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Abstract 
P0214 [1] defines portable types for SIMD, as well as a set of common SIMD operations. 
However, the set of operations are not sufficient to expose some of the hardware functionality. 
 
Specifically, some SIMD operations that are heavily used in practice, but delivered by hardware 
with rather subtle differences, causing importability. This proposal allows these many variations 
of hardware features to be abstracted into a consistent, portable API. 
 
This proposal also depends on P0820 [2] for rebind_abi_t and split_by. 

Proposed Functions 

shuffle 
template <size_t... indices, typename T, typename Abi> 

simd<T, rebind_abi_t<T, sizeof...(indices), Abi>> 

shuffle(const simd<T, Abi>& v); 

 

template <size_t... indices, typename T, typename Abi> 

simd_mask<T, rebind_abi_t<T, sizeof...(indices), Abi>> 

shuffle(const simd_mask<T, Abi>& v); 

 
Remarks: These functions shall not participate overloading resolution unless ((indices < 
simd_size_v<T, Abi>) && ...). 
 
Returns: A new simd/simd_mask object r, where r[i] = v[indices[i]] and indices[i] is the 
ith element in indices. 
 
The shuffle operation permutes the input SIMD elements arbitrarily, allowing omission and 
repetition of these elements. The permutation needs to be specified at compile-time. The case 
where the permutation is only known at runtime is out of scope. 
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Note that hardware often provide interfaces that take two SIMD values, not one. For the 
proposed portable interface, this can be achieved by composing with concat(), e.g. ̀shuffle<7, 
6, 5, 4, 3, 2, 1, 0>(concat(a, b))`, where a and b are with sizes of 4. With compiler 
optimizations, this comes to no performance penalty . The single-argument shuffle is easier to 1

learn and result in more explicit call sites. 
 
Note that for variadic number of elements, users can use std::index_sequence: 
 

template <size_t... indices> 

simd<int> ElementsWithOddIndices(simd<int> a, simd<int> b, 

                                 std::index_sequence<indices...>) { 

  static_assert(sizeof...(indices) == a.size(), ""); 

  // Returns all elements with odd indices in concatenated a and b. 

  return shuffle<(2 * indices + 1)...>(concat(a, b)); 

} 

interleave 
template <typename T, typename Abi> 

simd<T, rebind_abi_t<T, simd_size_v<T, Abi> * 2, Abi>> 

interleave(const simd<T, Abi>& u, const simd<T, Abi>& v); 

 

template <typename T, typename Abi> 

simd_mask<T, rebind_abi_t<T, simd_size_v<T, Abi> * 2, Abi>> 

interleave(const simd_mask<T, Abi>& u, const simd_mask<T, Abi>& v); 

 

Returns: shuffle<(i / 2 + (i % 2) * simd_size_v<T, Abi>)...>(concat(u, v)), where i is a 
variadic pack of size_t in [0, simd_size_v<T, Abi> * 2). 
 
interleave() shuffles the given two SIMD objects in a specific way, interleaving the input 
values into a single simd<> object. Hardware instructions like punpcklwd on x86 can be achieved 
by combining split() and interleave(), ̀interleave(split_by<2>(a)[0], 
split_by<2>(b)[0])` with the assist of proper optimizations ; vice versa, interleave() itself can 2

be implemented in terms of instructions like punpcklwd. 

sum_to 
template <typename AccType, typename T, typename Abi> 

AccType sum_to(const simd<T, Abi>& v, const AccType& acc); 

 

template <typename AccType, typename T, typename Abi> 

1 https://godbolt.org/g/BEXRmZ 
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AccType sum_to(const simd<T, Abi>& v); 

 

Let U be typename AccType::value_type. 

 
Remarks: This function shall not participate overloading resolution unless 

● is_simd_v<AccType>, and 
● simd<T, Abi>::size() % AccType::size() == 0, and 
● is_integral_v<T> && is_integral_v<U>, and 
● is_signed_v<T> == is_signed_v<U>, and 
● sizeof(U) >= sizeof(T) 

 
Returns: For the first overloading, r + acc, where r[i] is GENERALIZED_SUM(std::plus<>, 
static_cast<U>(v[S*i]), static_cast<U>(v[S*i+1]), ..., static_cast<U>(v[(S+1)*i - 

1])), and S is v.size() / AccType::size(). For all i, r[i] has an unspecified value if the 
corresponding GENERALIZED_SUM overflows. For the second overloading, sum_to(v, 
AccType(0)). 
 
This function partially sums up every M adjacent elements in the input simd<> object, where M is 
simd<T, Abi>::size() / AccType::size(). 
 
On some architectures - x86 for example - this can be used to implement an efficient  full 3

summation over a large buffer of integers: 
 

// Returns the sum of all uint8_ts in the buffer. 

int64_t Sum(uint8_t* buf, int n) { 

  constexpr size_t stride = native_simd<uint8_t>::size(); 

  native_simd<int64_t> acc(0); 

  int i; 

  for (i = 0; n - i >= stride; i += stride) { 

    acc = sum_to(native_simd<uint8_t>(buf + i), acc); 

  } 

  // handle leftovers in [i, n) 

  return reduce(acc); 

} 

 
In practice, summation usage does not always fit in one or more calls to Sum(), e.g. multiple 
summations with their loops fused. Therefore, it makes sense to let the accumulator acc and the 
loop exposed in the user code. 
 

3_mm_sad_epu8 is the fastest approach in the benchmark: 
https://gist.github.com/timshen91/0f321fe2c5cfb04015917c0529052158 
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This provides a simple and consistent interface for various flavors of hardware summation 
instructions: 

● Elements are not widened, and total number of bytes is changed: phaddd on x86, VPADD 
on ARM. 

