
Traits for [Un]bounded Arrays

Document #: WG21 P1357R0
Date: 2019–01–06
Audience: LWG1

Reply to: Walter E. Brown <webrown.cpp@gmail.com>
Glen J. Fernandes <glenjofe@gmail.com>

Contents

1 Introduction and background . . 1
2 Discussion and proposal 2
3 Sample implementation 2
4 Proposed wording 3

5 Acknowledgments 4
6 Bibliography 4
7 Document history 4

Abstract

This paper proposes two new type traits that have been demonstrated, in prior art, to provide
a useful partition of the types for which the is_array trait holds. The proposed partition is
analogous to that provided, when is_integral holds, by the is_signed/is_unsigned traits.

When ignorance gets started it knows no bounds.

— WILLIAM PENN ADAIR “WILL” ROGERS

The function of vice is to keep virtue within reasonable bounds.
— SAMUEL BUTLER

I am not bound to win, but I am bound to be true. I am not bound to
succeed, but I am bound to live by the light that I have.

— ABRAHAM LINCOLN

1 Introduction and background

The type traits known as primary type categories2 serve to partition the universe of C++ types
into fourteen mutually exclusive categories such that each type will fall into exactly one category.
In addition, we have composite type traits3 to identify useful combinations of these primary
type categories. Finally, we have current and past examples4 of traits that provide even more
finely-grained categorization.

Copyright c© 2018 by Walter E. Brown. All rights reserved.
1At its Saturday post-San Diego session, LEWG reviewed and tentatively approved (9|3|2|1|0) a pre-publication

draft of this paper. No substantive changes have been applied since then.
2Specified in [meta.unary.cat]: is_void, is_null_pointer, is_integral, is_floating_point, is_array,

is_pointer, is_lvalue_reference, is_rvalue_reference, is_member_object_pointer, is_member_function_
pointer, is_enum, is_union, is_class, and is_function.

3Specified in [meta.unary.comp]: is_reference, is_arithmetic, is_fundamental, is_object, is_scalar, is_
compound, and is_member_pointer.

4Specified in [meta.unary.prop]: is_signed and is_unsigned, providing a partition of types for which is_integral
holds. Also, the composite trait is_reference was orignally a primary trait before the introduction, by [N2028], of
rvalue references and the corresponding then-new is_rvalue_reference trait.

1

mailto:webrown.cpp@gmail.com
mailto:glenjofe@gmail.com

2 P1357R0: Traits for [Un]bounded Arrays

This paper proposes to add two new type traits of this last kind, for each of which there
is significant prior art. The proposed traits will provide a useful partition of types for which
is_array holds.

2 Discussion and proposal

It is often necessary to distinguish types that are arrays of unknown bound (i.e., where T is of the
form U[]) from types that are arrays of known bound (i.e., where T is of the form U[N]) instead of
just any array type. For example, such distinctions are needed in the implementation of certain
C++ standard library facilities:

• std::unique_ptr and std::make_unique: these support use with arrays of unknown
bound, but intentionally prohibit use with arrays of known bound.

• std::make_shared and std::allocate_shared: these provide different overloads for ar-
rays of known bounds as well as for arrays of unknown bound.

Beyond use in implementation, it would also be useful to have these traits in the standard
library for the specifications of other facilities in the C++ standard. Several constraints could
then be specified by a C++ expression using traits, instead of by the equivalent (but less succinct)
English prose.

We therefore propose to add two new traits named is_bounded_array and is_unbounded_
array. Other possible name pairs for these traits include (a) is_bound_array and is_unbound_
array, (b) is_known_bound_array and is_unknown_bound_array, or (c) is_known_extent_
array and is_unknown_extent_array.

Using these traits, wording for the following constraints in the C++ standard could be consis-
tently simplified:

Wording of this form Could take this form instead
T is not an array ! is_array_v<T>
T is an array of known bound is_bounded_array_v<T>
T is not an array of unknown bound ! is_unbounded_array_v<T>
T is an array of unknown bound is_unbounded_array_v<T>

No such rewording is herein proposed; we simply provide the above possibilities by way of example
and of motivation.

3 Sample implementation

Implementing the proposed traits is straightforward:

template< typename >
struct is_bounded_array : false_type { };
//
template< typename U, size_t N >
struct is_bounded_array<U[N]> : true_type { };

template< typename T >
inline constexpr bool is_bounded_array_v = is_bounded_array<T>::value;

P1357R0: Traits for [Un]bounded Arrays 3

template< typename >
struct is_unbounded_array : false_type { };
//
template< typename U >
struct is_unbounded_array<U[]> : true_type { };

template< typename T >
inline constexpr bool is_unbounded_array_v = is_unbounded_array<T>::value;

4 Proposed wording5

4.1 Insert the following row into Table 35 — Standard library feature-test macros. If needed,
adjust the Value placeholder entry so as to denote this proposal’s date of adoption.

Macro name Value Header(s)
...
__cpp_lib_bounded_array_traits 201902L <type_traits>
...

4.2 Augment [meta.type.synop] as shown:

namespace std {
...
template<class T> struct is_signed;
template<class T> struct is_unsigned;
template<class T> struct is_bounded_array;
template<class T> struct is_unbounded_array;
...
template<class T>

inline constexpr bool is_signed_v = is_signed<T>::value;
template<class T>

inline constexpr bool is_unsigned_v = is_unsigned<T>::value;
template<class T>

inline constexpr bool is_bounded_array_v
= is_bounded_array<T>::value;

template<class T>
inline constexpr bool is_unbounded_array_v

= is_unbounded_array<T>::value;

...
}

5Proposed additions and deletions are based on [N4778]. Editorial notes appear like this .

4 P1357R0: Traits for [Un]bounded Arrays

4.3 Augment Table 46 — Type property predicates as shown:

Template Condition Preconditions
...
template<class T> If is_arithmetic_v<T>. . .
struct is_signed;
template<class T> If is_arithmetic_v<T>. . .
struct is_unsigned;
template<class T> T is an array type of
struct is_bounded_array; known extent ([dcl.array])
template<class T> T is an array type of
struct is_unbounded_array; unknown extent ([dcl.array])
template<class T, class... Args> For a function type T. . . T and all types. . .
struct is_constructible;
...

5 Acknowledgments

Many thanks to the readers of early drafts of this paper for their thoughtful comments.

6 Bibliography

[N2028] Howard E. Hinnant: “Minor Modifications to the type traits Wording.” ISO/IEC JTC1/SC22/
WG21 document N2028 (mid-Berlin/Portland mailing), 2006–06–12. https://wg21.link/n2028.

[N4778] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4778 (pre-San Diego mailing), 2018–10–08. https://wg21.link/n4778.

7 Document history

Rev. Date Changes

-1 2018–11–09 • Draft uploaded to San Diego LEWG wiki for post-San Diego review.

0 2019–01–06 • Added footnote and adjusted audience to reflect favorable post-San Diego review. • Pub-
lished as P1357R0, pre-Kona mailing.

https://wg21.link/n2028
https://wg21.link/n4778

	Title
	Contents
	Abstract
	1 Introduction and background
	2 Discussion and proposal
	3 Sample implementation
	4 Proposed wording
	5 Acknowledgments
	6 Bibliography
	7 Document history

