

Assumptions

Document Number: P2064 R0

Date: 2020-01-13

Reply-to: Herb Sutter (hsutter@microsoft.com)

Audience: SG21, EWG

Abstract

This paper describes why assertions and assumptions are different but related, and how the answers can help to

inform the design of how to expose assertions (contracts) and assumptions in the standard.

Contents

1 Assert ≠ Assume .. 2

1.1 Definitions ..2

1.2 Summary ...2

2 How Assert and Assume are related ... 4

2.1 Assert ⇏ Assume ..4

 Field experience: MSVC C1xx (C++ front-end) and C2 (back-end) ..4

2.2 Assert ⟂̸ Assume ..7

 Counterexample: “Assumed precondition”..7

2.3 Assume ⇒ Assert ..8

 Assume should Assert its parameter as a precondition ...8

 Assume should not be expressed as an attribute...9

3 As-if < UB < Assume(false) < Assume(expr) ≤ Miscompile ... 10

3.1 Definitions ... 10

3.2 Summary .. 11

3.3 Discussion .. 13

 Why not implement Assume(expr) in terms of Assume(false)? ... 13

 Why not implement either Assume in terms of UB? ... 16

3.4 Surveying real-world compilers: Cases and insights ... 17

 Sample survey: Actual branch elision on major compilers and -O levels 17

 Existing products’ usability limitations on using facts via time travel: Violations of sequential

consistency and causality in current practice.. 18

4 Acknowledgments... 22

5 Bibliography .. 22

mailto:hsutter@microsoft.com

P2064 R0: Assumptions – Sutter 2

1 Assert ≠ Assume

1.1 Definitions
SG21 is working on a lexicon of preferred terms to use when talking about these and related concepts. Until that lexi-

con exists, this paper will use (and strongly recommends our lexicon adheres to) the terms assertion and assumption

because they are the universal existing practice for >70 years and >20 years, respectively.

1.2 Summary
 Assert(expr) Assume(expr)

Why
used:
Purpose

Program bug detection

Document expected state to detect bugs
when analyzing or executing this code

Optimization

Inject an additional fact to compile this code better, that
cannot be inferred (practically or at all) by the optimizer
from the program source

What
expr is

expr is a compilable expression that doc-
uments expected program state at this
point

expr is always evaluated if checked

Assertions are “baby/one-line unit
tests,” and are related to unit testing
(unit tests should exercise at least all as-
sertions in the code under test)

expr is a compilable expression that is a claimed truth in-
jected into the optimizer

expr is never evaluated

The fact expressed is that the assumed expression is
known a priori to be guaranteed to evaluate to true

(If expr is unconditionally false, the fact expressed is that
the code where the assumption appears is unreachable.
This is functionally a separate feature; see §3.)

Where
written

Inside a function body

On a function declaration, for pre- and
post-conditions

At class scope, for invariants

Inside a function body (specifically, on a control flow edge)

Who
uses

All programmers of all skill levels should
use assertions liberally to document ex-
pected state and aid debugging

For careful use by experts only, on a case by case basis to
enable a specific desired optimization in a specified source
location (measuring before and after to validate, as with
all optimizations)

When
used

Pervasively, the more the better

~1000 more often than Assume

If in doubt, assert; you cannot go wrong
by writing an assertion, the worst that
can happen is that it fires and you fix or
remove an incorrect assertion

Rarely, case by case where the optimizer could/should be
performing an optimization (e.g., loop unrolling, vectoriza-
tion) but cannot without explicit guidance

If in doubt, never assume; it is the strongest “trust me”
with the most dangerous consequences if false

How
imple-
mented

In library code/macro, or infetrinsic

Code is always generated when
checked: Equivalent to an ordinary
if(!expr) program branch

In optimizer

Code is never generated when used, is not even a true in-
trinsic: The optimizer can make use of the expressed fact
as true without proof or checking

P2064 R0: Assumptions – Sutter 3

1 Even if it’s a duplicate of another assertion, the optimizer can remove redundant evaluations via vanilla as-if CSE, but the
check is still performed.

2 Renamed from _assume to __assume in 2003 for standards conformance.

Relation-
ship to
Assert
checks

Can never remove another enabled as-
sertion check1

Can remove an enabled assertion check (in both direc-
tions, including backwards ‘time travel’ where reachable)

Relation-
ship to
program
correct-
ness

Can be false

If all assertions are true, then increases
confidence that the program is correct

Must never be false

Must always be consistent with the program (no inference
either way)

Meaning if
false

There is a bug in the program or in the
Assert’s expr

There is a bug in the Assume’s expr

Conse-
quences if
false

A bug is diagnosed (if checking is on)

Examples: program terminates unex-
pectedly with last-ditch terminate han-
dlers called, typically at test time

UB + miscompilation

The program is inconsistent: The optimizer has facts that
cannot all be true, which can never happen with facts de-
rived from the program source code

Examples: wild writes (e.g., elided data bounds checks),
arbitrary code execution (e.g., elided switch jump table
bounds checks), nonsense code generation

Safety Safe for widespread use by non-experts Inherently unsafe, can inject UB more broadly than ordi-
nary UB (by persisting into late optimization + time travel;
see §3.2) + miscompilation

Existing
practice,
in general
and in C or
C++

1947: “assertion” [von Neumann 1947]
(see §3)

1949: “assertion” [Turing 1949] (see §3)

1972: K&R C assert(expr)

1998: MSVC 6.0 _assume(expr)2

2011: GCC 4.5.3 and Clang 3.0.0 via
if(expr){}else{__builtin_unreachable();}

2015: Clang 3.6 __builtin_assume(expr)

Existing
practice
documen-
tation
warnings

Only syntactic (mainly, assert is a
macro and so commas in template argu-
ment lists have to be protected by pa-
rentheses)

MSVC __assume documentation has long carried the
warning:

https://library.ias.edu/files/pdfs/ecp/planningcodingof0103inst.pdf
http://www.turingarchive.org/viewer/?id=462&title=01
https://docs.microsoft.com/en-us/cpp/intrinsics/assume?view=vs-2019

P2064 R0: Assumptions – Sutter 4

2 How Assert and Assume are related

2.1 Assert ⇏ Assume
An Assert should never be implicitly Assumed. The two features are different in every row in §1, such as:

• Assert and Assume have unrelated purposes.

