and signal the rest of the program to likewise halt.

6.x.7 Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>
6.x.8 Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

>
