Skeleton template for use in proposing vulnerabilities

	8.<x> Hard-coded Password

8.<x>.1 Description of application vulnerability

Hard coded passwords may compromise system security in a way that cannot be easily remedied.  It is never a good idea to hardcode a password.  Not only does hardcoding a password allow all of the project's developers to view the password, it also makes fixing the problem extremely difficult.  Once the code is in production, the password cannot be changed without patching the software.  If the account protected by the password is compromised, the owners of the system will be forced to choose between security and availability.

8.<x>.2 Cross reference

CWE: 

259. Hard-coded Password 

8.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
8.<x>.4 Mechanism of failure

The use of a hard-coded password has many negative implications -- the most significant of these being a failure of authentication measures under certain circumstances.  On many systems, a default administration account exists which is set to a simple default password which is hard-coded into the program or device.  This hard-coded password is the same for each device or system of this type and often is not changed or disabled by end users.  If a malicious user comes across a device of this kind, it is a simple matter of looking up the default password (which is freely available and public on the Internet) and logging in with complete access.  In systems which authenticate with a back-end service, hard-coded passwords within closed source or drop-in solution systems require that the back-end service use a password which can be easily discovered.  Client-side systems with hard-coded passwords propose even more of a threat, since the extraction of a password from a binary is exceedingly simple.  If hard-coded passwords are used, it is almost certain that malicious users will gain access through the account in question.

8.<x>.5 Possible ways to avoid the vulnerability

Rather than hard code a default username and password for first time logins, utilize a "first login" mode which requires the user to enter a unique strong password.

For front-end to back-end connections, there are three solutions that may be used.  The first suggestion involves the use of generated passwords which are changed automatically and must be entered at given time intervals by a system administrator.  These passwords will be held in memory and only be valid for the time intervals.  Second, the passwords used should be limited at the back end to only performing actions valid to for the front end, as opposed to having full access.  Finally, the messages sent should be tagged and checksummed with time sensitive values so as to prevent replay style attacks.

8.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
8.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 


