Skeleton template for use in proposing vulnerabilities

	8.<x> SQL Injection Hibernate

8.<x>.1 Description of application vulnerability

Using Hibernate to execute a dynamic SQL statement built with user input can allow an attacker to modify the statement's meaning or to execute arbitrary SQL commands. 

8.<x>.2 Cross reference

CWE: 

564. SQL Injection: Hibernate 

8.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
8.<x>.4 Mechanism of failure

SQL injection attacks are another instantiation of injection attack, in which SQL commands are injected into data-plane input in order to effect the execution of predefined SQL commands.  Since SQL databases generally hold sensitive data, loss of confidentiality is a frequent problem with SQL injection vulnerabilities. 

If poor SQL commands are used to check user names and passwords, it may be possible to connect to a system as another user with no previous knowledge of the password.  If authorization information is held in a SQL database, it may be possible to change this information through the successful exploitation of a SQL injection vulnerability.  Just as it may be possible to read sensitive information, it is also possible to make changes or even delete this information with a SQL injection attack.

8.<x>.5 Possible ways to avoid the vulnerability

A non-SQL style database which is not subject to this flaw may be chosen.

Follow the principle of least privilege when creating user accounts to a SQL database. Users should only have the minimum privileges necessary to use their account. If the requirements of the system indicate that a user can read and modify their own data, then limit their privileges so they cannot read/write others' data.

Duplicate any filtering done on the client-side on the server side.

Implement SQL strings using prepared statements that bind variables.  Prepared statements that do not bind variables can be vulnerable to attack.

Use vigorous white-list style checking on any user input that may be used in a SQL command. Rather than escape meta-characters, it is safest to disallow them entirely since the later use of data that have been entered in the database may neglect to escape meta-characters before use.

Narrowly define the set of safe characters based on the expected value of the parameter in the request.

8.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
8.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 