• Assert exists to be checked for false, whereas Assume must be guaranteed to never be false.

• Assert evaluates its expression, whereas Assume never evaluates it.

• Assert is a safe debugging aid that should be used pervasively by all programmers, whereas Assume is a

dangerous power tool for experts only, and is in practice used ~1000 less frequently than Assert.

• Asserts cannot elide other checked Asserts, whereas Assumes can and do elide Asserts.

• … and the other differences mentioned in §1.

Consider that the only time it would be safe to assume an assertion (i.e., assume a test) is if the program is going

to terminate anyway if the assertion is false, and will still terminate even if the assertion is assumed. However,

guaranteeing that is rarely possible (recall that the assumption can elide a check), and even then rarely gives

enough noticeable benefit to be desirable.

It is common for the same expression to be both Asserted and Assumed, but because it is the other direction: It

is an Assume that is Asserted in debug mode (see §2.3). For it to be a debugging Assert that is Assumed in re-

lease mode is backwards, even though that was the direction promoted by the former draft C++20 contracts fea-

ture.

 Field experience: MSVC C1xx (C++ front-end) and C2 (back-end)
The only large-scale case I know of that did assume assertions was in the Microsoft C++ compiler front-end and

back-end. In summary: It arose unintentionally (the intent was the reverse, to assert assumptions), caused relia-

bility problems, and has been removed (with minor performance gains).

In 1998 when the MSVC team added __assume(expr), they also intentionally added a macro DASSERT(expr)

that would become essentially assert(expr) in debug builds and __assume(expr) in release builds. The intent

of the macro was to write assumptions that would be asserted at test time (the opposite direction to this sec-

tion, covered in §2.3), so in hindsight the macro should have been named DASSUME and carried explicit warnings.

But because the name of the macro used the word “assert,” in practice this led to its use for assertions. Mark

Hall reports how it led to unstable behavior and difficult to reproduce bugs:

For quite some time we expanded DASSERT(e) to __assume(e) in the retail compiler (this was

another design goal). However, years later we had to admit that DASSERT(e) was too often used

as a defensive programming tool, rather than a way to express a known invariant. Too many

times we found that e would prove false in the wild, leading to ICEs [the compiler crashing].

This is even though the way we used it in the front end ended up ignoring the large majority of

the generated __assume statements, focusing only on __assume(0) and __assume(expr) for

simple expressions. I just did a count, and the fraction was about 10%. But even though only

10% of the DASSERTs were actually assumed, it still wreaked havoc. It was fortunate for us that

the optimizer only took advantage of our simplest __assume(e) intrinsics, but even that low

percentage exposed us for, as Mark Twain would say, a bunch of ‘darned liars.’

P2064 R0: Assumptions – Sutter 5

Eric Brumer reports regarding the MSVC C1xx front-end and C2 back-end:

Since the 1990s, the C2 back-end has many types of assertions, which were all some variant of

an ASSERT macro. All would crash in debug builds, and would either __assume, crash, or do

nothing in retail builds.

In 16.5, we changed the __assume behavior to do diagnostic logging in retail builds [For the rea-

sons Mark Hall gave].

An example of confusion is when folks work with the macro that crashes in debug mode, but

__assumed in retail builds, and used it for defensive programming because it was named “as-

sert.” This is code (paraphrased) that was in the front-end, and seems totally reasonable if doing

defensive programming (but is totally unreasonable if writing an assumption):

int DoSomething(int x) {

 DASSERT(x != 0);

 if (x == 0) {

 return -1; // special return code

 }

 // do useful work

}

Here the FE team wanted crash information when x == 0 in debug mode, but for the function to

return a special return code in release mode. Things were fine [worked as expected] in debug

mode, but in retail the DASSERT was expanding to an __assume, and our optimizer was turning it

all into just:

int DoSomething(int x) {

 // do useful work
}

… which is not the desired effect and reduced the quality of our product, by increasing compiler

crashes and making problems in optimized release builds much more difficult to debug because

it is hard to reason about code reliably when we were compiling a significantly different pro-

gram than we thought.

Notes: (1) Assuming assertions disables this class of “defense in depth” coding pattern: to Assert something in

testing to minimize actual occurrences, but then in production still provide fallback handling for robustness. (2)

This practical experience may support that Assume should not use a syntax that appears to be like an Assert

(contract), as it was in the former draft C++20 contracts design, because in this case doing so has misled devel-

opers into misusing it.

Brumer reports the results of removing __assume from C1xx and C2, work championed and implemented by Na-

talia Glagoleva:

When we removed uses of __assume from our compiler’s own code base, we unmasked many

errors of this kind that Assert in debug mode and do special handling in release mode, which

now worked as intended.

We also discovered many warnings about variables not being initialized on all paths that had

been masked by DASSERTs, which we fixed by initializing the variables.

P2064 R0: Assumptions – Sutter 6

Both changes were a solid improvement.

Additionally, removing all usage of __assume in the C2 back-end resulted in C2 running 1%

faster. This is an indication that __assume hasn’t played nicely with our optimizer (we use our-

selves to compile ourselves). However, it’s possible that other optimizers fare better with __as-

sume than we do.

The last paragraph is a reminder that Assume is not free; it is actively asking the optimizer to perform additional

work and persist more internal data for longer times (see §3 for additional details).

Xiang Fan, the developer responsible for removing __assume specifically from the MSVC front-end, adds:

Much to our surprise, the C1xx front end actually got a 1-2% faster with __assume statements

removed.

Jonathan Caves added for MSVC:

When we removed __assume from the front-end it fixed a lot of strange crashes in our compiler.

For example, we had cases where a function with a switch statement used a DASSERT(false)

for the default case for debugging, but later at the end of the function was a return nullptr;

statement as a historical default that was exercised in release mode:

int* sample() {

 switch(...) {

 /* all cases intended to be covered, and return */

 default: DASSERT(0);

 }

 //...

 return nullptr;

}

In retail mode, the DASSERT became an __assume which elided the return nullptr; as un-

reachable, and so the caller was getting back a pointer value that was whatever happened to be

in the EAX register.

