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1 Introduction

This paper proposes usage of structured bindings with polymorphic lambdas, adding them to another place where auto can
be used as a declarator

std:: for_each(map , []( auto [key , value]) {

cout << key << " " << value << endl;

});

This would make for nice syntactic sugar to situations such as the above without having to decompose the tuple-like object
manually, similar to how structured bindings are used in range based for loops

for (auto [key , value] : map) {

cout << key << " " << value << endl;

}

2 Motivation

2.1 Simplicity and uniformity

Structured binding initialization can be used almost anywhere auto is used to initialize a variable (not considering auto

deduced return types), and allowing this to happen in polymorphic lambdas would make code simpler, easier to read and
generalize better

std:: find_if(range , []( const auto& [key , value]) {

return examine(key , value );

});

2.2 Programmer demand

There is some programmer demand and uniform agreement on this feature

1. Stack Overflow: Can the structured bindings syntax be used in polymorphic lambdas

2. ISO C++ : Structured bindings and polymorphic lambdas

2.3 Prevalence

It is not uncommon to execute algorithms on containers that contain a value type that is either a tuple or a tuple-like
decomposable class. And in such cases code usually deteriorates to manually unpacking the instance of the decomposable
class for maximum reaadability, for example

return std:: when_all(one , two).then ([]( auto futures) {

auto& one = std::get <0>( futures );

auto& two = std::get <1>( futures );

return one.get() * two.get ();

});
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The first two lines in the lambda are just noise and can nicely be replaced with structured bindings in the function parameter

return std:: when_all(one , two).then ([]( auto [one , two]) {

return one.get() * two.get ();

});

3 Impact on the standard

The proposal describes a pure language extension which is a non-breaking change - code that was previously ill-formed now
would have well-defined semantics.

4 Interaction with concepts and traits

Definition (x-decomposable) For a given domain of types that are decomposable, if a type can be decomposed into a
structured binding expression with x bindings, then it is said to be x-decomposable (reference [dcl.struct.bind] for the
exact requirements). More specifically, if the following expression is well formed in the least restrictive member access scope
(where privates are accessible) for a type T

auto&& [one , two , three , ... , x] = o;

Where decltype(o) is T, then the type T is said to be x-decomposable

This can be made available to the compiler as both a concept and a trait. The presence of such a concept makes it easy to
define templates in terms of a type that is x-decomposable. A trait allows for the same thing but can be considered more
versatile as it also fits well with existing code that employs value driven template specialization mechanisms and other more
complicated specialization workflows.

It is possible to make a concept or trait that enables us to check if a type is decomposable into x bindings by virtue of
it’s interface. In particular the presence of an ADL defined or member get<>() function and the existence of specialized
std::tuple element<> and std::tuple size<> traits qualifies something to be x-decomposable. However, a type can be
x-decomposable even when these are not present (see [dcl.struct.bind]p4)

[dcl.struct.bind]p2 and [dcl.struct.bind]p3 define decomposability that can be checked by the programmer at compile
time (described above) via a concept or trait. However [dcl.struct.bind]p4 describes a method of unpacking that cannot
be enforced purely by the language constructs available as of C++17. As such something like a compiler intrinsic, say
is decomposable<T, x> is required. Given support from a compiler with such an intrinsic, defining a trait and concept

that check if a type is x-decomposable on top of that is trivial. The trait itself can be used as a backend for the concept,
leaving the implementation of the concept entirely in portable code without the help of compiler intrinsics.

The concept, say std::decomposable<x> accepts a non-type template parameter of type std::size t that determines the
cardinality of the structured bindings decomposition. This concept holds if a type is x-decomposable (and this will take into
consideration the requirements set forth by [dcl.struct.bind] paragraphs 2, 3 and 4.

The corresponding trait, say std::is decomposable<T, x> inherits from std::integral constant<bool, true> if and
only if type T is x-decomposable. The usual variable template std::is decomposable v<T, x> should also be defined.

5 Impact on overloading and function resolution

Lambdas do not natively support function overloading, however one can lay out lambdas in a way that they are overloaded,
for example let’s assume the following definition of make overload() for the rest of the paper

template <typename ... Types >

class Overload : public Types ... {

public:

template <typename ... T>

Overload(T&&... types) : Types{std::forward <T>(types )}... {}
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using Types:: operator ()...;

};

template <typename ... Types >

auto make_overload(Types &&... instances) {

return Overload <std::decay_t <Types >...>{ std::forward <Types >( instances )...};

}

Now this can be used like so to generate a functor with overloaded operator() methods from anonymous lambdas

namespace {

auto one = []( int) {};

auto two = []( char) {};

auto overloaded = make_overload(one , two);

} // namespace <anonymous >

In such a situation the consequences of this proposal must be considered. The easiest way to understand this proposal is to
consider the rough syntactic sugar that this provides. A polymorphic lambda with a structured binding declaration translates
to a simple functor with a templated operator() method with the structured binding decomposition happening inside the
function

auto lambda = []( const auto [key , value ]) { ... };

/**

* Expansion of the above lambda

*/

class ANONYMOUS_LAMBDA {

public:

template <std:: decomposable <2> __Type >

auto operator ()( const __Type __instance) const {

auto&& [key , value] = std::move(__instance );

...

