6.x SYM Templates and generics
6.x.0 Status and history

2008-01-02: Updated by Clive Pygott

2007-12-12: Reviewed at OWGV meeting 7. Language-independent issues might include difficulties with human understanding, and difficulties in combining with other language features. On the other hand, it might turn out that sensible guidance is necessarily language-specific. It might be wise the review the entire document to find topics that should be revised to deal with their interaction with templates.

2007-10-15: Decided at OWGV meeting 6: Consider a description, SYM, related to templates and generics. Deal with JSF rules 101, 102, 103, 104, 105, 106.

6.x.1 Description of application vulnerability

Many languages provide a mechanism that allows objects and/or functions to be defined parameterized by type, and then instantiated for specific types. In C++ and related languages, these are referred to as “templates”, and in Ada and Java, “generics”. To avoid having to keep writing ‘templates/generics’, in this section these will simply be referred to collectively as generics.

Used well, generics can make code clearer, more predictable and easier to maintain. Used badly, they can have the reverse effect, making code difficult to review and maintain, leading to the possibility of program error.

6.x.2 Cross reference

CWE: <Replace this one or more CWE identifiers—both number and short title. At a later date, other cross-references may be added.>
JSF++: 100, 101, 102, 103, 104, 105

MISRA C++ 14-7-2 14-8-1 14-8-2
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.x.4 Mechanism of failure
The value of generics comes from having a single piece of code that supports some behaviour in a type independent manner. This simplifies development and maintenance of the code. It should also assist in the understanding of the code during review and maintenance, by providing the same behaviour for all types with which it is instantiated.

Problems arise when the use of a generic actually makes the code harder to understand during review and maintenance, by not providing consistent behaviour.

In most cases, the generic definition will have to make assumptions about the types it can legally be instantiated with. For example, a sort function requires that the elements to be sorted can be copied and compared. If these assumptions are not met, the result is likely to be a compiler error, for example if the sort function is instantiated with a user defined type that doesn’t have a relational operator. Where ‘misuse’ of a generic leads to a compiler error, this can be regarded as a development issue, and not a software vulnerability.

Confusion, and hence potential vulnerability, can arise where the instantiated code is apparently illegal, but doesn’t result in a compiler error. For example, a generic class defines a series of members, a subset of which relay on a particular property of the instantiation type (e.g. a generic container class with a sort member function, only the sort function relies on the instantiating type having a defined relational operator). In some languages, such as C++, if the generic is instantiated with a type that doesn’t meet all the requirements but the program never subsequently makes use of the subset of members that rely on the property of the instantiating type, the code will compile and execute (e.g. the generic container is instantiated with a user defined class that doesn’t define a relational operator, but the program never calls the sort member of this instantiation). When the code is reviewed the generic class will appear to reference a member of the instantiating type which doesn’t exist.

Similar confusion can arise if the language permits specific elements of a generic to be explicitly defined, rather than using the common code, so that behaviour is not consistent for all instantiations. For example, for the same generic container class, the sort member normally sorts the elements of the container into ascending order. In languages such as C++, a ‘special case’ can be created for the instantiation of the generic with a particular type. For example, the sort member for a ‘float’ container may be explicitly defined to provide different behaviour, say sorting the elements into descending order.

6.x.5 Range of language characteristics considered

This vulnerability applies to languages that permit definitions of objects or functions to be parameterized by type, for later instantiation with specific types, e.g.:

templates:
C++

generics:
Ada, Java
6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· document the properties of an instantiating type necessary for the generic to be valid

· if an instantiating type has the required properties, the whole of the generic should be valid, whether actually used in the program or not

· preferably avoid, but at least carefully document, any ‘special cases’ where the generic instantiated with a specific type doesn’t behave as it does for other types
6.x.7 Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>
6.x.8 Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

>
