
Document Number: P2551R0

Date: 2022-02-14

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Jonathan Wakely <cxx@kayari.org>

Audience: LEWG

Target: C++23

Clarify intent of P1841 numeric traits

ABSTRACT

A list of design-related questions after implementation of [P1841R2] “Wording for Indi-

vidually Specializable Numeric Traits”.

CONTENTS

1 Introduction 1
2 Design Questions 1
3 Suggested Straw Polls 2
A Bibliography 3



P2551R0 1 Introduction

1 INTRODUCTION

[P1841R2] provides wording for numeric traits. The last design paper was [P0437R1]

with additions from [P1370R1].

2 DESIGN QUESTIONS

1. When exactly is a trait disabled for a given numeric type? It seems the intent was

for the value member to be defined whenever a representation for the desired

constant exists. The wording needs to clarify whether any behavioral aspects play

a role. For example, a denorm_min may be enabled independent of whether the

execution environment flushes denormals to zero / treats denormals as zero. Even

in the case of a processor that unconditionally zeros denormals; as long as a rep-

resentation exists, is the trait enabled? Conversely, if a representation does not

exist, is the trait disabled? Specifically, denorm_min should never have the value of

norm_min?

2. Please clarifywhetherwewant to treat bool as a numeric type and enable the traits

accordingly. The current wording in [P1841R2] enables the traits for bool , which
is consistent with std::numeric_limits . std::numeric_limits<bool> will still

exist if needed. Numeric code does not use bool as a numeric type, despite it

being technically an “arithmetic type” in the core language.

3. Many of the numeric traits are motivated by floating-point and make little sense

for integral types. Is it intended that all of the following numeric traits are enabled

also for integral types?

• denorm_min

• epsilon

• norm_min

• reciprocal_overflow_threshold

• round_error

• max_exponent

• max_exponent10

• min_exponent

• min_exponent10

1



P2551R0 3 Suggested Straw Polls

4. reciprocal_overflow_threshold yields a subnormal number for IEC559 types. How

should this value change wrt. treat-denormals-as-zero? I.e. in a situation where

the hardware treats subnormal operands as zero you get 1/0 -> inf, which does

overflow. In which case it doesn’t match the specification anymore (“The smallest

positive value 𝑥 of type T such that T(1)/𝑥 does not overflow”). This trait is spec-

ified by a behavior and as such may depend on processor state. As a compile-time

constant this value must be independent from runtime behavior. But what is the

correct value?

5. numeric_limits::max_digits10 is 0 for integral types. Is max_digits10_v<int>
supposed to yield digits10_v<int> + 1? Or should it only be specialized for

floating-point?

3 SUGGESTED STRAW POLLS

Poll: Whether a numeric trait is enabled is independent of processor behavior and only

reflects whether a representation for the requested trait exists (ignoring reciprocal_-
overflow_threshold).
SF F N A SA

Poll: All numeric traits for bool should be disabled.

SF F N A SA

Poll: The numeric traits listed in item 3 in P2551R0 should be disabled for integral types.

SF F N A SA

Poll: reciprocal_overflow_threshold should be independent of processor behavior

and only reflect the value range of possible representations of the given type.

SF F N A SA

Poll: reciprocal_overflow_threshold should reflect processor behavior if it is known

at compile-time (e.g. the target hardware unconditionally treats denormals as zero), oth-

erwise it should reflect the value range of possible representations of the given type.

SF F N A SA

2



P2551R0 A Bibliography

Poll: max_digits10 should deviate from numeric_limits and yields digits10_v<T> +
1 .
SF F N A SA

A BIBLIOGRAPHY

[P0437R1] Walter E. Brown. P0437R1: Numeric Traits for the Standard Library. ISO/IEC

C++ Standards Committee Paper. 2018. url: https://wg21.link/p0437r1 .

[P1841R2] Walter E. Brown. P1841R2: Wording for Individually Specializable Numeric

Traits. ISO/IEC C++ Standards Committee Paper. 2021. url: https://wg21.
link/p1841r2 .

[P1370R1] Mark Hoemmen and Damien Lebrun-Grandie. P1370R1: Generic numeri-

cal algorithm development with(out) numeric_limits. ISO/IEC C++ Standards

Committee Paper. 2019. url: https://wg21.link/p1370r1 .

3

https://wg21.link/p0437r1
https://wg21.link/p1841r2
https://wg21.link/p1841r2
https://wg21.link/p1370r1

	1 Introduction
	2 Design Questions
	3 Suggested Straw Polls
	A Bibliography

