Skeleton template for use in proposing vulnerabilities

	8.<x> UNIX Path Link Problems

8.<x>.1 Description of application vulnerability

Attackers running software in a particular directory so that the hard link or symbolic link used by the software accesses a file that the attacker has control over may be able to escalate their privilege level to that of the running process.

8.<x>.2 Cross reference

CWE: 

61. UNIX symbolic link (symlink) following

62. UNIX hard link

8.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
8.<x>.4 Mechanism of failure

A software system that allows UNIX symbolic links (symlink) as part of paths whether in internal code or through user input can allow an attacker to spoof the symbolic link and traverse the file system to unintended locations or access arbitrary files. The symbolic link can permit an attacker to read/write/corrupt a file that they originally did not have permissions to access.

Failure for a system to check for hardlinks can result in vulnerability to different types of attacks. For example, an attacker can escalate their privileges if he/she can replace a file used by a privileged program with a hardlink to a sensitive file (e.g. etc/passwd). When the process opens the file, the attacker can assume the privileges of that process.

8.<x>.5 Possible ways to avoid the vulnerability

Follow the principle of least privilege when assigning access rights to files. Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good compartmentalization in the system to provide protected areas that can be trusted.

Files can often be identified by other attributes in addition to the file name such as by comparing file ownership or creation time. You could also store information about a file that you have created and closed, and then use this information to validate the identity of the file when you reopen it. Comparing multiple attributes of the file improves the probability that you have correctly identified the appropriate file.

8.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
8.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 


