
Member Templates for Local Classes
Document Number: P2044R0
Date: 2020-01-12
Reply-to: Robert Leahy <rleahy@rleahy.ca>
Audience: EWGI, Evolution

Abstract
This paper proposes that local classes be allowed to have member templates.

Tony Tables

Before After

namespace detail {
template<typename Receiver>
struct error_to_exception_receiver {
 [[noreturn]]
 void set_done() {
 throw std::system_error(
 make_error_code(
 std::errc::operation_canceled));
 }
 [[noreturn]]
 void set_error(std::error_code ec) {
 throw std::system_error(ec);
 }
 template<typename... Args>
 void set_value(Args&&... args)
 noexcept(/* ... */)
 {
 inner.set_value(std::forward<Args>(args)...);
 }
 Receiver inner;
};
}
template<typename Receiver>
auto error_to_exception(Receiver r)
 noexcept(/* ... */)
{
 return detail::error_to_exception_receiver<
 Receiver>{std::move(r)};
}

template<typename Receiver>
auto error_to_exception(Receiver r)
 noexcept(/* ... */)
{
 struct receiver {
 explicit receiver(Receiver inner)
 noexcept(/* ... */)
 : inner_(std::move(inner))
 {}
 [[noreturn]]
 void set_done() {
 throw std::system_error(
 make_error_code(
 std::errc::operation_canceled));
 }
 [[noreturn]]
 void set_error(std::error_code ec) {
 throw std::system_error(ec);
 }
 template<typename... Args>
 void set_value(Args&&... args)
 noexcept(/* ... */)
 {
 inner.set_value(std::forward<Args>(
 args)...);
 }
 Receiver inner;
 };
 return receiver{std::move(r)};
}

template<typename... Args>
void output_variant(std::ostream& os,
 const std::variant<Args...>& v)
{
 std::visit([&os](const auto& obj) noexcept(
 std::is_same_v<std::decay_t<decltype(obj)>,
 std::monostate>)

template<typename... Args>
void output_variant(std::ostream& os,
 const std::variant<Args...>& v)
{
 struct visitor {
 std::ostream& os;
 template<typename T>

 {
 if constexpr (!std::is_same_v<std::decay_t<
 decltype(obj)>, std::monostate>)
 {
 os << obj;
 }
 }, v);
}

 void operator()(const T& t) const { os << t; }
 void operator()(const std::monostate&) const
 noexcept
 {}
 };
 visitor vis{os};
 std::visit(vis, v);
}

Motivation
It is good programming practice to limit or eliminate visibility of implementation details. For this
purpose C++ has the concept of internal linkage, no linkage, and member accessibility.
Unfortunately the restriction that local classes not have member templates limits the applicability
of some of these.

Binding names to the most enclosing scope in which there is a need to reference them
eliminates name collisions. For this reason C++ has the concept of namespaces along with
separate name lookup scopes within classes and functions.

Local classes provide a means to leverage both of these: A local class has no linkage and is
invisible to all code outside its containing function. A local class is scoped to its enclosing
function and cannot be ambiguated by other non-local declarations.

Unfortunately C++ limits local classes by preventing them from having member templates.
Therefore classes that are logically an implementation detail of a function but also have a
member template must be placed at class or namespace scope. If the class is placed at
namespace scope one must make a context dependent decision: In a source file one should
place it in an anonymous namespace (to give it internal linkage). In a header file one should
place the class in a namespace which contains implementation details by convention (e.g.
namespace detail).

These techniques are limiting: Internal linkage can lead to name conflicts when a “unity” build is
performed. Employing a namespace which contains implementation details by convention does
not actually prevent consumers from using and relying on its contents (i.e. Hyrum’s Law).

Background
In C++98 local classes could not be passed as template parameters. This restriction was lifted
in C++11 [1] as was necessary for lambdas to be useful [2]. At this time consideration was given
to allowing local classes not only to have member templates but also to be themselves
templates and to allow specializations thereof. All three of these possibilities were dismissed as
“any of these would require a syntax change” [1].

C++14 added generic lambdas. A lambda expression that is a generic lambda is an expression
of closure type where the closure type is a local class with a member template. An early paper
on generic lambdas commented that “we’d need to ensure that the semantics of member
templates of local classes are well defined and consistent with those of member templates of
non-local classes [...] before this feature can be incorporated” [3]. A later paper drops this
seemingly without comment and adds a narrow exception to §13.6.2 [temp.mem] permitting
closure types to have member templates but no other local classes [4].

Syntax Change
Allowing local classes to have member templates does not require a syntax change. The
language provides that:

● function-body may contain a compound-statement (§9.4.1 [dcl.fct.def.general])
● compound-statement may contain one or more statement (by way of statement-seq)

(§8.3 [stmt.block])
● statement can be a declaration-statement (clause 8 [stmt.stmt])
● declaration-statement is a block-declaration (§8.7 [stmt.dcl])
● block-declaration can be a simple-declaration (clause 9 [dcl.dcl])
● simple-declaration can contain a decl-specifier (by way of decl-specifier-seq) (clause 9

[dcl.dcl] & §9.1 [dcl.spec])
● decl-specifier can be a defining-type-specifier (§9.1 [dcl.spec])
● defining-type-specifier can be a class-specifier (§9.1.7 [dcl.type])
● class-specifier can contain a member-specification (clause 10 [class])
● member-specification can contain a member-declaration (§10.3 [class.mem])
● member-declaration can be a template-declaration (§10.3 [class.mem])

We can also arrive at this conclusion without walking the language’s grammar: If the syntax did
not allow for member templates within local classes it would be unnecessary for §13.6.2
[temp.mem] to disallow them as they could not occur in the first place.

Implementations
An early paper on generic lambdas claims that Clang 3.2 supports local classes with member
templates [3].

Proposed Wording
§13.6.2/2 [temp.mem]:

A local class of non-closure type shall not have member templates. Access control rules apply
to member template names. A destructor shall not be [...]

Add to the table in §14.8 [cpp.predefined]:

Macro name Value

__cpp_local_class_member_templates some value

Acknowledgements
The author would like to thank Brian Rivas and Nathan Myers for assistance in the preparation
of this paper.

References
[1] A. Williams. Making Local Classes more Useful SC22/WG21/N1427=03-0009
[2] J. Willcock, J. Jarvi, D. Gregor, B. Stroustrup, and A. Lumsdaine. Lambda expressions and
closures for C++ N1968=06-0038
[3] F. Vali, H. Sutter, and D. Abrahams. Proposal for Generic (Polymorphic) Lambda
Expressions N3418=12-0108
[4] F. Vali, H. Sutter, and D. Abrahams. Proposal for Generic (Polymorphic) Lambda
Expressions (Revision 2) N3559

