Sizes Should Only span Unsigned

P1089R2
Attention: LEWG
Date: 6/8/2018
Authors:
Robert Douglas <rwdougla at gmail dot com>
Nevin Liber <nevin at cplusplusguy dot com>
Marshall Clow <mclow.lists at gmail dot com>

Introduction

P1089 was discussed in Rapperswil in 2018 in LEWG. 3 straw polls were taken with a clear
majority supporting changing span’s size to be an unsigned type. However, the majority was at
the edge of ‘consensus,’” and so the interpretation was that there was no consensus for a
change. However, the state this leaves span in, is where the majority of the committee believes
there is a problem, yet we are held to a smaller straw poll done 2 years prior, with no real
consensus on how the feature should be. This paper adds context from Rapperswil and
presents an additional proposal to add a ssize () free function.

The aim of this paper is to ultimately help the committee find consensus on span::size_type and
the future of size types in C++.

Background

Previous Design Discussions

LEWG took a single straw poll on the subject, in Jacksonville in 2016.
From the minutes:

Happy with signed index_type returned by size()?
SF FN A SA

1 63 3 1

No minutes since have shown any additional straw polls, though the topic has come up
repeatedly. Each time, discussion was shut down before any new straw polls were taken.

7 to 4 is not generally a strong indication of consensus. 7 to 7 is not even a majority in favor.
That no follow up discussion and debate have been allowed to happen since should cause
alarm.

Rapperswil 2018

Discussion of the previous version of this paper was done in Rapperswil with votes taken in
LEWG.

LEWG Straw Poll #1: Do as the paper directs (option 1) - change span::index_type to size_t
(and thus change span::size() accordingly)?

SF FN A SA

8 71 4 5

LEWG Straw Poll #2: Would we like to investigate adding ssize() in some fashion?

S F NA SA

7 12 21 0

LEWG Straw Poll #3: Do as the paper directs (option 1) and Forward to LWG for C++207?

S F NA SA

12 3 15 5

From the minutes:

(After discussion with the various subgroup chairs, the above is insufficient consensus for
change. The topic will be raised in plenary and we will float the option to have an
exhausting/time-consuming evening session in San Diego.)

State of Span

span has a particularly unique feature, the template parameter Extent. This parameter is
signed and given a special value of -1, in order to indicate that this view has a run-time
provided size. Otherwise, the size of the view is that of this parameter. This is similar to
basic string view's npos, exceptthatbasic string view::npos is unsigned

As Extent is signed, so is span: :index type.

User Feedback

An important part of the process, especially when skipping putting a new feature first intoa TS,
is to solicit for community feedback and reopen discussions based on that feedback.

From experience in integrating span into a production code base, it is observable that conflicts
between span::index type versus vector, string view, and sizeof (T) are
prevalent. Changing span: :index type to size t reduces the numberof static casts
needed for type conversion warnings by about 90-95% in this code base. The single remaining
source of most conversions is with Posix’s read() function, which returns a count of bytes, or a
negative number as an error code.

Also, GSL's span tests incorporate 33 uses of narrow_cast, to convert various container
sizesto ptrdiff t for comparisons.

Even the current C++ Working Draft (N4741) needs normative wording utilizing static cast
to make as bytes and as_writeable bytes work. This is done for conversions to
Extent, but the problem becomes quickly obvious with a decent warning level.

We understand the desire to use a signed type, because in C++ the unsigned integer types
have closed arithmetic (it wraps) while the signed integer types do not. However, both sizeof
and the standard library long ago chose unsigned types (usually size t)to represent sizes
and the only thing worse than using a type with closed arithmetic is mixing types. This both
breaks consistency with the rest of the standard library and is a pain point due to all the casting
required to use it.

Examples

Handling Network Traffic

class MyMessageHeader {};
void handleMessage (span<const char> message)

// Warning: Comparison of signed and unsigned types
if (message.size() >= sizeof (MyMessageHeader))
{
MyMessageHeader const* hdr
= reinterpret cast<MyMessageHeader const*>(message.data());

Bytes to ASCII text

class Key {};
Key getKey (span<char const> oriqg):;

span<char const> getValue (span<char const> orig);
enum class ValueType { Text, Binary };
ValueType valueType (Key key) { return ValueType::Text; }

template<typename HandlerT>
void parse (span<char const> buffer, HandlerT handler)
{
Key key = getKey (buffer);
span<const char> value = getValue (buffer);
switch (valueType (key))
{
case ValueType: :Text:
// Warning: narrowing conversion
handler (string view{value.data (), value.size()});
case ValueType::Binary: // Omitted for brevity
break;

Design Discussion

3 options should be considered:
1) Change index_ type to be unsigned. Suggest: size t to directly match
basic_string view::size type.
2) Change both index type and Extent to be unsigned. Make dynamic extent

numeric limits<index type>::max()

3) As another option, we may consider breaking out dynamic span into a separate type
and remove dynamic extent altogether, however that wording is not provided at this
time.

4) (Another option would be to take this out of C++20 and put it in Lib Fund, but I'm not
sure we dare actually say that)

Option 1 is the simplest means, given the state of N4741, to get type of size () backin line
with the rest of the standard. However, it also creates a discrepancy internal to span<>, via
Extent as size ().

Option 2 builds upon Option 1 and gets span in full parity to the rest of the standard, but is
simply a larger design change. From the changes to the proposed wording, though, this an
overall simplification of the specification through simplified requirements, eliminated ill-formed
condition, and removed static casts.

