

6.x HFC Pointer casting and pointer type changes
6.x.0 Status and history

REVISE to deal with comments: Tom Plum
2008-01-25, edited by Plum
[For the convenience of reviewers, here are the applicable CWE definition(s):]

CWE 136: Type Errors – Weaknesses in this grouping are caused by improper data type transformation or improper handling of multiple data types.
CWE 188: Reliance on Data Layout – Assumptions about protocol data or data stored in memory can be invalid, resulting in using data in ways that are unintended.
[For the convenience of reviewers, here are the applicable JSF C++ rule(s):]
AV Rule 182: Type casting from any type to or from pointers shall not be used. Exception 1: Casting from void* to T* is permissible. In this case, static_cast should be used, but only if it is known that the object really is a T. Furthermore, such code should only occur in low level memory management routines. Exception 2: Conversion of literals (i.e. hardware addresses) to pointers.
AV Rule 183: Every possible measure should be taken to avoid type casting. Rationale: Errors caused by casts are among the most pernicious, particularly because they are so hard to recognize. Strict type checking is your friend – take full advantage of it.
[For the convenience of reviewers, here are the applicable MISRA 2004 rule(s)]

11.1 (req) Conversions shall not be performed between a pointer to a function and any type other than an integral type.

11.2 (req) Conversions shall not be performed between a pointer to object and any type other than an integral type, another pointer to object type or a pointer to void.

11.3 (adv) A cast should not be performed between a pointer type and an integral type.

11.4 (adv) A cast should not be performed between a pointer to object type and a different pointer to object type.

11.5 (req) A cast shall not be performed that removes any const or volatile qualification from the type addressed by a pointer.
[For the convenience of reviewers, here are the applicable CERT/CC Guideline(s)]
EXP05-A: Do not cast away a const qualification
EXP08-A: Ensure pointer arithmetic is used correctly
EXP32-C: Do not access a volatile object through a non-volatile reference
EXP34-C: Ensure a pointer is valid before dereferencing it
EXP36-C: Do not convert between pointers to objects with different alignments
[Note from Tom: after much thought and discussion, itemizing into these cases does not provide additional clarity IMHO]
2007-12-12, edited by OWGV meeting 7

2007-11-24, edited by Moore

2007-11-24, edited by Plum

2007-10-28, edited by Plum

6.x.1 Description of application vulnerability

Define “access via a data pointer” to mean “fetch or store indirectly through that pointer”; define “access via a function pointer” to mean “invocation indirectly through that pointer”. The code produced for access via a pointer requires that the type of the pointer is appropriate for the data or function being accessed; otherwise undefined behavior can occur. (The detailed requirements for “appropriate” type vary among languages.)
Even if the type of the pointer is appropriate for the accesserroneous pointer operations can still cause a bug. Here is an example in C from CWE 188:

void example() {

 char a; char b; *(&a + 1) = 0;

}

Here, b may not be one byte past a. It may be one byte in front of a. Or, they may have three bytes between them because they get aligned to 32-bit boundaries.

6.x.2 Cross reference

CWE 136: Type Errors
CWE 188: Reliance on Data Layout
 MISRA C 11.1, 11.2, 11.3, 11.4, add-in 11.5: Pointer casts
JSF AV 182, 183: Pointer casts
CERT/CC guidelines EXP05-A, 08-A, 32-C, 34-C and 36-C

6.x.3 Categorization

[tbd].

6.x.4 Mechanism of failure

If a pointer’s type or value is not appropriate for the data or function being accessed, erroneous behavior or undefined behavior can be the result. In particular, the last step in execution of a malicious payload is typically an invocation via a pointer-to-function which has been manipulated to point to the payload.

6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Pointers (and/or references) can be converted to different types.
· Pointers to functions can be converted to pointers to data.

· Addresses of specific elements can be calculated.

· Integers can be added to, or subtracted from, pointers, thereby designating different objects.

6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
 [Note from Tom: no, this rule would technically be undefined behavior in C/C++, so it can’t be proposed by an OWGV doc]
· Treat the compiler’s pointer-conversion warnings as serious errors.
· Adopt programming guidelines (preferably augmented by static analysis) that restrict pointer conversions. For example, consider the rules itemized above from JSF C++ AV, CERT/CC, or MISRA C.

· Other means of assurance might include proofs of correctness, analysis with tools, verification techniques, etc.
 [Note from Tom: all languages known to us already implement this rule in the language standard, so why should OWGV “reinforce” the same rule?]
 [Note from Tom: not sure what this was meant to say?]
6.x.7 Implications for standardization

[tbd]
6.x.8 Bibliography

Hatton 13: Pointer casts