Then the compiler crashed when the pointer was used, typically not at the immediate call site

but several functions later, even though the later function was correctly guarded with a null

check but where we blew past the null check because the pointer value was an arbitrary bit pat-

tern, typically not 0.

P2064 R0: Assumptions – Sutter 7

2.2 Assert ⟂̸ Assume
Assert and Assume are not orthogonal. They cannot be independently combined in sensible ways.

 Counterexample: “Assumed precondition”
I raised the following question in Cologne (2019) during the draft C++20 contracts discussions:

“What does an assumed precondition mean? What does it express, and how should it be used?”

In the then-status quo, an “assumed precondition” would be spelled using a precondition with a level for which

checking is not enabled:

[[pre /*unchecked level*/: expr]] // then-status quo permitted assuming expr if unchecked

And in some contemporaneous variant proposals such as [P1607] it would be spelled more directly as:

[[pre assume: expr]]

This case also came up in various discussions at meetings and on committee email lists, for example this from a

committee email list post in summer 2019 (emphasis added):

> … Consider: [[pre assume: …

It’s important to understand why the answer is “this is self-contradictory.” Consider what each term means:

• A precondition is an expression written by a function author that states expectations on values of the

function’s arguments that every call site is expected to make true. So it is a statement about code the

precondition’s author does not control (the call site is typically written by someone else who uses the

precondition to unit-test the correctness of their own calling code, and most call sites often don’t even

exist yet when the precondition is written) and cannot guarantee to be true (in fact, it could still do

something sensible with violating values in release mode, such as in the DoSomething and sample exam-

ples in §2.1.1; also, preconditions are most valuable when found to be false). A false precondition,

when checked, injects a run-time diagnostic into the caller’s local call site location.

• An assumption means to inject an unverifiable fact into the compiler that the compiler could not deduce

from the source code. So it is a statement about code the assumption’s author controls and can guar-

antee to always be true. A false assumption injects non-local hard language UB into the caller’s

whole program including via time travel before where a reachable assumption appears — in practice

typically including, but not limited to, wild data writes and arbitrary code execution (e.g., from elided

switch jump table bounds checks).

So writing an “assumed precondition” means writing an expression that we cannot guarantee to be true, and

cannot bear to be false, which is a contradiction.

Since it has no sensible meaning, nobody should ever write such a thing, and a high-quality design for Assert

(contracts) and Assume would make this combination difficult or impossible to spell. Fortunately, in existing

practice, by design we cannot write MSVC __assume() or Clang __builtin_assume() on a function declaration

as a precondition statement about someone else’s code we have never even seen and cannot validate, because

they are as-if magic functions which cannot appear in that syntactic location today. Any standardized version of

Assume should maintain this as a feature; it is not a bug. Assumptions are only ever used locally, and even then

very tactically and sparingly when we know optimization is needed and that the assumption will enable an opti-

mization, and very carefully because it had better never be false.

https://wg21.link/p1607

P2064 R0: Assumptions – Sutter 8

2.3 Assume ⇒ Assert
This brings us to the correct relationship between Assert and Assume:

Every Assume should be Asserted so that it can be checked at test time, because the consequences of violating

an Assume are so dire. This informs why we should follow existing practice and provide it as-if a magic function.

Additionally, consider where Assumes are used:

 Assume should Assert its parameter as a precondition
Recall from §1 that Assumes are used in function bodies only. This is a strong reason to lexically express Assume

with the syntax of a function call expression (even though it is not really a function call, not even an intrinsic

one), which follows all existing practice, including the previous proposal by Hal Finkel in [N4425] and as one of

the options proposed by Timur Doumler in [P1774R1].

So if we standardize Assume, the ideal way to express it is as-if an intrinsic function (following existing practice

and limiting natural uses to within function bodies) that Asserts its parameter (so that it is checked at test/debug

time, ideally as a precondition but in the function body will do too). For example, using former draft C++20 syn-

tax:

// IMO an ideal declaration of “Assume” that embodies their correct relationship

void /*std::*/unsafe_assume(bool b) [[pre: b]] ; // (or “expects:”) draft C++20 syntax

Alternatively, in the absence of a general contracts feature, with an assert (or similar) in the body:

void /*std::*/unsafe_assume(bool b) { assert(b); }

or else as-if declared as a function-like macro (note this method is already popular in existing practice to Assert

in debug mode and Assume in release mode):

#ifdef NDEBUG

 #define __unsafe_assume(b) __compiler_magic(b)

#else

 #define __unsafe_assume(b) assert(b)

#endif

The name should include the word unsafe because Assume is inherently unsafe. As detailed in §3, it enables a

strict superset of all the things we currently call unsafe, including the set of all hard language undefined behaviors

(including in more places) and the standard term “vectorization-unsafe,” in addition to allowing contradictions in

the optimizer equivalent to miscompilation. A standardized Assume would be the most dangerous tool in our

standard, so it deserves the word “unsafe” if anything does.3

3 Eric Brumer expresses this opinion based on his experience supporting the MSVC __assume implementation: “I tell anyone
who asks, ‘don’t use __assume, ever.’ It rarely gives you what you want, and simply opens you up to horrible-ness that could
happen if you get it wrong.”

https://wg21.link/n4425
https://wg21.link/p1774r1

P2064 R0: Assumptions – Sutter 9

 Assume should not be expressed as an attribute
I think that the suggestion to express Assume as an attribute, as directed by SG17 Belfast and reflected in

[P1774R2], is a suboptimal choice for several reasons:

• Assume with attribute syntax would make Assumes awkward to write in the one place they should ap-

pear, which is as a statement (see §1).

• Assume with attribute syntax would allow Assumes to be written outside function bodies (e.g., on func-

tion declarations), where they are not meaningful and actively harmful (see §2.2.1).

• Assume with attribute syntax would make it harder to express that it Asserts its parameter as a precon-

dition for test time diagnostics if contracts (Asserts) are eventually also added as attributes, because we

can’t write an attribute on an attribute. In contrast, unsafe_assume(bool b) [[pre: b]] is easy to write

naturally and exactly documents their correct relationship.

• Assume with attribute syntax would be a novel invention not supported by any existing practice in the

past >20 years in shipping commercial compilers.

