
More simd<> Operations
Document Number P0918R0

Date 2018-02-08

Reply-to Tim Shen <timshen91@gmail.com>

Audience SG1, LEWG

Abstract
P0214 [1] defines portable types for SIMD, as well as a set of common SIMD operations.
However, the set of operations are not sufficient to expose some of the hardware functionality.

Specifically, some SIMD operations that are heavily used in practice, but delivered by hardware
with rather subtle differences, causing importability. This proposal allows these many variations
of hardware features to be abstracted into a consistent, portable API.

This proposal also depends on P0820 [2] for rebind_abi_t and split_by.

Proposed Functions

shuffle
template <size_t... indices, typename T, typename Abi>

simd<T, rebind_abi_t<T, sizeof...(indices), Abi>>

shuffle(const simd<T, Abi>& v);

template <size_t... indices, typename T, typename Abi>

simd_mask<T, rebind_abi_t<T, sizeof...(indices), Abi>>

shuffle(const simd_mask<T, Abi>& v);

Remarks: These functions shall not participate overloading resolution unless ((indices <
simd_size_v<T, Abi>) && ...).

Returns: A new simd/simd_mask object r, where r[i] = v[indices[i]] and indices[i] is the
ith element in indices.

The shuffle operation permutes the input SIMD elements arbitrarily, allowing omission and
repetition of these elements. The permutation needs to be specified at compile-time. The case
where the permutation is only known at runtime is out of scope.

mailto:timshen91@gmail.com
http://wg21.link/p0214
http://wg21.link/p0820

Note that hardware often provide interfaces that take two SIMD values, not one. For the
proposed portable interface, this can be achieved by composing with concat(), e.g. ̀shuffle<7,
6, 5, 4, 3, 2, 1, 0>(concat(a, b))`, where a and b are with sizes of 4. With compiler
optimizations, this comes to no performance penalty . The single-argument shuffle is easier to 1

learn and result in more explicit call sites.

Note that for variadic number of elements, users can use std::index_sequence:

template <size_t... indices>

simd<int> ElementsWithOddIndices(simd<int> a, simd<int> b,

 std::index_sequence<indices...>) {

 static_assert(sizeof...(indices) == a.size(), "");

 // Returns all elements with odd indices in concatenated a and b.

 return shuffle<(2 * indices + 1)...>(concat(a, b));

}

interleave
template <typename T, typename Abi>

simd<T, rebind_abi_t<T, simd_size_v<T, Abi> * 2, Abi>>

interleave(const simd<T, Abi>& u, const simd<T, Abi>& v);

template <typename T, typename Abi>

simd_mask<T, rebind_abi_t<T, simd_size_v<T, Abi> * 2, Abi>>

interleave(const simd_mask<T, Abi>& u, const simd_mask<T, Abi>& v);

Returns: shuffle<(i / 2 + (i % 2) * simd_size_v<T, Abi>)...>(concat(u, v)), where i is a
variadic pack of size_t in [0, simd_size_v<T, Abi> * 2).

interleave() shuffles the given two SIMD objects in a specific way, interleaving the input
values into a single simd<> object. Hardware instructions like punpcklwd on x86 can be achieved
by combining split() and interleave(), ̀interleave(split_by<2>(a)[0],
split_by<2>(b)[0])` with the assist of proper optimizations ; vice versa, interleave() itself can 2

be implemented in terms of instructions like punpcklwd.

sum_to
template <typename AccType, typename T, typename Abi>

AccType sum_to(const simd<T, Abi>& v, const AccType& acc);

template <typename AccType, typename T, typename Abi>

1 https://godbolt.org/g/BEXRmZ
2 https://godbolt.org/g/svsyfh

https://godbolt.org/g/BEXRmZ
https://godbolt.org/g/svsyfh

AccType sum_to(const simd<T, Abi>& v);

Let U be typename AccType::value_type.

Remarks: This function shall not participate overloading resolution unless

● is_simd_v<AccType>, and
● simd<T, Abi>::size() % AccType::size() == 0, and
● is_integral_v<T> && is_integral_v<U>, and
● is_signed_v<T> == is_signed_v<U>, and
● sizeof(U) >= sizeof(T)

Returns: For the first overloading, r + acc, where r[i] is GENERALIZED_SUM(std::plus<>,
static_cast<U>(v[S*i]), static_cast<U>(v[S*i+1]), ..., static_cast<U>(v[(S+1)*i -

1])), and S is v.size() / AccType::size(). For all i, r[i] has an unspecified value if the
corresponding GENERALIZED_SUM overflows. For the second overloading, sum_to(v,
AccType(0)).

This function partially sums up every M adjacent elements in the input simd<> object, where M is
simd<T, Abi>::size() / AccType::size().

On some architectures - x86 for example - this can be used to implement an efficient full 3

summation over a large buffer of integers:

// Returns the sum of all uint8_ts in the buffer.

int64_t Sum(uint8_t* buf, int n) {

 constexpr size_t stride = native_simd<uint8_t>::size();

 native_simd<int64_t> acc(0);

 int i;

 for (i = 0; n - i >= stride; i += stride) {

 acc = sum_to(native_simd<uint8_t>(buf + i), acc);

 }

 // handle leftovers in [i, n)

 return reduce(acc);

}

In practice, summation usage does not always fit in one or more calls to Sum(), e.g. multiple
summations with their loops fused. Therefore, it makes sense to let the accumulator acc and the
loop exposed in the user code.

3_mm_sad_epu8 is the fastest approach in the benchmark:
https://gist.github.com/timshen91/0f321fe2c5cfb04015917c0529052158

https://gist.github.com/timshen91/0f321fe2c5cfb04015917c0529052158

This provides a simple and consistent interface for various flavors of hardware summation
instructions:

● Elements are not widened, and total number of bytes is changed: phaddd on x86, VPADD
on ARM.

