Skeleton template for use in proposing vulnerabilities

	8.<x> Sensitive Information Uncleared Before Use

8.<x>.1 Description of application vulnerability

The software does not fully clear previously used information in a data structure, file, or other resource, before making that resource available to another party that did not have access to the original information. 

8.<x>.2 Cross reference

CWE: 

226. Sensitive Information Uncleared Before Use

8.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
8.<x>.4 Mechanism of failure

This typically involves memory in which the new data are not as long as the old data, which leaves portions of the old data still available ("memory disclosure").  However, equivalent errors can occur in other situations where the length of data is variable but the associated data structure is not.  This can overlap with cryptographic errors and cross-boundary cleansing infoleaks.

Dynamic memory managers are not required to clear freed memory and generally do not because of the additional runtime overhead.  Furthermore, dynamic memory managers are free to reallocate this same memory.  As a result, it is possible to accidently leak sensitive information if it is not cleared before calling a function that frees dynamic memory.  Programmers cannot rely on memory being cleared during allocation either.

8.<x>.5 Possible ways to avoid the vulnerability

To prevent information leakage, sensitive information must be cleared from dynamically allocated buffers before they are freed.

8.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
8.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 