Additional reasons why Assume should not be an attribute:

• Assume with attribute syntax would imply that if the program is correct in an implementation that uses

the attribute, then ignoring the attribute does not affect program meaning. However, Assume has a

stronger effect on program meaning than any currently standard feature (see also the causality violation

examples in §3.4.2).

• Assume with attribute syntax would be inconsistent with EWG direction for C++20 std::assume_-

aligned. See [P1007R3], which includes EWG Jacksonville (2018) direction to not make it an attribute.

However, one salient difference is that Assume(expr) must not evaluate expr, which is unlike a normal function

call. So if exposed as a magic function-like syntax, the function would be magic in this respect (not evaluating its

argument) as well. Alternatively, Assume could be a hardwired language intrinsic, like sizeof, which also does

not evaluate its argument. Either is better than an attribute.

There is one counterexample I know of that is a form of assumption but is an attribute: [[noreturn]] is more

than a hint and, like std::assume_aligned, is a specific form of assumption.

However, note that hints like [[likely]], [[unlikely]], and inline are not assumptions; they are hints, they

do not inject facts. For example, [[likely]] and [[unlikely]] hint at how often a branch is expected to be

used so as to improve code generation, but they do not state that a branch is not reachable at all so as to actu-

ally change code generation such as by pruning the branch; this is why “likely” and “unreachable” intrinsics are

separate in practice. Similarly, inline is a hint about the expected best way to treat it during compilation of call

sites, but it cannot change whether a function is callable or not so as to remove it. Unlike these hints, Assume is

not a hint; it does inject facts that do change program meaning.

https://wg21.link/p1774r2
https://wg21.link/p1007r3

P2064 R0: Assumptions – Sutter 10

3 As-if < UB < Assume(false) < Assume(expr) ≤ Miscompile

3.1 Definitions
We enable optimizations primarily via the as-if rule, which cannot change the observable behavior of a program:

• As-if rule, such as to allow common subexpression elimination (CSE) or loop inversion in the absence of

observable side effects. This is basic permission for ordinary optimizations to happen.

The following three kinds of UB can change a program’s behavior, and are related but not equivalent:

• UB, such as *(volatile int*)0 = 0xDEAD. This is “vanilla” or “garden-variety” hard language UB that

grants permission to translate to an executable containing nasal demons, hard drive reformat, etc. This

is useful for optimization, but primarily passively (to omit expensive checks), only secondarily actively

(by inferring facts from UB).

• Assume(false), such as MSVC __assume(0) and GCC/Clang __builtin_unreachable(), to inform the

optimizer that a branch is unreachable.

• Assume(expr), such as MSVC __assume(expr) and Clang __builtin_assume(expr), to inject a compila-

ble (but unevaluated) data relationship fact into the optimizer. (This paper does not discuss related nar-

rower features, such as GCC/Clang __builtin_assume_aligned and C++17 std::par_unseq.)

Because all are UB, we could try to indirectly emulate the later ones in terms of preceding ones. For example:

// Assume(expr) and Assume(false) in terms of UB

#define __hand_rolled_assume(expr) if(expr){}else{ *(volatile int*)0 = 0xDEAD; }

#define __hand_rolled_assume(expr) if(expr){}else{ const int i = 0; (int&)i=0xDEAD; }

#define __hand_rolled_assume_false() (*((volatile int*)0)=0xDEAD)

// Assume(expr) in terms of __builtin_unreachable

#define __hand_rolled_assume(expr) if(expr){}else{ __builtin_unreachable(); }

But these emulations are not equivalent. They can be practically equivalent only by teaching the optimizer to

recognize, and teaching the programmer to use, a specific pattern to infer that the programmer intended to ex-

press the higher-level Assume(false) or Assume(expr). This has three problems: it supports the feature via an

ornate indirect spelling instead of a direct spelling; it opens the door to mistakenly recognizing it in cases the

programmer did not intend; and it incurs compile-time overhead by requiring the optimizer to retain more infor-

mation for a longer time.4

Every major C++ implementation has added Assume(false), and except for GCC also Assume(expr), with a direct

spelling, even though the previous one(s) in the list were already available in the same compiler and they could

have relied on canonizing a known indirect spelling.5

4 Similarly, some can also be indirectly emulated using other language features. For example, a __builtin_unreachable()
magic intrinsic can be emulated as an ordinary function [[noreturn]] __builtin_unreachable();, but again indirectly
and requiring the compiler to recognize and use a pattern.

5 Although in MSVC both are spelled with the word __assume and documented on the same page, the documentation calls
out __assume(0) as a separate feature from __assume(expr) that has different effects and usage guidance.

P2064 R0: Assumptions – Sutter 11

3.2 Summary
This section summarizes the differences. The next sections adds implementer discussion and a compiler survey.

6 Of course, tool vendors can exploit it. This row is about how a programmer writing source code intentionally uses the feature.

 As-if rule UB Assume(false) Assume(expr)

Why
used:
Purpose

Allow ordinary
same-thread
optimization,
preserving ob-
servable be-
havior

Avoid requiring the com-
piler to perform/emit po-
tentially-expensive checks

Enable diagnostic tools
for some classes of errors
(e.g., sanitizers)

Directly inform the front-
end or optimizer that a spe-
cific branch is not reachable
(dead in the AST or CFG)

Directly inform the opti-
mizer of a data relation-
ship

What it
enables

“Vanilla / gar-
den-variety”
same-thread
optimization
transformations

Examples: CSE,
memory access
reordering, loop
inversion

Not diagnosing problems

Examples: Omit an inte-
ger overflow check (to
save execution time),
omit diagnosing a con-
struct (to save compila-
tion time)

Actively pruning an individ-
ual branch (edge/path in
the AST or CFG), inferring
simple facts by proving
reachability

Example: Suppress variable
uninit warning along some
path, eliminate switch
jump table bounds check

Actively generating dif-
ferent code for other
statements using the re-
lated data

Example: elide other
branches (e.g., Asserts),
enable vectorization

Allows
adding
facts?

