
P0335R1: Context Tokens for Parallel Algorithms Page 1 of 5

Doc No: P0335R1

Date: 2018-10-07

Audience: SG1 (parallelism & concurrency)

Authors: Pablo Halpern, Intel Corp.
 phalpern@halpernwightsoftware.com

Context Tokens for Parallel Algorithms

Contents

1 Abstract .. 1
2 Changes from R0 .. 1
3 Motivation ... 2
4 Proposal overview .. 2
5 What is a context token? ... 3

5.1 General .. 3
5.2 A context token is not an execution policy .. 3
5.3 A context token is not an executor .. 3
5.4 What goes into a context token? ... 3

6 How does a context token become available to executing code? 4
6.1 Optional extra arguments to element access functions ... 4
6.2 Optional argument to the task queued on an executor ... 5
6.3 Optional extra argument to a task block .. 5
6.4 Agent-local storage ... 5
6.5 Yet-to-be invented out-of-band mechanism .. 5

7 References .. 5

1 Abstract

This paper proposes a mechanism whereby the element-access function of a parallel algorithm
(i.e., the function or lambda that is invoked in parallel) can invoke specific operations
provided by the execution policy. The proposed mechanism takes the form of a cookie or
token passed from the algorithm to the function. The type of this token can be different for
each execution policy. Acceptance and use of this token is entirely optional, allowing simple
use cases to remain simple and backwards-compatible with the existing parallel algorithms
library. This model of using tokens is similar to the execution agents in the Agency library.

This paper is at the conceptual stage – no formal wording is provided.

2 Changes from R0

Formal wording has been removed. This paper is more conceptual now, focused on what
should go into the context token and what algorithms would benefit from it.

mailto:phalpern@halpernwightsoftware.com
https://github.com/jaredhoberock/agency/wiki/Quick-Start-Guide

P0335R1: Context Tokens for Parallel Algorithms Page 2 of 5

3 Motivation

Consider the following use of the parallel for_loop algorithm with the vector_policy

described in the Parallelism TS v2:

for_loop(execution::vec, 0, N, [&](int i){

 ++ordered_update(histagram[A[i]]);

});

The ordered_update function is specifically tied to the vec execution policy, yet there is no

syntactic connection between them. Replacing vec with par would render this code incorrect

– undefined behavior. It would be better that such a substitution render the code ill-formed,
but the library syntax does not give us a good way to express such a syntactic restriction.

Although the vector_policy is the first demonstrated example of this kind of problem, the

problem will not remain limited to the for_loop, nor to the vector _policy. For example, a

future enhancement of the parallel execution policy might provide support for critical
sections or thread-local storage in a way that is safer and/or more efficient than the direct
use of mutex and thread_local. As we move towards combining execution policies with

executors, it might also be desirable to query the executor.

4 Proposal overview

This proposal is targeted at a version of the parallelism TS.

What is proposed is that each parallel algorithm may pass a special token that
communicates execution context to the element-access functions passed to the algorithm by
the user. Policy-specific operations and queries, rather than being free functions, would be
member functions of the token object. The above example would be rewritten as follows:

for_loop(execution::vec, 0, N, [&](auto context, int i){

 ++context.ordered_update(histagram[A[i]]);

});

The token can carry information about the execution policy, the iteration of the loop, etc..
The type of this context token is defined as a nested type within the execution policy:

struct vector_policy {

 struct context_token { ... };

 ...

};

Note that if the execution policy is modified by an executor (e.g., using the .on(executor)

syntax), then the context token is likely to have a different type than if the execution policy is
used directly. If the token is not needed, it can simply be omitted from the argument list for
the element-access function:

for_each(execution::vec, 0, N, [&](int i){

 A[i] = A[i + 1] + 10;

});

Thus, existing uses of the parallel algorithms are unaffected by the context token. This
flexibility is enabled through the use of metaprogramming to invoke the element access

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2018/n4755.pdf

P0335R1: Context Tokens for Parallel Algorithms Page 3 of 5

function either with or without extra initial argument. If the invocable object has overloads
both with or without the extra argument, the overload with the extra argument is preferred.

5 What is a context token?

5.1 General

A context token is an object encapsulating state about the current context of an element
execution function, including general information such as the type of execution agent and
policy-specific information such as the current worker ID. The class of the context token
might also have typedefs for such things as the executor type and member functions (both
static and non-static) for interacting with the context, e.g., for getting the current executor or
SIMD lane or for executing a critical region in a way that is appropriate to the execution

agent.

5.2 A context token is not an execution policy

An execution policy such as parallel or unseq is certainly part of the context in which the

element access functions are run, but it does not encapsulate invocation-specific context
such as the current thread-pool worker.

