
The identity metafunction

Timur Doumler (papers@timur.audio)

Document #: P0887R1
Date: 2018-03-18
Project: Programming Language C++
Audience: Library Working Group

Abstract

This paper proposes the library utility std::type_identity, which implements the identity
metafunction. The functionality it provides is both fundamental and surprisingly useful. It
can be used to selectively disable template argument deduction (for which there is currently
no standard mechanism), and as a basic building block for other metafunctions. The main
issue with standardising this utility has long been the lack of consensus on a name. This paper
summarises the history, discusses different names, and provides a rationale for the chosen name.

1 Definition
This paper proposes to add the most fundamental metafunction to the C++ standard library: the
identity metafunction. It takes one template argument, type T, and provides the member typedef
type which is the same type T.
The implementation is trivial:

template <typename T>
struct type_identity { using type = T; };

template <typename T>
using type_identity_t = typename type_identity<T>::type;

Despite its simplicity, this metafunction is surprisingly useful in various situations.

2 Motivation

2.1 Disabling template argument deduction

Commonly, the need arises to disable template argument deduction for one or more arguments of a
function, and force client code to explicitly specify the template parameter. Consider:

template <typename T>
void foo(T t) {/* ... */}

If we wish to disable deduction on t, it can be accomplished as follows:
template <typename T>
void foo(type_identity_t<T> t) {/* ... */}

1

mailto:papers@timur.audio


In fact, this technique has become a common idiom (let’s call it the “type identity idiom”). Currently,
the idiom requires one to type out their own identity metafunction, defined as above. We should
instead provide it in the standard library. This would standardise existing practice and make the
idiom more convenient to use and easier to teach (somewhat similar to how enable_if is a standard
metafunction for selectively removing functions from overload resolution).

2.2 Disabling deduction guides

C++17 introduced class template argument deduction, creating a new use case for the identity
metafunction. Often, the need arises to explicitly disable deduction guides to prevent unsafe or
unexpectedly behaving code. For example, consider a library smart pointer class that takes a raw
pointer to an object as its constructor argument, and then somehow manages the object (for a
real-world example, see [JuceScopedPointer]):

template <class T>
class smart_pointer
{
public:

smart_pointer(T* object);
// Other public methods...

}

If the users of this library switch to C++17, this becomes well-formed:
Widget* widget{/* ... */};
smart_pointer ptr{widget}; // using implicit deduction guide

This is inherently dangerous as the constructor of smart_pointer cannot differentiate between
a pointer to an object and an array. In cases like this, the automatic deduction guide for the
offending constructor is usually disabled. This forces the client code to explicitly specify the template
parameter. The “type identity idiom” is the easiest way to achieve this:

smart_pointer(type_identity_t<T>* object);

2.3 Fundamental metafunction building block

There are two ubiquitous idioms for type traits:

— define a public data member value with a given value

— define a public member typedef type that names a given type

It is surprising that there is a standard utility providing the former (std::integral_constant),
but no standard utility providing the latter.
type_identity is this utility. It is a fundamental building block that other metafunctions can
simply inherit from. For example, remove_const could be implemented as follows:

template <typename T>
struct remove_const : type_identity<T> {};

template <typename T>
struct remove_const<T const> : type_identity<T> {};

Several other examples are given by Walter E. Brown in his talk “Modern Template Metaprogram-
ming: A Compendium” [Brown2014].

2



3 Alternative approaches
For disabling deduction guides, an alternative to type_identity is to add a new core language
feature. This would require new syntax, such as using = delete on deduction guides. This was
proposed in [P0091] in Kona 2017 but not adopted. Such a facility would be more limited than
type_identity: it could not be used to selectively disable single arguments, and would not work
for template argument deduction on functions. A core language change is also more difficult to
justify if the same effect1 can be accomplished with a simple library utility that already follows an
established idiom.
Another alternative is repurposing other standard metafunctions to do the job of the identity
metafunction. However the resulting code ends up:

— redundant, for example enable_if_t<true, T>,

— confusing, for example remove_reference_t<T> can often be used, but then ends up in
contexts where T could not even be a reference in the first place,

— not providing the same functionality, for example common_type_t<T> is not equivalent to
type_identity_t<T> because it decays T.

The standard should give us a way to write what we actually mean. See [N3766] for further
discussion and real-world examples.