No Inferring simple facts by
proving reachability

Inferring simple facts by
proving reachability

Directly adding arbitrary
facts without proof

Where
written

n/a, implicit Implicitly (whitespace) in
program source code

Explicitly within a specific
branch, with effects aimed
at enabling pruning that
branch only

Explicitly anywhere in a
function body, with gen-
eral effects on uses of
the variables involved

Who
uses

n/a, implicit No one,6 typically used
only accidentally

For careful use by expert
programmers

For careful use by ex-
pert programmers

When
used

n/a, implicit Ideally never, programs
should never rely on UB

To prune a specific local
branch

To get different code
generation

How im-
ple-
mented

In front-end,
optimizer, and
code generator,
to respect/en-
force language
rules

In front-end and opti-
mizer, which recognize
specific permission to as-
sume certain program
constructs have certain
characteristics

In front-end and optimizer,
to prune an AST or CFG
path or infer a simple fact
from proving reachability

In optimizer and code
generator, to record a
potentially complex
data relationship fact

Repre-
sented
in IL?

Yes, deeply for
inter-thread
constraints that

Typically no, rather by the
absence of a constraint

Yes, pruned early

Clang: Pruned aggressively

Yes, long-lived usually to
the end of optimization,

P2064 R0: Assumptions – Sutter 12

7 UB and Assume(false) only inject contradictory facts when the compiler aggressively infers facts from UB or unreachabil-
ity, which is much more difficult in principle and much less common in practice. Even aggressive optimizers infer mainly
simple facts such as pointer non-nullness and then on code paths they can prove, not arbitrary data relationship expres-
sions to be believed without verification.

Other “trust me” statements also allow injecting undefined behavior into a program if the “trust me” is wrong, but the con-
sequences are strictly weaker. For example, calling for_each(par, first, last, []{/*body*/}); implicitly says “trust
me, run copies of body in parallel; I take responsibility that body does not use unsynchronized shared data or perform any
other par-unsafe operations,” but the consequences of that being untrue are “only” a data race causing undefined run-time
behavior (e.g., torn/partially-constructed objects, wild writes, random code execution, causality violation), and cannot in
general inject contradictory facts into the optimizer (e.g., miscompile code, equivalent to injecting a compiler bug).

affect gener-
ated object
code

MSVC: Pruned early, used
only to suppress warnings and
for reachability optimization

including to persist oth-
erwise-empty functions
(which widens the effect
of the Assume)

Repre-
sented
in gen-
erated
object
code?

Yes for inter-
thread con-
straints (e.g.,
atomics,
memory
fences)

No No (only changes generated
code to remove unused
code)

Yes, can change gener-
ated code (e.g., use vec-
tor instructions)

Conse-
quences
on pro-
gram
meaning
if pre-
sent
(and, for
Assert,
not
true)

None Wild writes and arbitrary
code execution, with
global effects (grants per-
mission for the whole
program to have arbitrary
meaning), compilers can
indirectly infer simple
facts when they can
prove reachability

Indirectly allows pruning a
branch or inferring a con-
tradictory fact

Time travel where reacha-
ble

Same cases as UB + strictly
more, because all major
compilers indirectly infer
simple facts more often
from Assert(false) than
from most ordinary UB in
the same position

Directly allows pruning a
branch (CFG edge/path)

Time travel where reacha-
ble

Same cases as As-
sert(false) + strictly
more, because it allows
stating arbitrarily com-
plex facts, and those
facts are persisted
longer and used
throughout optimization
phases

Directly allows injecting
contradictory facts into
the optimizer,7 allowing
results that are equiva-
lent to miscompilation
(injecting a bug into the
compiler)

Time travel where
reachable

Infera-
ble from
columns
to the
left?

n/a No, unrelated to as-if Sometimes, but requires
separate Assume(false)
feature to reliably express
branch pruning intent

Rarely – Yes by recog-
nized coding pattern,
but that is an ornate
spelling for As-
sume(expr)

P2064 R0: Assumptions – Sutter 13

3.3 Discussion
I consulted developers familiar with these features (where possible, the original authors) to ask why they did not

implement it in terms of the previous one(s) in the list. Here are their responses and additional related discus-

sion.

 Why not implement Assume(expr) in terms of Assume(false)?
Hal Finkel for Clang:

There is no fundamental semantic difference between the two, __builtin_assume(false) is essen-

tially __builtin_unreachable(), but there were a couple of issues with generalizing that to

__builtin_assume(expr)...

Going back to the time when the feature was designed, while Clang would certainly parse { if(!expr){

__builtin_unreachable(); } }, it didn’t have the same effect as in GCC. Specifically, in LLVM, the rep-

resentation of { if(!expr){ __builtin_unreachable(); } } is aggressively pruned, and so the opti-

mizer cannot later use the information about expr – and if expr has no other users, it too will be re-

moved. The tradeoffs around changing this were not favorable:

1. Not only do existing users add __builtin_unreachable in order to help the optimizer reduce code

size, as do other LLVM frontends, but the internal representation for unreachable is generated by

some transformations knowing it will trigger applicable DCE / CFG simplification later in the pipeline.

2. Keeping dead code in the form of { if(!expr){ __builtin_unreachable(); } } is relatively expen-

sive (at least in LLVM’s representation) because it has multiple basic blocks, and breaks up other-

wise-straightline code making it more difficult to analyze, and adds additional uses of values which

restricts the optimizer’s ability to perform transformations. Thus, even if it all goes away in the end,

keeping multiple basic blocks at intermediate points in the pipeline can still interfere with code qual-

ity.

3. __builtin_assume, and friends, were viewed as relatively rare compared to other places where the

optimizer deduces dead code, and even rare compared to cases where a user inserts __builtin_un-

reachable [emphasis added] to help the optimizer reduce code size. Use of __builtin_assume is

more common now than it once was, but I believe this is still true. As a result, we don’t want to keep

around all representations of unreachable code just in case it might help the optimizer later (be-

cause the likelihood of negatively impacting code quality is significant), and this is still true even con-

sidering that the programmer might have put in the __builtin_unreachable directly (because,

chances are, they just wanted to reduce code size).

Thus, in terms of an unreachable representation, we would end up wanting two things: a

__builtin_unreachable representation that we pruned aggressively (which we already had) and a

__builtin_unreachable_but_keep_me that would be used to represent assumptions (which, presuma-

bly considering that the user felt it was important enough to add explicitly, we should not prune aggres-

sively). However, the only use case we had for __builtin_unreachable_but_keep_me, either internally

or at the source level, was to represent assumptions. Internally, it’s better to have an explicit assume

representation (so we don’t have more basic blocks than necessary), and from a language-design stand-

point, __builtin_assume seemed better than __builtin_unreachable_but_keep_me (regardless of

bikeshedding).