Option 3 can be taken in addition to either Option 1 or Option 2, or held entirely standalone. This
was asked for by LEWG and so presented, here.

Proposal 1

Change span synopsis [span.overview] paragraph 5
using index type = pEreEff_tsize t;

Proposal 2

Change [span.syn]

inline constexpr ptrefff _tsize t dyanmic extent =

—fnumeric limits<size t>::max();

template<class ElementType, ptrdiff t Extent = dynamic extent>
class span;

template<class T, ptradsff_tsize t X, class U, ptrdiff_tsize t Y>
constexpr bool operator==(span<T, X> 1, span<U, Y> r);
template<class T, ptradsff_tsize t X, class U, ptrdiff_tsize t Y>
constexpr bool operator!=(span<T, X> 1, span<U, Y> r);
template<class T, ptradsff_tsize t X, class U, ptrdiff_tsize t Y>
constexpr bool operator<(span<T, X> 1, span<U, Y> r);
template<class T, ptradsff_tsize t X, class U, ptrdiff_tsize t Y>
constexpr bool operator<=(span<T, X> 1, span<U, Y> r);
template<class T, ptradsff_tsize t X, class U, ptrdiff_tsize t Y>
constexpr bool operator>(span<T, X> 1, span<U, Y> r);

template<class T, ptradsff_tsize t X, class U, ptrdiff_tsize t Y>

constexpr bool operator>=(span<T, X> 1, span<U, Y> r);

template<class ElementType, ptrdzff_tsize t Extent>
span<const byte,
Extent == dynamic extent ? dynamic extent

static cast<ptradiff t>f{sizeof (ElementType)} * Extent>
as bytes (span<ElementType, Extent> s) noexcept;
template<class ElementType, ptrdiff t Extent>
span<byte,
Extent == dynamic extent ? dynamic extent

stetic _cast<ptrdiff t>f(sizeof (ElementType)} * Extent>

as_writable bytes (span<ElementType, Extent> s) noexcept;

Change span synopsis [span.overview]

template<class ElementType, ptradiff_tsize t Extent = dynamic extent>
class span {

using index type = ptrazff _tsize t;
template<class OtherElementType, ptrdfff _tsize t OtherExtent>

constexpr span(const span<OtherElementType, OtherExtent>& s)
noexcept;

template<ptrdzff_tsize t Count>

constexpr span<element type, Count> first() const;
template<ptrdzff_tsize t Count>
constexpr span<element type, Count> last() const;

template<ptrdszff_tsize t Offset, pEtrdzff _tsize t Count =

dynamic_extent>
constexpr span<element type, see below > subspan() const;

Change [span.sub]

template<ptrdzrff_tsize t Count> constexpr span<element type, Count>
first () const;

1. Requires: —<=—F€ount—&& Count <= size().

template<ptrdsrff_tsize t Count> constexpr span<element type, Count>
last () const;

3. Requires: B—<=—=F€ournt—&& Count <= size().

template<ptrdszff_tsize t Offset, ptrdzff_tsize t Count =

dynamic_extent>
constexpr span<element type, see below > subspan() const;
5. Requires:

{6<="0ffset&& Offset <= size())
&& (Count == dynamic_extent || Eetrt>=08-&& Offset + Count <= size())

8. Requires: $—<=——eount —&& count <= size().

10. Requires: B—<=—count —&& count <= size().

12. Requires:

{t0—<——offset—&&offset <= size ()
&& (count == dynamic extent || gemmt>==06—=&&offset + count <=
size())

Change [spam.elem]

1. Requires: —<—=xd=—&&idx < size().

Change [span.comparison]
template<class T, ptradsff_tsize t X, class U, ptrdsff_tsize t Y>

constexpr bool operator==(span<T, X> 1, span<U, Y> r);

template<class T, ptrazff_tsize t X, class U, ptrdzff_tsize t Y>

constexpr bool operator!=(span<T, X> 1, span<U, Y> r);

template<class T, ptradsff_tsize t X, class U, ptrdsff _tsize t Y>

constexpr bool operator<(span<T, X> 1, span<U, Y> r);

template<class T, ptraxff_tsize t X, class U, ptrdzff_tsize t Y>

constexpr bool operator<=(span<T, X> 1, span<U, Y> r);

template<class T, ptradsff_tsize t X, class U, ptrdsff_tsize t Y>

constexpr bool operator>(span<T, X> 1, span<U, Y> r);

template<class T, ptrazff_tsize t X, class U, ptrdzff_tsize t Y>

constexpr bool operator>=(span<T, X> 1, span<U, Y> r);

Change [span.objectrep]

template <class ElementType, ptradfff _tsize t Extent>
span<const byte,

Extent == dynamic extent ? dynamic extent

stetic _cast<ptrdiff t>f(sizeof (ElementType)} * Extent>

as_bytes (span<ElementType, Extent> s) noexcept;

template<class ElementType, ptrdiff t Extent>
span<byte,
Extent == dynamic extent ? dynamic extent

stetic _cast<ptrdiff t>f(sizeof (ElementType)} * Extent>

as_writable bytes (span<ElementType, Extent> s) noexcept;

Proposal 3

Add a subsection to [iterator.container]:

template<class C> constexpr ptrdiff t ssize(const Cé& c);
Returns: static cast<ptrdiff t>(c.size()).