5.3 A context token is not an executor

An executor is an object on which to enqueue work. A context token is created after the
executor has launched the work. As with the execution policy, the executor does not
encapsulate information about the specific invocation of the launched task. The executor
might be available through the context token for the purpose of enqueuing more work.

5.4 What goes into a context token?

It might make sense to define a ContextToken concept. The concept would define a (probably

small) number of types and operations that would apply any context token type. There might
also be optional members of the type (which necessarily cannot be part of the concept). These
optional members would have the same meaning for contexts that support them, but would
not be defined for other contexts.

In addition, each context token type is likely to have context-specific types and operations
that would be usable only be element access functions that are tuned to a specific context
type. For example, a kernel that is intended to run on a GPU might access the current warp

from the context token. Such a kernel could not run on a CPU thread pool, whose context
token would not be able to provide a warp. This lack of portability is often acceptable for
highly-tuned code.

5.4.1 Some common members of context tokens

Types

• Execution policy type

P0335R1: Context Tokens for Parallel Algorithms Page 4 of 5

• Executor type

• Exception support (true_type and false_type? Enumeration?)

• Native memory allocator

• Mutex type (optional)

Member functions

• get_executor()

• get_worker_id() (optional - worker ID for thread pools, lane number for SIMD, etc.)

• get_iteration() (optional - iteration number of a loop)

• critical_section() (optional - run a lambda protected from other parallel

executions in the same executor)

• barrier() (optional)

• Access to worker-local storage (optional)

• Some way to perform reductions?

• Quit with an error or exit a speculative execution (e.g., cooperative cancelation of
parallel iterations) (optional)

5.4.2 Some possible members of executor- and policy-specific context tokens

vec policy context member functions

• ordered_update()

• vec_off()

• vec_lane()

thread-pool context member functions

• get_cpu_id()

• Etc.

6 How does a context token become available to executing code?

6.1 Optional extra arguments to element access functions

The user-supplied callbacks to the parallel STL algorithms are called element access
functions. With some metaprogramming the algorithm could determine if the element access
function accepts a context token argument and, if so, generates and passes the token.
Examples of element access functions with and without context-token arguments are shown
in the proposal overview (section 4), above. The context would be passed by value, since
parallel executions would need different context tokens. However, pointers, could be used to

make them small and efficient to pass around.

For this mechanism to be adopted, we must decide which element access functions can
participate and which cannot. The possibilities are

1. All element access functions, including comparison functors, etc.. Passing an optional
context token to each of these would be a lot of work for the algorithm implementers.
Also, it could not be threaded through things like fancy iterators.

P0335R1: Context Tokens for Parallel Algorithms Page 5 of 5

2. Element access functions named Function in the standard. There are only a handful

of algorithms to which this applies, including foreach in the standard and for_loop

in the Parallelism TS. This was the proposed categorization in R0 of this paper.

3. An even narrower range of element access functions limited to just the overloads of
for_loop. The thinking was that this is a very low-level algorithm. However, it means

that no other algorithms would have access to the context, not even foreach.

4. All of the element access functions named Function as well as a select few others,

such as the UnaryOperation functor in the transform algorithm. This is my current

favorite.

6.2 Optional argument to the task queued on an executor

This would untie the idea from algorithms, to a degree. The same metaprogramming principle
applies as for algorithms, where the argument is provided only if asked for. Conversely, we
could simplify the spec by making the context token always passed into the task, at the cost
of making it slightly more complicated to author tasks.

6.3 Optional extra argument to a task block

The argument to define_task_block has many of the qualities of an element access

function. It would make sense to pass an executor to define_task_block and for

define_task_block to pass a context token to the block itself. Similarly, the run_task

member of the task block could pass a context token to the spawned task.

6.4 Agent-local storage

This is the most obvious out-of-band mechanism for making the context token available.
Unfortunately, it can result in a catch-22 whereby the task cannot determine how to get
agent-local storage without already having a context token to query. Some forms of agent-
local storage might be expensive and some executors would not be able to provide agent-local
storage at all.

6.5 Yet-to-be invented out-of-band mechanism

Pablo Halpern is working with Alisdair Merideth and Andrew Sutton to try to define a quasi
out-of-band syntax and implementation mechanism for environmental attributes of which a
context token would be a prime example (allocators being another example). Unfortunately,
this work is still in the “I have an idea” phase, so it is not clear whether it will affect SG1

decision making in the near term.

7 References

Agency Quick Start Guide, a low-level library for abstracting parallel execution, Jared
Hoberock, 2015-12-03

N4755 Parallelism TS v2 working draft, Jared Hoberock, editor, 2018-06-24

https://github.com/jaredhoberock/agency/wiki/Quick-Start-Guide
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2018/n4755.pdf