P2064 R0: Assumptions – Sutter 14

Thus, to be explicit, we keep around the internal representation of __builtin_assume until the very

end of the pipeline. We even keep it in functions that are otherwise empty (in case the assumption

might be later useful if the function is inlined). In general, we take no such care to keep around unreach-

able code. However...

LLVM does now, although this is a relatively-recent change (May of 2019), internally transform the ca-

nonical { if(!expr){ __builtin_unreachable(); } } pattern directly into an assumption. This was

done as a compromise for GCC compatibility, and because it seems like there’s not a huge overlap be-

tween that specific pattern and other cases where unreachable is generated by the optimizer or other

frontends for which you want the aggressive pruning behavior. Some of the discussion on this is on the

associated review thread (https://reviews.llvm.org/D61409). I think that this will probably stick, but if

we end up finding cases where we need to disable the transformation for performance reasons, I will

not be surprised.

Eric Brumer for MSVC:

__assume(expr) is represented by a bunch of IR in our back-end.

Pretty early in our back-end, we find __assume(0) and mark all those blocks in the flow graph as

unreachable (this is akin to LLVM’s pruning).

We leave the remaining __assume(expr)’s around and run a large chunk of our optimizer. Some

of these optimizations understand __assume(expr) and take advantage of it, and some optimi-

zations get hampered by it.

We remove the remainder of all __assume(expr)’s near the end of the optimizer.

Brumer adds:

__assume(0) is treated differently than other __assume(expr) statements by the MSVC opti-

mizer: __assume(0) is hooked to only warning-emission code and reachability optimizations.

For instance, the back-end emits a warning here:

int test(bool cnd1, bool cnd2) {

 int x;

 if (cnd1) x = 5;

 else if (cnd2) x = 6;

 return x; // warning C4701: ‘x’ potentially uninitialized

}

But adding an else __assume(0) silences the warning:

int test(bool cnd1, bool cnd2) {
 int x;

 if (cnd1) x = 5;

 else if (cnd2) x = 6;

 else __assume(0);

 return x; // ok, no warning

}

https://reviews.llvm.org/D61409

P2064 R0: Assumptions – Sutter 15

Similar, but different, is this:

int test(int x) {

 switch (x) {

 case 1: return 5;

 case 2: return 7;

 case 3: return 2;

 case 4: return 1;
 case 5: return 2;

 case 6: return 4;

 case 7: return 0;

 }

 return 3; // never executed, just avoids a warning

}

Compiled as-is, we emit a jump table that’s guarded by an if(x>7) check. Adding default:

__assume(0); causes the optimizer to elide the if(x>7) check, which can result in arbitrary

code execution.

int test(int x) {

 switch (x) {

 case 1: return 5;

 case 2: return 7;

 case 3: return 2;
 case 4: return 1;

 case 5: return 2;

 case 6: return 4;

 case 7: return 0;

 default: __assume(0); // no if(x>7) check, arbitrary code execution

 }

 return 3; // never executed, just avoids a warning

}

Louis Lafrenière for MSVC:

In practice, supporting __assume didn’t fit the back-end’s global optimizer design well, and it is

also quite risky to use.

The main practical usage seems to be the __assume(0) in the default of a switch known to

cover all possible cases. We should have probably just implemented something like

__builtin_unreachable().

P2064 R0: Assumptions – Sutter 16

 Why not implement either Assume in terms of UB?
Mark Hall for MSVC:

Assume(false) or Assume(expr) are difficult to express using arbitrary undefined behavior,

where it’s hard to know whether the programmer intended the UB to imply unreachability or

fact injection. If there was a well-known canonical form or intrinsic such as __builtin_unde-

fined_behavior, so that the programmer could write if (e) __builtin_undefined_behavior

to explicitly say that e’s value deliberately should be considered undefined behavior, that style

could potentially be used to the same effect. But the compiler would need to provide that fea-

ture, recognize that pattern, and we would have to teach programmers that it has special mean-

ing and how to use it. __assume is a more convenient notation and directly expresses the intent.

__assume was created to give the optimizer additional information it could not obtain in a single

translation unit (or any state of the art) analysis. In theory the expression could be treated as a

symbolic predicate which could be taken as an invariant.

The __builtin_unreachable style predicate is expressed in our compiler by the degenerate

case __assume(0). But __assume(e) was meant to be fully general. For example, in the pres-

ence of __assume(k>=0), we intend the optimizer to eliminate half of the range check for k in:

switch (k)
{

case 0: ...

case 1: ...

default: ...

}

Other possible optimizations include calling a special form of delete or free that wouldn’t have

to check for null when delete p or free p was written with an __assume(p!=nullptr).

Jason Merrill for GCC:

GCC tends to replace code that is always UB with a trap instruction rather than __builtin_un-

reachable() [and so infers fewer facts from UB].

Eric Brumer notes:

The computed-goto optimization requires an explicit instruction to default: __assume(0); in

order to kick in. This can be an extremely powerful optimization to make very fast parsers/pat-

tern matchers, and it seems to only fire when the optimizer directly knows that the default case

is never executed. This appears to be the case in LLVM and MSVC. It involves some key branch

duplication that is only beneficial for cheaper branches. Right now the only way to get this pow-

erful optimization is with __assume(0). I’d like there to be a better way.

P2064 R0: Assumptions – Sutter 17

3.4 Surveying real-world compilers: Cases and insights

 Sample survey: Actual branch elision on major compilers and -O levels
I ran a set of tests each containing two branches (doing non-local or local work) separated by one of a few kinds

of UB, abort, [[noreturn]], Assume(false), and Assume(expr), to see which compilers at which optimization

levels will elide surrounding branches in which direction. Godbolt: GCC + Clang, and MSVC + ICC.

This shows that compilers exploit fewer facts inferred from UB than from Assert(false) than from Assert(expr).

Below, “func” and “local” mean that the surrounding branches that are candidates to be elided contain function

calls vs. only local variable manipulation, respectively, which is controlled by a macro in the above sample test

code. An * asterisk means that the elided branch is additionally replaced with an abort instruction.

