6.9
EOJ Surprises in Control Flow
6.9.0
Status and history
2007-10-03, Edited by OWGV Meeting #6

2007-10-02, Created by Erhard Ploedereder
6.9.1
Description of application vulnerability

In languages that lack end markers for composite constructs such as loops, conditionals, case or switch statements, there is a significant risk of creating unintended control flow. Examples:

i = 1;
while (i < 10) do
 A(i) = ….;
 i++;

is in fact an infinite loop assigning only to A(1).

if P <> null then
 P^.comp1 := x;
 P^.comp2 := y;
will fault for P = null, since the assignment to comp2 then unconditionally dereferences a null pointer.

Moreover, nested conditionals such as

if P then if Q then … else X

are syntactically ambiguous and require special disambiguation rules in the language. (Is X executed for “not P” or for “P and not Q”?) With non-trivial nestings, making sure of the enabling predicates for a particular branch can get error-prone. Analogous problems exist for case- or switch-constructs.
Languages with end markers for all compound constructs (“fi”, “end”, “end if”, “od”, “end loop” or even “esac”) have neither problem, since they can allow sequences of statements between the keywords which then indicate the control flow without any ambiguity.
6.9.2
Cross reference

MISRA C 2004: 14.9, 14.10
6.9.3
Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>

6.9.4
Mechanism of failure

Absent end markers, the syntax can only allow single statements at the end of the construct. While this syntactic rule is easy to understand, indentation tends to be a much stronger and in this case misleading clue for control flow as perceived by the human. Related errors are often introduced when a second statement is added during debugging or maintenance; the errors can have quite subtle execution effects (unlike the fatal behaviour in the examples above).

6.9.5
Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:
· Languages that do not have syntactic end markers for compound statements such as loops, conditionals, cases, switches and alike.
6.9.6
Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· As a general rule, require that places subject to the vulnerability always use a compound statement with an end marker (typically a block), even if that compound statement then contains only a single statement.

· Require the use of an automated formatter, which will undo the misleading clue of indentation. Human code reviews are then more likely to pick up some of the errors.

· Disallow the direct nesting of if-statements on the then-branch of a conditional. Similar rules apply to case or switch statements.
Note that no automated tool can, in general, discover the error, since being inside or after the compound statement usually does not affect static semantics; the error obviously affects dynamic semantics. Specialized tools that compare (human-created) indentation with actual control flow may discover some such errors if indentation rules are systematically obeyed.

Languages that have end markers for all composite statements do not have this vulnerability.
6.9.7
Implications for standardization

Future languages should consider some syntactic indication (called an “end marker” in the text above) for the end of all compound statements.
6.9.8
Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:
MISRA C 2004
