6.<x> XZI Sign Extension Error

6.x.0 Status and history

PENDING

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.<x>.1 Description of application vulnerability

If one extends a signed number incorrectly, if negative numbers are used, an incorrect extension may result. 
[Tom suggests combining XYE, XYF, XYY, XZI as "integer arithmetic". Derek suggests signed/unsigned as one issue; and the others as a separate issue.]
[Should "divide by zero" be added?]
6.<x>.2 Cross reference

CWE: 

194. Sign Extension Error
6.<x>.3 Categorization

See clause 5.?. 
Group: Arithmetic
6.<x>.4 Mechanism of failure

Sign extension errors -- if they are used to collect information from smaller signed sources -- can often create buffer overflows and other memory based problems.

Integrity: If one attempts to sign extend a negative variable with an unsigned extension algorithm, it will produce an incorrect result.

Authorization: Sign extension errors -- if they are used to collect information from smaller signed sources -- can often create buffer overflows and other memory based problems.

6.<x>.5 Possible ways to avoid the vulnerability

Implementation: Use a sign extension library or standard function to extend signed numbers.

Implementation: When extending signed numbers fill in the new bits with 0 if the sign bit is 0 or fill the new bits with 1 if the sign bit is 1.

6.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
6.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 

