6.x GDL Recursion
[For the convenience of reviewers, I have paraphrased relevant rules from MISRA 2004:

16.2 Functions shall not call themselves, either directly or indirectly.]
6.x.0 Status and history

2007-12-17: Jim Moore: I edited this by accepting the changes marked in OWGV meeting 7. Any other changes I made are marked with Track Changes.
2007-12-12: Edited by OWGV meeting 7
2007-12-07: Drafted by Jim Moore
2007-10-15: Decided at OWGV Meeting 6: Write a new description, GDL, suggesting that if recursion is used, then you have to deal with issues of termination and resource exhaustion. 

6.x.1 Description of application vulnerability

Recursion is an elegant mathematical mechanism for defining the values of some functions. It is tempting to write code that mirrors the mathematics. However, the use of recursion in a computer can have a profound effect on the consumption of finite resources, leading to denial of service.
6.x.2 Cross reference

CWE:
MISRA 2004: 16.2
JSF C++:
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.x.4 Mechanism of failure

Mathematical recursion provides for the economical definition of some mathematical functions. However, economical definition and economical calculation are two different subjects. It is tempting to calculate the value of a recursive function using recursive subprograms because the expression in the programming language is straightforward and easy to understand. However, the impact on finite computing resources can be profound. Each invocation of a recursive subprogram may result in the creation of a new stack frame, complete with local variables. If stack space is limited (and it always is), then the calculation of some values will lead to an exhaustion of resources, that is, a denial of service.
In calculating the values of mathematical functions the use of recursion in a program is usually obvious, but this is not true in the general case. For example, finalization of a computing context after treating an error condition might result in recursion (e.g. attempting to "clean up" by closing a file after an error was encountered in closing the same file). Although such situations may have other problems, they typically do not result in exhaustion of resources but may otherwise result in a denial of service.
6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:
· Any language that permits the recursive invocation of subprograms.
6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Converting recursive calculations to the corresponding iterative calculation. In principle, any recursive calculation can be remodeled as an iterative calculation which will have a much smaller impact on computing resources but which may be harder for a human to comprehend. The cost to human understanding must be weighed against the practical limits of computing resource.
· In cases where the depth of recursion can be shown to be statically bounded by a tolerable number, then recursion may be acceptable, but should be documented for the use of maintainers.
It should be noted that some languages or implementations provide special (more economical) treatment of a form of recursion known as tail-recursion. In this case, the impact on computing economy is minimized. When using such a language, tail recursion may be preferred to an iterative calculation.
6.x.7 Implications for standardization
[None]
6.x.8 Bibliography
[None]
