Skeleton template for use in proposing vulnerabilities

	8.<x> Expression Issues

8.<x>.1 Description of application vulnerability

The software contains an expression that will always evaluate to the same boolean value (either always true or always false). 

8.<x>.2 Cross reference

CWE: 

570. Expression is Always True
571. Expression is Always False
8.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
8.<x>.4 Mechanism of failure

Any boolean expression that evaluates to the same value is indicative of superfluous code and is possibly indicative of a bug that exists and, although the chance is remote, possibly could be exploited.

8.<x>.5 Possible ways to avoid the vulnerability

This expression will always evaluate to the same boolean value meaning the program could be rewritten in a simpler form.  The nearby code may be present for debugging purposes, or it may not have been maintained along with the rest of the program.  The expression may also be indicative of a bug earlier in the method. 

8.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
8.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 