}

};

The std::move() is added to force a conversion to xvalue type because the expression e (see [dcl.struct.bind]p1) is not
an lvalue in the structured binding declaration, and when e is not an lvalue, the introduced bindings are decomposed as if e
was an xvalue. If e was an lvalue, (i.e. if & was used as the ref-qualifier or if && was used and an lvalue was passed in to
the lambda) then the std::move() will be omitted (see the next expansion for an example where std::move() is omitted)

Similarly a lambda that has two seperate groups of structured binding declarations will translate with the decompositions
happening serially within the function body in order of binding declarations from left to right

auto lambda = []( const auto [key , value], auto& [one , two , three ]) { ... };

/**

* Expansion of the above lambda

*/

class ANONYMOUS_LAMBDA {

public:

template <std:: decomposable <2> __One , std:: decomposable <3> __Two >

auto operator ()( const One __one , Two& __two) {

auto&& [key , value] = std::move(__one );

auto& [one , two , three] = __two;

...

}

};

Given the above expansions, a polymorphic lambda behaves almost identically to a lambda with a auto parameter type
with the difference that these are constrained to work only with parameters that are x-decomposable. And nothing special
happens when overloading

namespace {

auto one = []( int) {};
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auto two = []( auto [key , value ]) {};

auto overloaded = make_overload(one , two);

} // namespace <anonymous >

int main() {

auto integer = int {1};

auto pair = std:: make_pair (1, 2);

auto error = double {1};

// calls the lambda named "one"

overloaded(integer );

// calls the lamdba named "two"

overloaded(pair);

// error

overloaded(error );

}

5.1 Viable orthogonal overloads

One key point to consider here is that the concept based constraints on such lambdas allows for the following two orthogonal
overloads to work nicely with each other

namespace {

auto lambda_one = []( auto [one , two]) {};

auto lambda_two = []( auto [one , two , three ]) {};

auto overloaded = make_overload(lambda_one , lambda_two );

} // namespace <anonymous >

int main() {

auto tup_one = std:: make_tuple (1, 2);

auto tup_two = std:: make_tuple (1, 2, 2);

overloaded(tup_one );

overloaded(tup_two );

return 0;

}

Since here either one lambda can be called or both, in no case can both satisfy the requirements set forth by the compiler
concept std::decomposable<x>

5.2 Access control and decompositions

Another key point to consider is acess control within the expansion of the lambda. Decompositions will share the access
control powers of the code in the surrounding scope where the lambda is defined. So if the decomposition was in the body of
the lambda and was valid (for example, even if the type being decomposed has private get<>() methods) the lambda would
be able to decompose it successfully. For example the following code is valid

class Something {

public:

static auto make_decomposer ();

private:

std::tuple <int , int > tup{1, 2};

template <std:: size_t Index >

int get();

};

namespace std {

template <>

class tuple_size <Something > : public std:: integral_constant <std::size_t , 2> {};
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template <std:: size_t Index >

class tuple_element <Index , Something > {

public:

using type = int;

};

} // namespace std

template <std:: size_t Index >

int Something ::get() {

return std::get <Index >(this ->tup);

}

auto Something :: make_decomposer () {

// decomposition of Something instances is allowed access to the privates

// of Something since it’s defined in a context where private members are

// visible

return []( auto [one , two]) {

assert(one == 1);

assert(two == 2);

};

}

void foo() {

auto something = Something {};

auto decomposer = Something :: make_decomposer ();

// the decomposition here happens in the scope of the lambda so is valid

decomposer(something );

}

6 Compatibility with ODR

A typical problem with traits classes comes from the ODR rule. We have the same potential problem with the trait defined
earlier - std::is deomposable<>. A type may be defined such that it is unable to be decomposed at one point in a program
and might be decomposable at other points.

This problem comes from the nature of the structured bindings feature. To maintain backwards compatibility with types
that were defined before the feature, structured bindings use traits types to detect whether types are decomposable. In
particular one trait that is always used and needs to be defined for non array and non class types with only public members
is std::tuple size. By virtue of being a trait, it needs to be defined or specialized after a class’s definition. This leads
to possible discrepencies in whether it is complete or not at different points in the program. And if we instantiate the
std::is decomposable trait at these incompatible points we risk violating ODR.

