
Document Number: P0924r0
Date: 2018-02-09
To: SC22/WG21 EWG
Reply to: Nathan Sidwell

nathan@acm.org / nathans@fb.com
Re: Working Draft, Extensions to C ++ for Modules, n4720

Modules:Context-Sensitive Keyword
Nathan Sidwell

The new module keyword presents some difficulties with converting existing code bases that use

module as an identifier, particularly in externally publicized interfaces. This paper discusses avenues

available for making module a context-sensitive keyword.

1 Background
At Albuquerque’17 I presented two papers that could simplify making module context-sensitive,

although that was not their main goal:

• P0774 ‘Module Declaration Location’

• P0787 ‘Proclaiming Ownership Declarations’

This paper draws on those, but has the goal of making module context-sensitive, rather than a

desirable side-effect of another change.

The module keyword is used in two new declarations:

module-declaration: exportopt module module-name attributesopt;

proclaimed-ownership-declaration: extern module module-name : declaration

A module-declaration may appear, at most, once in a translation unit, and proclaimed-ownership-
declarations are discouraged. Thus a reserved keyword is rather extravagant.

1.1 Module-declaration
The two forms of a module-declaration:

export module module-name attributesopt ;
module module-name attributesopt ;

P0924r0:Modules:Context-Sensitive Keyword - 1 - Nathan Sidwell

present ambiguities when module is a typedef-name or class-name, and the module-name is a plain

identifier. As well as being valid module-declarations, they may be parsed as declarations of a variable

of type module, the first also being exported. (Of course, outside of module interface purview such an

export is semantically invalid.)

1.1.1 Explicit Disambiguation Rule

The simplest disambiguation rule is that such ambiguities are always parsed as a module-declaration –
if a (top-level) declaration could be a module-declaration, it is. This is simple to state. It would change

the meaning of the following C++17 source (presume ‘module’ is a typedef):

// implementation unit ‘me’, not variable ‘me’
module me;

// interface unit ‘me’, not export of variable ‘me’
export module me;

This disambiguation occurs, regardless of whether the interpretation is semantically ill-formed.

Function declarations, more complex variable declarations, member declarations and non-global-
namespace-scope declarations would remain with their C++17 meaning:

class module { /* Unspecified. */ };
module frob (); // function returning module
module *me; // variable pointing to a module
namespace bits {
 export module me; // exporting variable of type module
}
class thing {
 module me; // data member of type module
};

For completeness, the following uses of module, as an identifier, continue unchanged:

class module; // class named ‘module’
class thing {
 module m; // field ‘m’ type ‘module’
};
int module (); // function called ‘module’

It is my understanding that the known uses of ‘module’ do not fall into cases that would be

interpreted as module-declarations under this disambiguation.

The disambiguation can usually be implemented with minimal look ahead, not requiring full tentative

parsing. If the token after the first identifier of a potential module-name is ‘.’ or ‘;’, the declaration

must be a module-declaration or ill-formed. If the next two tokens are ‘[[’, it could be either

P0924r0:Modules:Context-Sensitive Keyword - 2 - Nathan Sidwell

reduction, and one must skip to the matching ‘]]’ to look1 for a ‘;’ indicating a module-declaration.

Otherwise it must be some other declaration (or even expression-statement), or ill-formed.

Here are some examples:

// module-declarations:
module m;
module m [[whatever]];
module m.n;

// declarations (ill-formed if ‘module’ not a type):
module *m;
module m (…);
module (m);
module m[];
module m, n;
module m [[whatever]], n;

All those examples parse the same way if preceded by ‘export’.

1.1.2 Module-Declaration as First Declaration

P0774 proposed requiring the module-declaration to be the first declaration of a translation unit, and
adding syntax to place entities in the global module. It suggested the following grammar:

translation-unit:
module-preambleopt

declaration-seqopt

module-preamble:
module-declaration global-module-declarationopt

module-declaration:
exportopt module module-name attribute-specifier-seqopt ;

global-module-declaration:
module { declaration-seqopt }

Requiring the module-declaration to be first clearly makes it possible for module to be context-

sensitive. Also, there would be no requirement for the global-module-declaration to be introduced by

module, but could use the more mnemonic identifier ‘global’:2

global-module-declaration:
global { declaration-seqopt }

1 Similar lookahead will work for compiler extensions such as ‘__attribute__((...))’.
2 Daveed Vandevoorde suggestion during the Albuquerque ‘17 presentation.

P0924r0:Modules:Context-Sensitive Keyword - 3 - Nathan Sidwell

With this change, there can be no typedef-name in scope called ‘module’, and thus disambiguation as

module-declaration is extremely straight-forwards. If the first token is ‘module’, or the first two

tokens are ‘export module’, the TU starts with a module-declaration. Otherwise it does not.

1.2 Proclaimed-ownership-declaration
The proclaimed-ownership-declaration grammar of:

proclaimed-ownership-declaration : extern module module-name : declaration

is not ambiguous with an extern declaration of an entity with type ‘module’, because no such

declaration can end with ‘:’ – ‘typedef int module; extern module x: ...’ would be

syntactically ill-formed.

However, it may be wise to clarify this in a similar manner to the module-declaration above.

1.2.1 Alternative Syntax

Amongst the changes P0787 proposed was changing the syntax of a proclaimed-ownership-declaration

to avoid the module keyword entirely. Its uses there came from earlier syntax for module exporting,

and was not reconsidered when the current ‘exportopt import module-name ;’ syntax was

developed. To recap, p0787 suggested:

import module-name : extern declaration

as syntax. The emphasis being that we’re declaring an entity exported by the named module. An
alternative approach might be:

extern export module-name : declaration

Here the emphasis is that we’re declaring something that is being exported by the named module.

1.2.2 Module Partitions

P0775 ‘Module Partitions’ suggested an alternative approach that would remove the need for
proclaimed-ownership-declarations. It was positively received, but I have had insufficient time to
advance it at this stage.

2 Proposal
I propose

• Making ‘module’ a context-sensitive keyword. I.e., it behaves as a regular identifier, except

in specific cases.

P0924r0:Modules:Context-Sensitive Keyword - 4 - Nathan Sidwell

• Not changing the syntax of proclaimed-ownership-declaration.

• Not changing the location requirements of a module-declaration

• Adding a disambiguation rule as specified in Section 1.1.1.

3 Changes to Modules-TS Draft
Modify [lex.name] to add ‘module’ to Table 4 as an identifier with special meaning.

Modify [lex.key] to add ‘import’ to Table 5 as an unconditional keyword. (i.e. do not add

‘module’).

Add the following disambiguation rule to [dcl.module.unit]:

There is an ambiguity in the grammar between module-declarations and a declaration,
when ‘module’ is a typedef-name or class-name, and a single identifier is used as the
module-name. Such ambiguities are resolved as module-declarations. [Note:
Parenthesizing the identifier will cause it to be parsed as a declaration. – end note]

Add suitable examples to [dcl.module.unit].

Add the following to [dcl.module.proclaim]

[Note: No ambiguity exists between a proclaimed-ownership-declaration and a declaration,

because no namespace-scope declaration may contain a ‘:’ after the declarator. – end note]

P0924r0:Modules:Context-Sensitive Keyword - 5 - Nathan Sidwell

	1 Background
	1.1 Module-declaration
	1.1.1 Explicit Disambiguation Rule
	1.1.2 Module-Declaration as First Declaration

	1.2 Proclaimed-ownership-declaration
	1.2.1 Alternative Syntax
	1.2.2 Module Partitions

	2 Proposal
	3 Changes to Modules-TS Draft

