ISO/IEC JTC 1/SC 22/0WGV N 0088

Liaison Report:

Ad C JSR-282 (Real-Time Specification for Java)
a Ore JSR-302 (Safety-Critical Java Technologies)

The GNAT Pro Company

ISO/IEC JTC1/SC22/0WGV Meeting
European Headquarters: Ottawa, Canada
8 rue de Milan
75009 Paris France 18-20 July 2007
+33-1-4970-6716 (voice)
+33-1-4970-0552 (FAX)

North American
Headquarters:

104 Fifth Avenue, 15t Floor
New York, NY 10011
+1-212-620-7300 (voice)
+1-212-807-0162 (FAX)

Ben Brosgol * brosgol@adacore.com

www.adacore.com

AdaCore Introduction -

Language vulnerability = application susceptible to safety hazard or security
failure

Main language requirements for avoiding such hazards / failures
* Reliability
» Predictability
* Analyzability

A dilemma

* Features that are beneficial in general may complicate certification against safety or
security standards

= QObject-Oriented Programming
= Generic templates

* |nline expansion

= Exception handling

= Concurrency features

General purposes languages (C, C++, Ada, Java, ...) are too large / complex
e Subsetting is required
» Enforcement of subset should be automatable

AdaCore Java for safety-critical /h_

Some advantages
* Reliability
= Avoids “buffer overflow” problems and “dangling reference” issues
* Predictability: precisely defined semantics, in general
= Order of expression evaluation, “precise” exception behavior
* Analyzability
= No uninitialized variables; no unreachable code”

= Built-in security model

Some issues

* Reliability
» C-based syntax (literals, “dangling else”), low-level thread model

* Predictability
» Thread-related issues (priority semantics, unbounded priority inversions)
= Garbage collection issues

* Analyzability
= Unconventional execution model (JVM)
» Language and API size/complexity

= Built-in security model)

AdaCore Java Community Process (“JCP”) i

Sun-administered process for augmenting/modifying the Java platform
www . Jcp.-org/en/procedures/jcp2

Proposal for new

H - - - - -
JCP Member Java Spec Request (“JSR”) — Executive Committee Initiation
Spec Lead
Public Exec Comm
Expert Group /
JSR - Early Draft

JSR - Public Draft

JSR — Revised Public Draft

_ 5 _ Development
Reference Implementation Team ————> Reference Implementation (*RI”)

Technology Compatibility Kit Team —> Technology Compatibility Kit (“TCK”)!

Maintenance Lead

Expert Group e /
JSR (minor revision)

Rl Team » Revised RI Maintenance

Exec Comm

TCK Team » Revised TCK

AdaCore Background — Real-Time Specification for Java i
What is the Real-Time Specification for Java (JSR-001, JSR-282)?

 API + JVM constraints designed to give real-time predictability to Java platform

Addresses several major issues with Java for real-time systems

Imprecision of thread semantics for “RealTime Threads” + priority-based scheduler, FIFO
scheduling (role of priorities) within priorities, for both wait queues and locks
Possibility of unbounded priority Monitor control policies:

inversion Priority Inheritance, Priority Ceiling Emulation

Garbage collection interference / latency | Non-GC’ed “memory areas”; special threads that are
not allowed to reference the heap

Inadequate functionality Asynchrony, high-resolution time, low-level features

Status
» Original spec (JSR-001) completed in 2001, led by IBM (Greg Bollella, Peter Haggar)
= Several maintenance releases since then, led by TimeSys (Peter Dibble)
= Several commercial implementations available

e Minor update (JSR-282) now in progress, also led by TimeSys (Peter Dibble)
RTSJ not appropriate for safety-critical systems: analyzability issues

 Complex semantics (e.g., Asynchronous Transfer of Control)

e Scoped memory rules requiring run-time checks, complicate analysis 4

AdaCore Background — Safety-Critical Java Technolci

What is Safety-Critical Java Technology (JSR-302)?

 RTSJ profile, designed to allow certification to safety standards such as DO-178B Level A

Approach
 Remove unneeded classes, methods from RTSJ
= Example: no asynchronous transfer of control
* Do not require Garbage Collection
* Require specific approach (Priority Ceiling Emulation) for priority inversion control
» Add statically-checkable annotations to facilitate analysis
= Avoid run-time checks implied by RTSJ rules for memory reference assignment
» Define multiple levels of compliance, corresponding to required application generality
= Most restrictive level reflects classical single-threaded “cyclic executive”
* No attempt to address general Java analyzability issues (e.g. OOP)
Some open issues
» Specifics of statically checkable annotations
Status
* In-progress, spec expected Q1 2008, led by The Open Group (Doug Locke)
* Inspired by work from HIJA (aicas, Univ. of York, ...) and Aonix

o Several related commercial implementations available 5

Books

* P. Dibble; Real-Time Java Platform Programming; Prentice-Hall; 2002;
ISBN 0130282618

* A. Wellings; Concurrent and Real-Time Programming in Java; John Wiley & Sons; 2004;
ISBN 047084437X

Websites
* JSR-1: jcp.org/en/jsr/detail?id=1
o JSR-282: jcp.org/en/jsr/detail?id=1

* P. Dibble (spec. lead), R. Belliardi, B. Brosgol, D. Holmes, and A. Wellings.
Real-Time Specification for Java™, V1.0.1, June 2005. www.rtsj.org

» JSR-302 (Safety-Critical Java Technology): jcp.org/en/jsr/detail ?id=302

	Presentation cover page EU
	Introduction
	Java for safety-critical / high-security systems
	Java Community Process (“JCP”)
	Background – Real-Time Specification for Java
	Background – Safety-Critical Java Technology
	Resources

