Skeleton template for use in proposing vulnerabilities

	8.<x> Information Leak Through Debug Information

8.<x>.1 Description of application vulnerability

An information leak is the intentional or unintentional disclosure of information that either (1) is regarded as sensitive within the product's own functionality, such as a private message, or (2) provides information about the product or its environment that could be useful in an attack but is normally not available to the attacker, such as the installation path of a product that is remotely accessible.  

8.<x>.2 Cross reference

CWE: 

215. Information Leak Through Debug Information

8.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
8.<x>.4 Mechanism of failure

There are many different types of problems that involve information leaks.  Their severity can range widely depending on the type of information that is leaked.

8.<x>.5 Possible ways to avoid the vulnerability

Do not leave debug statements that could be executed in the source code. Assure that all debug information is eradicated before releasing the software.

Compartmentalize your system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area.

8.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
8.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 

	


