
Doc. no.: P1233R0
Date: 2018-10-02
Reply-to: Ashley Hedberg (ahedberg@google.com), Matt Calabrese (metaprogrammingtheworld@gmail.com)
Audience: LEWG –> LWG

Shift-by-negative in shift_left and shift_right

P0769R2 was applied to the C++ working paper in Rapperswil. That paper defines shifting a range by
a negative n as a no-op in item (7) of the design decisions section. The LEWG discussion notes from
Albuquerque suggest that this design point was not discussed.

Concerns about current behavior

The current treatment of a negative shift as a shift of 0 seems unlikely to match user intent and may hide
bugs. If the programmer explicitly wrote a negative value, they probably didn’t expect a shift of 0. If the
user specified a negative shift as the result of some programmatic calculation, it is likely that the calculation
was incorrect, or that a shift in the opposite direction would be the correct behavior. Either way, implicitly
shifting by 0 feels questionable.

Proposal

We propose that shifting a range by a negative n be a precondition violation; that is, shift_left and
shift_right should require that n be greater than or equal to 0. This is consistent with expr.shift, which
has a precondition that the right operand to << and >> must be greater than or equal to 0. Compilers, static
analyzers, and other analysis tools could more effectively warn programmers about such shifts if shifting by
negative counts was a precondition violation.

Non-Proposals

Reverse shift when shifting by a negative n

Some users may expect a shift in the opposite direction when passing a negative n to shift_left and
shift_right. The LWG discussion notes on P0769R2 suggest that there are APIs which do this; one example
is perlop. This could have a non-trivial cost and is inconsistent with expr.shift, so we do not propose it
here.

Changing behavior of shifting by large n

expr.shift has another precondition that the right operand must be less than the length in bits of the left
operand. We do not propose changing shift_left and shift_right to have a similar precondition, as we
believe it would be valuable to allow shifting all elements out of a range.

Suggested poll

Do we want the shift_left and shift_right algorithms to have a precondition that the value of n must
be greater than or equal to 0?

1

http://wg21.link/P0769R2
http://wiki.edg.com/bin/view/Wg21albuquerque/P0769
http://eel.is/c++draft/expr.shift
http://wiki.edg.com/bin/view/Wg21rapperswil2018/LWGP0769
https://perldoc.perl.org/perlop.html#Shift-Operators


Acknowledgements

• Dan Raviv and Casey Carter for feedback on an earlier draft of this proposal.

2


	Shift-by-negative in shift_left and shift_right
	Concerns about current behavior
	Proposal
	Non-Proposals
	Reverse shift when shifting by a negative n
	Changing behavior of shifting by large n

	Suggested poll
	Acknowledgements


