
Improving Completeness Requirements for Type Traits

Document #: WG21 P1285R0
Date: 2018–10–05
Audience: LWG
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction 1
2 Discussion 2
3 Proposed wording 3

4 Acknowledgments 3
5 Bibliography 3
6 Document history 3

Abstract

This paper discusses Library Issues 3022, 2939, 3099, and 2797, each involving type traits’
completeness requirements. We propose wording to resolve two of these issues.

And the heaven and the earth were complete. . . .
— GENESIS 2:1

1 Introduction

Four currently-open LWG issues share a common theme: that completeness requirements for
library type traits’ template arguments are in need of review and likely adjustment:

• LWG 3022: is_convertible<derived*, base*> may lead to ODR
Given two incomplete types, base and derived, that will have the expected base/derived
relationship when complete, the trait is_convertible claims to support instantiation with
pointers to these types (as pointers to incomplete types are, themselves, complete), yet will
give a different answer when the types are complete vs. when they are incomplete.
We should require pointers (and pointers to pointers etc.) point to a complete type, unless
one is a pointer to cv-void. We may also want some weasel-wording to permit pointers to
arrays-of-unknown-bound, and pointers to cv-qualified variants of the same incomplete type.

• LWG 2939: Some type-completeness constraints of traits are overspecified
. . . . Unfortunately, there exists [sic] some [type traits] cases, where we currently overspecify
imposing complete type requirements where they are not actually required. For example,
for the following situation the answer of the trait could be given without ever needing the
complete type of X:

struct X; //Never defined
static_assert(std::is_convertible_v<X, const X&>);

Unfortunately we cannot always allow incomplete types, because most type constructions or
conversions indeed require a complete type, so generally relaxing the current restrictions is
also not an option.

Copyright c© 2018 by Walter E. Brown. All rights reserved.

1

mailto:webrown.cpp@gmail.com
http://wg21.link/lwg3022
http://wg21.link/lwg2939
http://wg21.link/lwg3099
http://wg21.link/lwg2797
http://wg21.link/lwg3022
http://wg21.link/lwg2939

2 P1285R0: Improving Completeness Requirements for Type Traits

• LWG 3099: is_assignable<Incomplete&, Incomplete&>

LWG 2939 suggests that the the [sic] preconditions of the type traits need reevaluation. This
issue focuses specifically on is_assignable and, by extension, its variants:

. . . .

We note a discrepancy: is_copy_assignable<T> requires T to be a complete type, but
the equivalent form is_assignable<T&, const T&> does not. The requirement for is_
copy_assignable<T> seems sensible, since there’s no way to determine whether or not the
assignment declval<T&>() = declval<const T&>() is well-formed when T is incomplete.
It seems that the same argument should apply to all of the above "assignable" traits, and that
they must require that the referent type is complete when given a reference type parameter
to be implementable.

• LWG 2797: Trait precondition violations

Failed prerequirement for the type trait must result in ill-formed program. Otherwise hard
detectable errors will happen:

We had hoped, in this paper, to resolve all these issues by rewording the requirements re the
completeness of the type traits’ template arguments. However, this proved substantially more
challenging than expected.

2 Discussion

During the recent Batavia LWG meeting1 and during subsequent email discussions, it became
clear that a correct formulation of requirements for each of the various type traits was a decidedly
non-trivial proposition.

Even for only a single trait, namely is_assignable, we were unable to reformulate the current
precondition2 in such a way as to take comprehensive account of all such cases as:

• is_assignable_v<Base*&, CompleteBase*>.

• with T an (rvalue reference to) incomplete enumeration type and with arbitrary U, is_assign
able<T, U> is always false because you can never assign to an enumeration rvalue.

• with T a (reference to) complete class type having an operator=(const U&) and with U
incomplete, is_assignable<T&, const U&> is true.

• opaque pointers on the LHS of the assignment.

• is_assignable<int&, Incomplete&> must be banned, as Incomplete might have a con-
version function when completed, which would cause an ODR violation.

Accordingly, with regret, this paper proposes no resolution for LWG issues 2939 and 3099.
Additional insights are welcomed.

1Held the week of 2018–08–04.
2“T and U shall be complete types, cv void, or arrays of unknown bound.”

http://wg21.link/lwg3099
http://wg21.link/lwg2939
http://wg21.link/lwg2797

P1285R0: Improving Completeness Requirements for Type Traits 3

3 Proposed wording3

3.1 Relocate paragraphs 1 and 2 from the end of [meta.type.synop] to the end of [meta.rqmts],
renumbering paragraphs, editing existing text, and appending new text as shown.

The new wording in paragraph 5 is intended to resolve LWG 3022; it seems also to resolve LWG
2797, since “undefined behavior” permits issuing a diagnostic as the issue requests.

14 Unless otherwise specified, Tthe behavior of a program that adds specializations for any of the
templates definedspecified in this subclause [meta] is undefined unless otherwise specified.

25 Unless otherwise specified, an incomplete type may be used to instantiate a template specified
in this subclause. The behavior of a program is undefined if:

(5.1) — an instantiation of a template specified in this subclause directly or indirectly depends
on an incompletely-defined object type T, and

(5.2) — that instantiation could yield a different result were T hypothetically completed.

4 Acknowledgments

Many thanks to the readers of early drafts of this paper for their thoughtful comments. Special
thanks to Mike Spertus for suggesting the direction of the Proposed Wording, and to Tim Song for
producing several of the cited examples/counter-examples.

5 Bibliography

[N4762] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4762 (post-Rappersville/pre-San Diego), 2018–07–07. http://wg21.
link/n4762.

6 Document history

Rev. Date Changes

0 2018–10–05 • Published as P1285R0, pre-San Diego.

3All proposed additions and deletions are relative to [N4762]. Editorial instructions and drafting notes are displayed
against a gray background.

http://wg21.link/lwg3022
http://wg21.link/lwg2797
http://wg21.link/n4762
http://wg21.link/n4762

	Title
	Contents
	Abstract
	1 Introduction
	2 Discussion
	3 Proposed wording
	4 Acknowledgments
	5 Bibliography
	6 Document history