There are three possible solutions to this problem

6.1 Disabled overloading based on decomposability

Disabling overloading based on decomposability is another solution to the problem of possibly violating ODR. With this we
can treat all lambdas with structured bindings parameters as the normal equivalent lambda with a single non structured
binding parameter with no decomposing and the same cv-ref qualifications. For example

auto one = []( auto one , auto&& [two , three], auto four , const auto& [five]) {};

Would be equivalent to

auto one = []( auto one , auto&& two , auto three , const auto& four)

This seems to be the simplest way forward. As a corrolary std::is decomposable can still safely exist and be used in
situations where programmers are guaranteed to get a decomposable type using the approach described in the next subsection
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6.2 Poisoning the trait

One possible approach is to poison the std::is decomposable trait to produce ill defined code when instantiated with a
type that is not decomposable (i.e. a non-array, non-class type with only public data members and a type for which the
required structured bindings specializations are not defined). This would work in concept something like this

template <typename T, typename = void_t <>>

class IsDecomposableImpl {

/**

* This would render the program ill formed when instantied with a non

* decomposable type - including but not limited to types which do not

* have std:: tuple_size defined

*/

static_assert(always_false <T>);

};

/**

* Then the other specializations

*/

template <typename T>

class IsDecomposableImpl <T, ....> { ... };

...

This would limit the overloadability of lambdas which accept structured bindings parameters to work only with other lambdas
accepting structured bindings parameters.

6.3 Argument Introspection

Like function arguments, programers should be able to detect the number of bindings to the structured bindings parameters
in a lambda. So they can employ metaprogramming strategies. To enable this, there can be traits that list the number of
function arguments allowed, which ones are structured bindings parameters, the types and cv qualifications of each function
parameter (template types should be treated specially)

7 Conversions to function pointers

A capture-less polymorphic lambda with structured binding parameters can also be converted to a plain function pointer.
Just like a regular polymorphic lambda

using FPtr_t = void (*) (std::tuple <int , int >);

auto f_ptr = static_cast <FPtr_t >([]( auto [a, b]){});

So another conversion operator needs to be added to the expansion of the polymorphic lambda with structured bindings
above

auto lambda = []( const auto [one , two]) { ... };

/**

* Expansion of the above lambda in C++17 form with respect to overloading

*/

class ANONYMOUS_LAMBDA {

public:

template <std:: decomposable <2> __Type >

auto operator ()( const __Type __instance) const {

auto&& [one , two] = std::move(__instance );

...

}

private:

/**
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* Cannot use operator () because that will either cause moves or copies ,

* elision isn’t guaranteed to happen to function parameters (even in

* return values)

*/

template <std:: decomposable <2> __Type >

static auto __invoke(const __Type __instance) {

auto&& [key , value] = std::move(__instance );

...

}

public:

/**

* Enforce the decomposable requirement on the argument of the function

*/

template <typename Return , std:: decomposable <2> Arg >

operator Return (*)( Arg)() const {

return &__invoke;

}

};

And like regular polymorphic lambdas, returning the address of the static function invokes an instantiation of the function
with the types used in the conversion operator

If in order to avoid ODR all together, the concept is avoided, then the concept should be avoided in the conversion operators
to function pointers as well. In which case the conversion operators would be the same just without the concept constraint.

8 Exceptions

Any exceptions during copy/move construction of the instance which is to be decomposed being will be thrown from the call
site, just as with regular polymorphic lambdas. However, if there is an exception thrown during the decomposition process,
for example if get<>() throws, that will propagate from within the lambda. So if function level try catch blocks were allowed
for lambdas, those would catch any exceptions generated during the decomposition process, whereas exceptions from the
copy/move construction for the creation of the entity e (see [dcl.struct.bind]p1) would not be caught by the imaginary
function level try-catch block.
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10 Changes to the current C++17 standard

10.1 Section 8.1.5.1 ([expr.prim.lambda.closure]) paragraph 3

For a generic lambda, the closure type has a public inline function call operator member template (17.5.2) whose template-

parameter-list consists of one invented type template-parameter for each occurrence of auto in the lambdas parameter-
declaration-clause, in order of appearance. For each occurrence of a structured binding with cardinality x, the template-

parameter-list consists of an invented type template-parameter with the constraint that it has to be decomposable into
x structured bindings (see [dcl.struct.bind]). And as such the function template only participates in overloading when
all the structured bindings are appropriately decomposable. The invented type template-parameter is a parameter pack
if the corresponding parameter-declaration declares a function parameter pack (11.3.5). A structured binding parame-

ter-declaration cannot be used to invent a parameter pack. The return type and function parameters of the function call
operator template are derived from the lambda-expressions trailing-return-type and parameter-declaration-clause

by replacing each occurrence of auto in the decl-specifiers of the parameter-declaration-clause with the name of the
corresponding invented template-parameter.
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10.2 Section 11.5 ([dcl.struct.bind])

5. If the number of structured bindings introduced by a structured binding declaration is x, then a type T is called x-decom-

posable if the following is well formed in the least restrictive member access scope (where privates are accessible)

auto&& [one , two , three , ... , x] = o;

where T is decltype(o)

10.3 Section 23.15.4.3 Type properties ([meta.unary.prop])

template <typename T, std:: size_t X>

class is_decomposable;

Condition The type T has to be x-decomposable (see [dcl.struct.bind]p5)
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