6.x SAM Side-effects and order of evaluation
[For the convenience of reviewers, the applicable JSF C++ rule is quoted below:
AV Rule 204: A single operation with side-effects shall only be used in the following contexts:

1.
by itself
2.
the right-hand side of an assignment
3.
a condition
4.
the only argument expression with a side-effect in a function call
5.
condition of a loop
6.
switch condition
7.
single part of a chained operation.

Rationale: Readability
From JSF C++ Appendix (with examples)
AV Rule 204 attempts to prohibit side-effects in expressions that would be unclear, misleading, obscure, or would otherwise result in unspecified or undefined behavior. Consequently, an operation with side-effects will only be used in the following contexts:

Note:
It is permissible for a side-effect to occur in conjunction with a constant expression. However, care should be taken so that additional side-effects are not “hidden” within the expression.

Note:
Functions f(), g(), and h() have side-effects.

1.
by itself
++i;

// Good
for (int32 i=0 ; i<max ; ++i)
// Good: includes the expression portion of a

// for statement
i++ - ++j;

// Bad: operation with side-effect doesn’t occur by itself.

2.
the right-hand side of an assignment

y = f(x);

// Good
y = ++x;

// Good: logically the same as y=f(x)
y = (-b + sqrt(b*b -4*a*c))/(2*a);
// Good: sqrt() does not have side-effect
y = f(x) + 1;

// Good: side-effect may occur with a constant
y = g(x) + h(z);
// Bad: operation with side-effect doesn’t occur by itself

// on rhs of assignment
k = i++ - ++j;

// Bad: same as above
y = f(x) + z;

// Bad: same as above

3.
a condition

if (x.f(y))

// Good
if (int x = f(y))

// Good: this form is often employed with dynamic casts

// if (D* pd = dynamic_cast<D*> (pb)) {…}
if (++p == NULL)
/// Good: side-effect may occur with a constant
if (i++ - --j)

// Bad: operation with side-effect doesn’t occur by itself

// in a condition

4.
the only argument expression with a side-effect in a function call
f(g(z));

// Good
f(g(z),h(w));

// Bad: two argument expressions with side-effects
f(++i,++j);

// Bad: same as above
f(g(z), 3);

// Good: side-effect may occur with a constant

5.
condition of a loop
while (f(x))

// Good
while(--x)

// Good
while((c=*p++) != -1) // Bad: operation with side-effect doesn’t occur by itself

 // in a loop condition

6.
switch condition

switch (f(x))

// Good
switch (c = *p++)
// Bad: operation with side-effect doesn’t occur by itself

// in a switch condition

7.
single part of a chained operation
x.f().g().h();

// Good
a + b * c;

// Good: (operator+() and operator*() are overloaded)
cout << x << y;

// Good

AV Rule 204.1

Since the order in which operators and subexpression are evaluated is unspecified, expressions must be written in a manner that produces the same value under any order the standard permits. . [Note from Tom: It isn’t just the value of the expression that must be the same; the values of all modified lvalues should also be the same, to achieve the goal of predictable behavior.]

i = v[i++];

// Bad: unspecified behavior [Note from Tom: actually, it’s undefined behavior]

i = ++i + 1;

// Bad: unspecified behavior [Note from Tom: actually, it’s undefined behavior]

p->mem_func(*p++);
// Bad: unspecified behavior [Note from Tom: actually, it’s undefined behavior]
[For the convenience of reviewers, I have paraphrased relevant rules from MISRA 2004:]
12.2 (req) The value of an expression shall be the same under any order of evaluation that the standard permits. [Note from Tom: It isn’t just the value of the expression that must be the same; the values of all modified lvalues should also be the same, to achieve the goal of predictable behavior.]
[For the convenience of reviewers, the applicable CERT/CC Guidelines are quoted below]

EXP30-C Do not depend on order of evaluation between sequence points

EXP35-C Do not access or modify the result of a function call after a subsequent sequence point
6.x.0 Status and history

NEEDS TO BE WRITTEN: Tom Plum
2008-01-21: Revised by Thomas Plum
2007-12-12: Reviewed at OWGV meeting 7: Mine material in JCW-071101 and N0108. Determine whether the order of initialization fits here, in LAV, or needs a distinct description.
2007-10-15: Decided at OWGV Meeting 6: We decide to write three new descriptions: operator precedence, JCW; associativity, MTW; order of evaluation, SAM. Deal with MISRA 2004 rules 12.1 and 12.2; JSF C++ rules 204, 213.

6.x.1 Description of application vulnerability
Some programming languages permit subexpressions to cause side-effects (such as assignment, increment, or decrement). For example, C and C++ permit such side-effects, and if, within one expression (such as “i = v[i++]”), two or more side-effects modify the same object, undefined behavior results (subject to certain restrictions that need not be recited here).
Some languages permit subexpressions to be computed in an unspecified ordering. If these subexpressions contain side-effects, then the value of the full expression can be dependent upon the order of evaluation. Furthermore, the objects that are modified by the side-effects can receive values that are dependent upon the order of evaluation.
If a program causes these unspecified or undefined behaviors, testing the program and seeing that it yields the expected results may give the false impression that the expression will always yield the correct result.

6.x.2 Cross reference

[Note from Tom: I could not find any CWE topics on this point.]
JSF C++ AV Rules 204, 204.1
MISRA 2004: 12.2
CERT/CC Guidelines: EXP30-C, EXP35-C
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.x.4 Mechanism of failure
When subexpressions with side effects are used within an expression, the unspecified order of evaluation can result in a program producing different results on different platforms, or even at different times on the same platform For example, consider

a = f(b) + g(b);

where f and g both modify b. If f(b) is evaluated first, then the b used as a parameter to g(b) may be a different value than if g(b) is performed first. Likewise, if g(b) is performed first, f(b) may be called with a different value of b.

Other examples of unspecified order, or even undefined behavior, can be manifested, such as

a = f(i) + i++;

or

a[i++] = b[i++];

Parentheses around expressions can assist in removing ambiguity about grouping, but the issues regarding side-effects and order of evaluation remain; consider

j = i++ * i++;

where even if parentheses are placed around the i++ subexpressions, undefined behavior still remains. (All examples above pertain to C and to C++.)

6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:
· Subexpressions with side effects can be used within an expression
· Subexpressions are computed in an unspecified ordering.

6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Make use of one or more programming guidelines which (a) prohibit these unspecified or undefined behaviors, (b) can be enforced by static analysis, and (c) can be learned and understood by the relevant programmers.

6.x.7 Implications for standardization

In developing new or revised languages, give consideration to language restrictions which will eliminate or mitigate this vulnerability.
6.x.8 Bibliography

>