● Elements are widened, but total number of bytes isn't changed: psadbw, pmaddwd on x86, 
vmsumshm on PowerPC. 

● Full sum, e.g. ADDV on ARMv8. 
 
Note that the efficiency of sum_to() is architecture-specific for a given (T, Abi, AccType) 
combination. Users do need architectural knowledge to pick the most efficient AccType on that 
architecture, as well as using sum_to() or not. Implementations are suggested to document 
which instruction is generated by which instantiation, and warn about uses of inefficient ones. 

multiply_sum_to 
template <typename AccType, typename T, typename Abi> 

AccType multiply_sum_to( 

    const simd<T, Abi>& v, const simd<T, Abi>& u, const AccType& acc); 

 
template <typename AccType, typename T, typename Abi> 

AccType multiply_sum_to( 

    const simd<T, Abi>& v, const simd<T, Abi>& u); 
 
Let U be typename AccType::value_type. 

 
Remarks: This function shall not participate overloading resolution unless 

● is_simd_v<AccType>, and 
● simd<T, Abi>::size() % AccType::size() == 0, and 
● is_integral_v<T> && is_integral_v<U>, and 
● is_signed_v<T> == is_signed_v<U>, and 
● sizeof(U) == 2 * sizeof(T) 

 
Returns: For the first overloading, sum_to<AccType>(static_simd_cast<U>(v) * 
static_simd_cast<U>(u), acc). For the second overloading, multiply_sum_to(v, AccType(0)). 
 
This function provides integral "element-wise multiply + partial sum" functionality on various 
architectures, for example 

● pmaddwd on x86 
● vmsumshm on PowerPC 
● VMLAL on ARM 

 
In practice, this is often used for implementing integral dot product. It makes sense to expose 
the accumulator to the users for the same reason as sum_to() does. 



saturated_simd_cast 
template <typename U, typename T, typename Abi> 

simd<U, rebind_abi_t<U, simd_size_v<T, Abi>, Abi>> 

saturated_simd_cast(const simd<T, Abi>& v); 

 

If is_integral_v<U>, then let L be numeric_limits<U>::min() and R be 
numeric_limits<U>::max(). 
 
If is_floating_point_v<U>, then L is implementation-defined among 
-numeric_limits<U>::max() and -numeric_limits<U>::inf(), depending on the rounding 
mode; R is implementation-defined among numeric_limits<U>::max() and 
numeric_limits<U>::inf(), depending on the rounding mode. 
 
[Note: L may not equal to -R even with is_floating_point_v<U> --end note] 
 
Remarks: This function shall not participate overloading resolution unless U is a vectorizable 
type 
 
Returns: A simd object r, where r[i] is 

● L, if v[i] is less than L, or 
● R, if v[i] is greater than R, or 
● static_cast<U>(v[i]). 

 
This function is similar to simd_cast(), but clamps the result when overflow happens. This 
captures many of the uses of "saturated pack" integral operation, which effectively narrows 
down each element by half of its size, and clamps each narrowed value. 
 
It also provides floating point -> integer saturated conversion. 
 
Hardware instruction examples include: 

● packsswb, packuswb on x86 
● vpkswss, vpkswus, vctsxs on PowerPC 
● VQMOVN, VQMOVUN on ARM 

Optional Designs 

Integer-only vs Integer and Floating Point 
sum_to(), multiply_sum_to() are actually well defined on simd<A, Abi> -> simd<B, Abi>, 
where A and B are a floating point types, but the proposal requires A and B to be integral types. 
This is because the floating point version is not seen heavily used in practice, nor efficiently 



supported by hardware. The integral type constraints complicates the interface specification and 
learning experience. On the other hand, to allow floating points may create performance pitfalls, 
e.g. using sum_to() to sum up a large buffer of floats is not the fastest way. 
 
Alternative: we could open them up to floating points only for simpler interface and 
completeness. Implementations are suggested to warn about inefficient uses. 

Provide a trait for AccType 
In generic code, when using sum_to() or multiple_sum_to(), if AccType is not deduced from the 
function parameter acc, it can be hard to specify by the users generically, e.g. the input element 
type T and output element type U, where sizeof(U) = 2 * sizeof(T). The standard library may 
provide a type trait that takes T and produces a (u)intN_t, where N is 2K * sizeof(T). 
 
This is optional, as we don't see a lot of generic SIMD programming today. 
 
For example : 4

 
template <typename T, size_t numerator, size_t denominator = 1> 

struct scale_width_by { 

  // a type with width sizeof(T) * numerator / denominator, 

  // otherwise similar to T in terms of is_integral, and 

  // is_signed/is_unsigned. 

  using type = ...; 

}; 

 

template <typename T, size_t numerator, size_t denominator = 1> 

using scale_width_by_t = 

    typename scale_width_by<T, numerator, denominator>::type; 

 

// Examples: 

// scale_width_by_t<int8_t, 4> => int32_t 

// scale_width_by_t<int64_t, 1, 2> => int32_t 

// scale_width_by_t<int, 2> => int64_t, if int is int32_t 

// scale_width_by_t<float, 2> => double, given proper sizes of them 

 
Alternatives: 

● In addition, provide scale_width_by. 
● In addition, provide scale_width_by, and make U in multiply_sum_to() default to 

scale_width_by_t<T, 2>. 

4 scale_width_by can be used for generic purposes, so maybe it should be in a separate proposal. 



Prototype 
Dimsum [3] implements variations of shuffle(), interleave() (with the name zip), sum_to() 
(with the name reduce_add), and multiply_sum_to() (with the name mul_sum). 
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