Skeleton template for use in proposing vulnerabilities

	8.<x> Expression Issues

8.<x>.1 Description of application vulnerability

The variable's value is assigned but never used, making it a dead store. It is likely that the variable is simply vestigial, but it is also possible that the unused variable points out a bug. 

8.<x>.2 Cross reference

CWE: 

563. Unused Variable
8.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
8.<x>.4 Mechanism of failure

A variable is declared, but never used.  It is unlikely that this would be the cause of a vulnerability, however it is indicative of a lack of a clean compile at a reasonably high level of compiler settings.

8.<x>.5 Possible ways to avoid the vulnerability

Most compilers can detect unused variables.  However, the detection may have to be enabled as the default may be to ignore unused variables.

8.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
8.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 