● Elements are widened, but total number of bytes isn't changed: psadbw, pmaddwd on x86,
vmsumshm on PowerPC.

● Full sum, e.g. ADDV on ARMv8.

Note that the efficiency of sum_to() is architecture-specific for a given (T, Abi, AccType)
combination. Users do need architectural knowledge to pick the most efficient AccType on that
architecture, as well as using sum_to() or not. Implementations are suggested to document
which instruction is generated by which instantiation, and warn about uses of inefficient ones.

multiply_sum_to
template <typename AccType, typename T, typename Abi>

AccType multiply_sum_to(

 const simd<T, Abi>& v, const simd<T, Abi>& u, const AccType& acc);

template <typename AccType, typename T, typename Abi>

AccType multiply_sum_to(

 const simd<T, Abi>& v, const simd<T, Abi>& u);

Let U be typename AccType::value_type.

Remarks: This function shall not participate overloading resolution unless

● is_simd_v<AccType>, and
● simd<T, Abi>::size() % AccType::size() == 0, and
● is_integral_v<T> && is_integral_v<U>, and
● is_signed_v<T> == is_signed_v<U>, and
● sizeof(U) == 2 * sizeof(T)

Returns: For the first overloading, sum_to<AccType>(static_simd_cast<U>(v) *
static_simd_cast<U>(u), acc). For the second overloading, multiply_sum_to(v, AccType(0)).

This function provides integral "element-wise multiply + partial sum" functionality on various
architectures, for example

● pmaddwd on x86
● vmsumshm on PowerPC
● VMLAL on ARM

In practice, this is often used for implementing integral dot product. It makes sense to expose
the accumulator to the users for the same reason as sum_to() does.

saturated_simd_cast
template <typename U, typename T, typename Abi>

simd<U, rebind_abi_t<U, simd_size_v<T, Abi>, Abi>>

saturated_simd_cast(const simd<T, Abi>& v);

If is_integral_v<U>, then let L be numeric_limits<U>::min() and R be
numeric_limits<U>::max().

If is_floating_point_v<U>, then L is implementation-defined among
-numeric_limits<U>::max() and -numeric_limits<U>::inf(), depending on the rounding
mode; R is implementation-defined among numeric_limits<U>::max() and
numeric_limits<U>::inf(), depending on the rounding mode.

[Note: L may not equal to -R even with is_floating_point_v<U> --end note]

Remarks: This function shall not participate overloading resolution unless U is a vectorizable
type

Returns: A simd object r, where r[i] is

● L, if v[i] is less than L, or
● R, if v[i] is greater than R, or
● static_cast<U>(v[i]).

This function is similar to simd_cast(), but clamps the result when overflow happens. This
captures many of the uses of "saturated pack" integral operation, which effectively narrows
down each element by half of its size, and clamps each narrowed value.

It also provides floating point -> integer saturated conversion.

Hardware instruction examples include:

● packsswb, packuswb on x86
● vpkswss, vpkswus, vctsxs on PowerPC
● VQMOVN, VQMOVUN on ARM

Optional Designs

Integer-only vs Integer and Floating Point
sum_to(), multiply_sum_to() are actually well defined on simd<A, Abi> -> simd<B, Abi>,
where A and B are a floating point types, but the proposal requires A and B to be integral types.
This is because the floating point version is not seen heavily used in practice, nor efficiently

supported by hardware. The integral type constraints complicates the interface specification and
learning experience. On the other hand, to allow floating points may create performance pitfalls,
e.g. using sum_to() to sum up a large buffer of floats is not the fastest way.

Alternative: we could open them up to floating points only for simpler interface and
completeness. Implementations are suggested to warn about inefficient uses.

Provide a trait for AccType
In generic code, when using sum_to() or multiple_sum_to(), if AccType is not deduced from the
function parameter acc, it can be hard to specify by the users generically, e.g. the input element
type T and output element type U, where sizeof(U) = 2 * sizeof(T). The standard library may
provide a type trait that takes T and produces a (u)intN_t, where N is 2K * sizeof(T).

This is optional, as we don't see a lot of generic SIMD programming today.

For example : 4

template <typename T, size_t numerator, size_t denominator = 1>

struct scale_width_by {

 // a type with width sizeof(T) * numerator / denominator,

 // otherwise similar to T in terms of is_integral, and

 // is_signed/is_unsigned.

 using type = ...;

};

template <typename T, size_t numerator, size_t denominator = 1>

using scale_width_by_t =

 typename scale_width_by<T, numerator, denominator>::type;

// Examples:

// scale_width_by_t<int8_t, 4> => int32_t

// scale_width_by_t<int64_t, 1, 2> => int32_t

// scale_width_by_t<int, 2> => int64_t, if int is int32_t

// scale_width_by_t<float, 2> => double, given proper sizes of them

Alternatives:

● In addition, provide scale_width_by.
● In addition, provide scale_width_by, and make U in multiply_sum_to() default to

scale_width_by_t<T, 2>.

4 scale_width_by can be used for generic purposes, so maybe it should be in a separate proposal.

Prototype
Dimsum [3] implements variations of shuffle(), interleave() (with the name zip), sum_to()
(with the name reduce_add), and multiply_sum_to() (with the name mul_sum).

Reference
[1] P0214, the SIMD proposal
[2] P0820, the supplemental proposal on the top of P0214
[3] Dimsum, the prototype

https://github.com/google/dimsum
http://wg21.link/p0214
http://wg21.link/p0820
https://github.com/google/dimsum