4 Historical context
The fact that the identity metafunction is not yet standardised has historical reasons.
Pre-C++98 implementations of the standard library had an entity named std::identity. This was
different from the utility discussed here: it was a function object for value identity and defined an
operator(). This original version of std::identity still survives today as a legacy SGI extension
to the C++ standard library and in an extension namespace of stdlibc++.
Later, a metafunction std::identity with an implementation identical to the one discussed here
was proposed in [N1856] in 2005 and merged into the C++0x working draft [N2284] in 2007. The
motivation at the time was to simplify usage of std::forward, via the same mechanism as discussed
above: it forces client code to explicitly specify the template parameter.
This caused a defect report [700] because of the name clash with the older SGI extension. The
defect was resolved by adding operator() to align both definitions of std::identity. However
this addition caused further issues and led to two more defect reports [823][939]. Ultimately,
std::forward evolved and no longer needed std::identity to work correctly. The defects were
resolved by completely removing std::identity from the working draft.
The wish to have this fundamental metafunction in the standard library persisted, and so identity
was proposed again in [N3766] in 2013. The two (mutually exclusive) options proposed in that
paper were: either fixing the still unresolved issues with operator(), or removing operator() and
changing the name to identity_of. Neither of the options received consensus in LEWG; there was
no further work on these issues.
The prevalent opinion has always been that the identity metafunction is useful and should be
standardised, and that the only hurdle is the current lack of consensus on a name for it. Overcoming
this hurdle is exactly the goal of this proposal.

1It is somewhat unclear whether such a language feature should remove deduction guides from deduction, as
type_identity does, or instead make the program ill-formed if that deduction guide is selected by deduction (similar
to existing = delete for function bodies), although for most real-world use cases this distinction would probably not
matter.

3



5 Choosing a name

5.1 Names suggested so far

Since [N3766], various alternative names for the identity metafunction were suggested. Below is a
summary of all serious naming suggestions we are currently aware of, along with their drawbacks.

— identity — The original name. It is currently unclear whether the name clash with the old
SGI version of identity would still be a problem for a relevant number of people. However,
the bigger problem with the word “identity” is its ambiguity: it could stand either for the
type identity metafunction proposed here, or for the value identity function object (notably,
the Ranges TS [N4685] currently uses std::ranges::identity for the latter), or even for a
combination of both (which was proposed in [N3766] but failed to get LEWG consensus).

— identity_of — This was an alternative proposal in [N3766] to circumvent the name clash
with the old SGI version of identity. However the name does nothing to resolve the inherent
ambiguity of identity and failed to get LEWG consensus.

— type — A simple and clear alternative. Unfortunately it has two problems. First, it is a very
popular and generic identifier and could create unforeseen name clashes if added to namespace
std. Second, it is not possible in C++ to define a member typedef that has the same name
as the class itself. Therefore, type<T>::type can only be implemented with a workaround
via a helper struct (Boost.Hana does this; see 5.2). Alternatively, one could omit the member
type form altogether and only use the _t form. Both solutions would no longer satisfy the
concept of UnaryTypeTrait and thus create a new inconsistency in header type_traits.

— type_identity — Arguably the most logical and precise name from the English language
perspective, resolving the ambiguity of “identity”. [Boost.TypeTraits] uses this name. The
downsides of this name are that some consider it too long for such a basic utility, and that
there is is some unwanted similarity with the typeid operator.

— identity_type — A variation of type_identity, equally long and perhaps less optimal from
the English language perspective.

— meta_identity — Yet another attempt to resolve the ambiguity of “identity”. However the
prefix meta_ feels out of place in this context, because the other type traits do not have such
a prefix despite also being metafunctions.

— id — Abbreviating the word “identity” does not fix the problem of its ambiguity. Also, this
causes a name clash with the Objective-C keyword id, creating problems for codebases that
mix both languages.

— type_is — Walter E. Brown’s choice [Brown2014]. However some people consider code like
type_is<T> to be too “cute” for a standard library utility.

— type_of — This is clearly wrong. The “type of a type” is not the same as “the type that is
this type”. A type of a type would be a higher-order thing (which has no obvious and natural
corresponding C++ language construct).

— this_type — This could be misinterpreted as “type of this” (the this pointer).

— same_type — This name sounds too much like a query and would be better fitting for a
variadic metafunction that takes several types and checks whether they are the same, similarly
to existing std::common_type.

— same — This is too similar to existing std::is_same.

4



— omit_from_deduction, no_deduce, etc. — Such names are great when used in the con-
text of disabling argument deduction, but preclude other possible use cases of the identity
metafunction.

— wrapper_type, nested_type, type_alias, type_wrapper, etc. — Such names attempt to
describe the implementation of the identity metafunction rather than its meaning, and are
not clear enough.

— type_constant — This name emphasises the relation to integral_constant. Unfortunately,
it seems to suggest that the type could somehow be mutable.