8 The generated code has an unusual empty branch left over, similar to source code of if(i!=0){;}. This seems to confirm
that ICC applies Assume(false) very late in compilation, after running flowgraph-cleaner optimizations to remove empty
branches: During cleanup the branch is still nonempty, then the Assume(false) processing removes its contents.

Case Clang 9.0.0

func local

GCC 9.2

func local

MSVC 19.22

func local

ICC 19.0.1

func local

UB1: *(volatile int*)0 = 0xDEAD;
 removes pre branch at…
 removes post branch at…

— —
— —

— —
O2* O2*

— —
— —

— —
O2* O2*

UB1-nonvolatile: *(int*)0 = 0xDEAD;
 removes pre branch at…
 removes post branch at…

— O1*
O1* O1*

— O2*
O2 O2*

— —
— O1

— —
O2* O2*

UB2: const int i = 0; (int&)i=0xDEAD;
 removes pre branch at…
 removes post branch at…

— —
— —

— —
— —

— —
— —

— —
— —

UB3: *(char*)"xyzzy"='Z';
 removes pre branch at…
 removes post branch at…

— —
— —

— —
— —

— —
— —

— —
— —

UB4: auto x = 0xDEAD/0;
 removes pre branch at…
 removes post branch at…

— —
— —

— —
— —

(n/a, program re-
jected due to UB)

— —
— —

Noreturn: Call [[noreturn]] function
 removes pre branch at…
 removes post branch at…

— O1
O1 O1

— O1
O1 O1

— —
O1 O1

— O1
O1 O1

Unreachable1: Assume(false)
 removes pre branch at…
 removes post branch at…

— O1
O1 O1

— O1
O1 O1

— —
— —

— —
O1 O1 8

Assume1: Assume(i!=0)
 removes pre branch at…
 removes post branch at…

— O1
O1 O1

— O1
O1 O1

— O1
O1 O1

— —
O1 O1

https://godbolt.org/z/uuN2GL
https://godbolt.org/z/BYq2w3

P2064 R0: Assumptions – Sutter 18

 Existing products’ usability limitations on using facts via time travel:

Violations of sequential consistency and causality in current practice
While discussing this material with compiler implementers and doing the experiments in §3.4.1, it became clear

that current optimizers deliberately restrain themselves from applying (inferred or stated) facts via time travel

optimizations even for optimizations that are currently legal, because the results surprise users. In at least some

cases documented in this section, it was because of direct resistance from users.

In particular, C++ implementations deliberately avoid applying a fact via time travel optimization if it would elide

a non-local effect. For example, they avoid eliding branches that lexically precede the inferred/assumed fact if

the branch contains more than accesses of local variables.

I would characterize this as an aspect of sequential consistency (SC), the memory model we already adopted for

C++ concurrency.9 SC is important because without SC the programmer cannot reason reliably about their code,

and with SC they can reason about their code in the order it is written in the source (which is the only order the

programmer can see), including that concurrent threads behaves as-if executed as some interleaving of each

thread’s code in its source order.

Importantly, SC includes being able to reason about our code with causality: Even in the presence of arbitrarily

aggressive same-thread “as-if” optimizations, the happens-before relation ensures that another thread can

never observe the effects of those optimizations as long as the program is correctly synchronized. If this were

not guaranteed, then threads could observe (among many other things) causality violations, such as being able

to see an effect before seeing its cause, which would be a paradox and mean that our program is literally unrea-

sonable (cannot be reasoned about sensibly).

Similarly, regardless of what the standard allows, implementations already pragmatically limit applying optimiza-

tions before the point where they occur in a sequentially consistent reading of the program, also known as “time

travel” optimizations — there’s a reason we call them by that term which embodies the surprise involved. “Time

travel” optimizations involve the same kind of causality violation that SC avoids (and why we require SC in the

absence of data races in concurrency contexts): Users appear to expect that undefined behavior does not “bite”

until the point it is actually exercised, not just when it is reachable. Informally, they do not expect undefined be-

havior to be treated as thoughtcrime (in the Orwellian and Minority Report sense), punishable before the crime

actually occurs.

Jason Merrill reports for GCC:

Here is an example of a time travel optimization:

int f (int j) {

 int i = 42;

 if (j == 0)

 i = 0;
 if (j == 0)

 __builtin_unreachable();

 return i;

}

9 SC-DRF, or DRF-0, meaning sequential consistency if the programmer did not write a data race.

P2064 R0: Assumptions – Sutter 19

In GCC, this reduces to return 42; at -O1.

But if the effects of the first if-statement are visible outside the function, for example if i is a

global variable, we don’t eliminate them.

In the cases tested in §3.4.1, Clang and MSVC also follow much the same distinction, as shown by the results of

the “func” vs. “local” variations of the Assume(expr) test case in §3.4.1.

Based on this, I offered this a combined example that illustrates how this can be a user surprise:

// My followup example: https://godbolt.org/z/US25Gd

auto test(int x) {

 int local = 0;

 local += x;

 f(local); // f’s argument is ‘local’
 int local2 = local; // return value is ‘local’

 ASSUME(x==0);

 return local2;

}

The same local variable has its value read in the two adjacent lines, but observes different simultaneous values

in GCC and Clang under -O1, where the result is as if the function were written as just:

// test() is transformed to this:

auto test(int x) { // ‘local’ is observed to have two values simultaneously:

 f(x); // f’s argument is x: ‘local’ is observed to be x
 return 0; // return value is 0: ‘local’ is observed to be 0

}

The value of local was used in adjacent lines near (in this case before) the Assume operation: as the argument

to f() where GCC does not apply the Assume, and to set the return value where GCC does apply the Assume. To

the programmer trying to reason about an SC execution of their code, however, it appears that local holds two

different values simultaneously, which is an impossibility.10

Eric Brumer agrees that MSVC follows a similar distinction, citing an example of active user resistance:

We actually do the same as GCC for implied assumptions in our new optimizer. If you consider

this code:

void unreachable2(int *p, int *s1, int *s2) {

 if (p == 0) { *s1 = 1; }

 *p = 5;

 if (p == 0) { *s2 = 2; }

}

10 In this toy example, the assumption was written directly and so maybe we could take the view that the code deserves to
be broken because the programmer did a stupid thing. However, this shows how dangerous assumptions can be if they can
ever be false; furthermore, in variations of this example the assumption could have as easily come from an inlined library
function or other source, as was commonly proposed for assumed preconditions in draft C++20 contracts which would have
been able to inject such arbitrary facts into call sites that would turn otherwise-benign bugs into language UB.