The discussion and plethora of suggested names makes it clear that there is no ideal name that
fixes all problems. The task at hand is to decide on the name that is the least bad one.

5.2 Names used in existing libraries

It is illuminating to look at existing practice: what names do popular third-party metaprogramming
libraries use for the identity metafunction? Below is an incomplete list.

— [Boost.MPL] has boost::mpl::identity. The definition matches the one in section 1.

— [Boost.TypeTraits] has boost::type_identity. The definition matches the one in section 1.

— [Boost.Hana] has boost::hana::type. To avoid the name shadowing issue with its member
typedef also called type, it employs the following workaround:

template <typename T>
struct __type { using type = T; };

template <typename T>
using type = __type<T>;

template <typename T>
using type_t = typename type<T>::type;

— [Boost] further has boost::type in header boost/type.hpp. It avoids the name shadowing
issue by not having a member typedef type.

— [Brigand] has brigand::identity. The definition matches the one in section 1.

— [Meta] does not have the identity metafunction as such, however it does have a utility
typedef for the T::type idiom, named _t, which is used all over the code, demonstrating its
usefulness:

template <typename T>
using _t = typename T::type;

— [Erasure] has both a typedef _t like Meta and a struct type_ defined as in section 1. The
trailing underscore avoids the name shadowing issue.

— [Mp11] has mp_identity (mp_ is the common prefix in this library). The definition matches
the one in section 1.

To summarise, as far as we are aware, all popular implementations of the identity metafunction use
as a name either identity, type, or type_identity.

5



5.3 LEWG consensus in Jacksonville

At the 2018 Jacksonville meeting, LEWG reviewed R0 of the present paper and discussed all of the
above considerations for naming the identity metafunction. As a result, the name type_identity
was approved by unanimous consent.
This name is the most logical and unambiguous one. It is unfortunately somewhat long for such
a basic utility, but apart from that, type_identity does not create any technical, denotative, or
connotative issues (unlike all of the other suggestions).
We recognise that the naming of existing metafunctions in the standard is not very consistent in
general, and proposals for a more consistent naming policy would be welcome. Going even further,
it would be very interesting to consider adopting a new, more modern metaprogramming library for
the standard. [P0949] is a recent proposal in this direction. Nevertheless, type_identity is useful
today, and these directions should not delay its addition to the currently existing type traits.

6 Proposed wording
The proposed changes are relative to the C++ working paper [Smith2018].
In 23.15.2 Header <type_traits> synopsis [meta.type.synop], add:

// 23.15.7.6, other transformations
template<class T> struct type_identity;

template<class T>
using type_identity_t = typename type_identity<T>::type;

In 23.15.7.6 Other transformations [meta.trans.other], add to Table 50 — Other transformations:
template<class T>
struct type_identity;

The member typedef type names the type T.

Document history

— R0, 2018-02-12: initial version, proposing wording for identity and type as mutually
exclusive alternatives.

— R1, 2018-03-18: Added wording for type_identity; removed wording for identity and
type; updated text to reflect the LEWG result in Jacksonville; fixed incorrect description of
Boost.Hana’s type.

Acknowledgements
Many thanks to Michael Spertus, Richard Smith, Zhihao Yuan, John Bytheway, Andrey Davydov,
Graham Haynes, Gašper Ažman, Simon Brand, Jonathan Wakely, Jon Chesterfield, Thomas Köppe,
and Louis Dionne for their very helpful comments and suggestions on earlier versions of this paper.
Many thanks to Titus Winters, Walter E. Brown, and all of LEWG for the very productive discussion
in Jacksonville.

References

[700] P.J. Plauger. Defect Report 700. N1856 defines struct identity. http://cplusplus.
github.io/LWG/lwg-defects.html#700, 2007 (accessed 2018-03-18).

6

http://cplusplus.github.io/LWG/lwg-defects.html#700
http://cplusplus.github.io/LWG/lwg-defects.html#700


[823] Walter E. Brown. Defect Report 823. identity<void> seems broken. http://cplusplus.
github.io/LWG/lwg-defects.html#823, 2008 (accessed 2018-03-18).

[939] Alisdair Meredith. Defect Report 939. Problem with std::identity and reference-to-
temporaries. http://cplusplus.github.io/LWG/lwg-defects.html#939, 2008 (ac-
cessed 2018-03-18).

[Boost] Boost. Type Documentation. http://www.boost.org/doc/libs/1_66_0/boost/type.
hpp, 2001 (accessed 2018-03-18).

[Boost.Hana] Boost. Hana Documentation. http://www.boost.org/doc/libs/1_63_0/libs/
hana/doc/html/structboost_1_1hana_1_1type.html, 2007 (accessed 2018-03-18).

[Boost.MPL] Boost. MPL Documentation. http://www.boost.org/doc/libs/1_48_0/libs/mpl/
doc/refmanual/identity.html, 2009 (accessed 2018-03-18).

[Boost.TypeTraits] Boost. Type Traits Documentation. http://www.boost.org/doc/libs/1_66_
0/libs/type_traits/doc/html/index.html, 2011 (accessed 2018-03-18).

[Brigand] Edouard Alligand. Brigand Meta-programming library. https://github.com/edouarda/
brigand, 2017 (accessed 2018-03-18).

[Brown2014] Walter E. Brown. Modern Template Metaprogramming: A Compendium. https:
//www.youtube.com/watch?v=Am2is2QCvxY, 2014 (accessed 2018-03-18).

[Erasure] Gašper Ažman. liberasure: A no-dependencies C++ extensible type erasure library.
https://github.com/atomgalaxy/liberasure/, 2017 (accessed 2018-03-18).

[JuceScopedPointer] JUCE API Reference. Class ScopedPointer. https://juce.com/doc/
classScopedPointer, 2017 (accessed 2018-03-18).

[Meta] Eric Niebler. Meta: A tiny metaprogramming library. https://github.com/
ericniebler/meta, 2017 (accessed 2018-03-18).

[Mp11] Peter Dimov. Mp11, a C++11 metaprogramming library. https://github.com/
boostorg/mp11, 2018 (accessed 2018-03-18).

[N1856] Howard E. Hinnant. Rvalue Reference Recommendations for Chapter 20. https://wg21.
link/n1856, 2005 (accessed 2018-03-18).

[N2284] Pete Becker. Working Draft, Standard for Programming Language C++. https://wg21.
link/n2284, 2007 (accessed 2018-03-18).

[N3766] Jeffrey Yasskin. The identity type transformation. https://wg21.link/n3766, 2013
(accessed 2018-03-18).

[N4685] Eric Niebler. Working Draft, C++ Extensions for Ranges. https://wg21.link/n4685,
2017 (accessed 2018-03-18).

[P0091] Mike Spertus, Faisal Vali, and Richard Smith. Template argument deduction for class
templates (Rev. 7): Deleted deduction guides. https://wg21.link/p0091, 2017 (accessed
2018-03-18).

[P0949] Peter Dimov. Adding support for type-based metaprogramming to the standard library.
https://wg21.link/p0949, 2018 (accessed 2018-03-18).

[Smith2018] Richard Smith. Working Draft, Standard for Programming Language C++. https:
//github.com/cplusplus/draft, 2018 (accessed 2018-03-18).

7

http://cplusplus.github.io/LWG/lwg-defects.html#823
http://cplusplus.github.io/LWG/lwg-defects.html#823
http://cplusplus.github.io/LWG/lwg-defects.html#939
http://www.boost.org/doc/libs/1_66_0/boost/type.hpp
http://www.boost.org/doc/libs/1_66_0/boost/type.hpp
http://www.boost.org/doc/libs/1_63_0/libs/hana/doc/html/structboost_1_1hana_1_1type.html
http://www.boost.org/doc/libs/1_63_0/libs/hana/doc/html/structboost_1_1hana_1_1type.html
http://www.boost.org/doc/libs/1_48_0/libs/mpl/doc/refmanual/identity.html
http://www.boost.org/doc/libs/1_48_0/libs/mpl/doc/refmanual/identity.html
http://www.boost.org/doc/libs/1_66_0/libs/type_traits/doc/html/index.html
http://www.boost.org/doc/libs/1_66_0/libs/type_traits/doc/html/index.html
https://github.com/edouarda/brigand
https://github.com/edouarda/brigand
https://www.youtube.com/watch?v=Am2is2QCvxY
https://www.youtube.com/watch?v=Am2is2QCvxY
https://github.com/atomgalaxy/liberasure/
https://juce.com/doc/classScopedPointer
https://juce.com/doc/classScopedPointer
https://github.com/ericniebler/meta
https://github.com/ericniebler/meta
https://github.com/boostorg/mp11
https://github.com/boostorg/mp11
https://wg21.link/n1856
https://wg21.link/n1856
https://wg21.link/n2284
https://wg21.link/n2284
https://wg21.link/n3766
https://wg21.link/n4685
https://wg21.link/p0091
https://wg21.link/p0949
https://github.com/cplusplus/draft
https://github.com/cplusplus/draft

	1 Definition
	2 Motivation
	3 Alternative approaches
	4 Historical context
	5 Choosing a name
	6 Proposed wording
	References