https://godbolt.org/z/US25Gd

P2064 R0: Assumptions – Sutter 20

Here the unconditional *p implies the fact p != 0 for the entire scope, as per the standard. We

originally had our new optimizer turn the function into:

void unreachable2(int *p, int *s1, int *s2) {

 *p = 5;

}

But when we spoke to kernel folks in Windows they essentially told us “absolutely not,” so we

do the same thing as GCC, and we emit this:

void unreachable2(int *p, int *s1, int *s2) {

 if (p == 0) { *s1 = 1; }

 *p = 5;

}

My thoughts are: If developers need our optimizer to stop taking advantage of what we’re al-

ready allowed to assume, then handwritten __assume statements make that split even more

complex.

Brumer adds:

When customers speak to me about __assume, it’s usually in the context of “why the heck is the

compiler doing this?” or “why the heck isn’t the compiler doing this?” Our experience is that

customers find __assume fairly confusing, and I believe there’s a disconnect in how __assume is

implemented in compilers from how developers think about their code.

Consider this simple example:

void test(int x) {
 func1(x);

 __assume(x == 0);

 func2(x);

}

x is never modified in the body of test(). The user probably did not desire or intend that it al-

lows the compiler to apply the __assume statement to instances of x before that __assume.

In normal code like the following where we infer the value of x without __assume, we do that only

along CFG forward edges:

int test(int x) {

 if (x == 1)

 return x+2;

 return func(x);

}

Here, we replace the return x+2; with just return 3;. Unlike __assume, all predicate infor-

mation is transferred along forward CFG edges. Edges are easy to spot: They show up as lexical

scope, and are generally always scoped intentionally by the user. However, __assume transfers

such information into the whole visible scope, including backwards along CFG edges.

Note that CFG edges are directed. Having an effect travel backwards along a CFG edge is a source of surprise for

the same reason that having a car travel the wrong way on a one-way street is a source of surprise.

P2064 R0: Assumptions – Sutter 21

Brumer continues:

My theory about why users regularly report problems with using __assume is that predicate in-

formation is consumed by the compiler along forward edges, and the user understands forward

control flow. If the user writes __assume in an existing scope, then according to any sane opti-

mizer that assumption applies to that entire scope including before the __assume (and possibly

even enclosing scopes), and that scope increase is probably not what the user intended.

[Even with only forward fact propagation,] I personally find __assume(expr) too difficult for

users to use, in just about every case. It creates the potential for unsafe code and unintended

code, and the benefit is not worth it (aside from the computed-goto case [§3.3.2]). In [various

examples], if the input conditions don’t satisfy the __assume’d expression, then you have unini-

tialized variables, wild writes, or an unguarded jumptable which could be a random code execu-

tion security vulnerability.

There are too many ways that __assume can yield different results than what the user intended.

In a vacuum it’s easy, but in ‘real code’ things get wonky where the optimizer subverts the user’s

expectations.

P2064 R0: Assumptions – Sutter 22

4 Acknowledgments
Thank you to Eric Brumer, Jonathan Caves, Gabriel Dos Reis, Timur Doumler, Xiang Fan, Hal Finkel, Mark Hall,

Louis Lafrenière, and Jason Merrill for their contributions and for reviewing drafts of this paper.

5 Bibliography
In publication order.

[von Neumann 1947] H. H. Goldstine and J. von Neumann. “Planning and Coding of Problems for an Electronic

Computing Instrument.” (Part II, Volume I, 1947-04-01). Page 12, emphasis original:

“It may be true, that whenever C actually reaches a certain point in the flow diagram, one or

more bound variables will necessarily possess certain specified values, or possess certain prop-

erties, or satisfy certain properties with each other. Furthermore, we may, at such a point, indi-

cate the validity of these limitations. For this reason we will denote each area in which the valid-

ity of such limitations is being asserted, by a special box, which we call an assertion box.”

Note this paper was just about expressing facts as all, before compilers came along that could mechanically

transform code including to check assertions (1950s) or optimizing compilers that could assume facts (1960s)

with the modern distinction. The assertions were written by and for the programmer who would manually check

the assertions during testing (by inspecting the proofs written in the assertion boxes; pages 17-18), and also as-

sume (rely on) them as they wrote the next program steps (the programmer was the hand-optimizer). This early

use was to write down checkpoints to divide a program into segments that could be reasoned about in isolation.

[Turing 1949] A. Turing. “Checking a large routine” (Friday, 24th June notes). Opening statements:

“How can one check a routine in the sense of making sure that it is right? … the programmer

should make a number of definite assertions which can be checked individually, and from which

the correctness of the whole program easily follows.”

[Regehr 2014] J. Regehr. “Assertions are pessimistic, assumptions are optimistic” (Blog post, 2014-02-05).

[N4425] H. Finkel. “Generalized Dynamic Assumptions” (WG21 paper, 2015-04-07).

[P1007R3] T. Doumler and C. Carruth. “std::assume_aligned” (WG21 paper, 2018-11-07).

[P1773R0] T. Doumler. “Contracts have failed to provide a portable ‘assume’” (WG21 paper, 2019-06-17).

[P1607R1] J. Berne, J. Snyder, and R. McDougall. “Minimizing Contracts” (WG21 paper, 2019-07-23).

[P1774R1] T. Doumler. “Portable optimization hints” (WG21 paper, 2019-10-06). Proposed standardizing existing

practice, using function-style syntax. (See §2.1.)

[P1774R2] T. Doumler. “Portable assumptions” (WG21 paper, 2019-11-25). Followed SG17 Belfast feedback to

pursue using attribute syntax.

https://library.ias.edu/files/pdfs/ecp/planningcodingof0103inst.pdf
http://www.turingarchive.org/viewer/?id=462&title=01
https://blog.regehr.org/archives/1096
https://wg21.link/n4425
https://wg21.link/p1007r3
https://wg21.link/p1773r0
https://wg21.link/p1607r1
https://wg21.link/p1774r1
https://wg21.link/p1774r2

