
Document Number: P0774r0
Date: 2017-10-02
To: SC22/WG21 CWG/EWG
Reply to: Nathan Sidwell

nathan@acm.org / nathans@fb.com
Re: Working Draft, Extensions to C ++ for Modules, n4681

Module Declaration Location
Nathan Sidwell

The current wording of n4681 does not place an ordering restriction on the location of the module
declaration, it may appear at any point as a top-level declaration. This document presents an alternative,
restricting it to be the first top-level declaration. Syntaxes are suggested that keep the existing
contiguous nature of the global module portion of a module unit.

1 Background
The current modules draft, n4681, permits the module-declaration to appear as any top-level
declaration. Declarations that precede it are part of the global module. The global module cannot be
re-opened after the module-declaration.

At the Toronto ‘17 a desire was put forwards that the module declaration, if present, should be the first
top-level declaration of a translation unit. This is not a new desire, p0529r1 (2016-11-23, R.Smith)
presented such a scheme.

However, such schemes have required the ability to be more flexible than the current wording in
regards to the global module. In particular allowing arbitrary reopening of the global module. This is
undesirable.

A different Toronto suggestion was the ability to state at the beginning of a file that there would be a
module declaration later. While such a scheme might satisfy some needs, it does seem a suboptimal
solution. Once one has gone to the effort of stating there will be a module-declaration, the next ask
might be the ability to say up front whether it is an interface or implementation unit. And finally the
obvious question is ‘why can I not simply say what the module is?’

2 Proposal
I suggest amending the grammar so that the module-declaration must be first (after preprocessing). But
further amend it so that a single optional global module block must immediately succeed it, if present.
Two alternatives to achieve this are presented.

P0774r0:Module Declaration Location - 1 - Nathan Sidwell

The semantics of the global module are unchanged.

2.1 Direct Combination
This approach amends the module-declaration itself so that it includes an optional global module
block. Examples are:

// module interface with no global module fragment
export module foo;
// module interface declarations here

and

// module interface with global module fragment
export module foo using {
 // global module declarations here
}
// module interface declarations here

The existing ‘using’ keyword is pressed into service joining the module declaration to the global

module fragment. Naturally module implementation units follow the same pattern, but lack the initial

‘export’ keyword in the module-declaration.

2.2 Explicit Global Module
While the first example satisfies the need of placing the module declaration first, and having a single
global module fragment, it is a little awkward. It will be hard to explain why the two separate pieces

are being glued together with a using keyword. Further, I suspect source code arrangements will be

awkward, with the following being a common desired layout:

export module foo // first line of the file
// Expository text block
// Copyright & licensing
// Authorship
using {
 // global module fragment
}
// module contents continue

The desire for a standard comment block immediately after the module announcement separates it from

the global module fragment. Where should the using keyword be placed? There appears to be no

good answer.

P0774r0:Module Declaration Location - 2 - Nathan Sidwell

Thus, rather than have a combined module & global fragment declaration, use a separate mechanism
for declaring the global module fragment, but grammatically restrict it to immediately follow the
module-declaration. With such a scheme, the above example becomes:

export module foo;
// Expository text block
// Copyright & licensing
// Authorship
module {
 // global module fragment
}
// module contents continue

2.3 Commonalities
The purview of the module starts after the global module fragment, which means the global module
fragment continues to precede the purview. The current draft species the purview starts at the module-
declaration, leaving it ambiguous as to whether (parts of) the module-declaration itself is within its
own purview.

In both alternatives, the global module fragment is contained within a brace pair, without trailing semi-
colon. This matches existing syntax for a namespace-definition and namespace-alias, examples of
which are:

namespace foo { /*…*/ }
namespace bar = foo ;

2.3.1 Context Sensitivity

With the module-declaration moved to the start of source, it is worth considering whether the

‘module’ could be a context-sensitive keyword. Introducing new keywords is always a danger to

existing code bases, and it is wise to minimize them.

Unfortunately ‘module’ is also used in a proclaiming-ownership-declaration, which presents

difficulties with context sensitivity. I do not explore the issue further in this paper, refer to p0788 for
proclaiming-ownership-declaration discussion.

3 Changes to Modules-TS Draft
The two options lead to two similar sets of changes to the TS Draft. For avoidance of doubt, I
recommend the ‘explicit global module’ approach of 3.2.

Note that p0788 also modifies the grammar in [basic.link,6.5]/1 and covers making module context-

sensitive. Refer to that paper for the combined changes.

P0774r0:Module Declaration Location - 3 - Nathan Sidwell

3.1 Direct Combination
To accept the ‘export module foo using {…}’ syntax, change the grammar added to

[basic.link,6.5]/1 as follows:

translation-unit:
module-declarationopt

toplevel-declaration-seqopt

toplevel-declaration-seq:
toplevel-declaration
toplevel-declaration-seqopt toplevel-declaration
toplevel-declaration-seqopt proclaimed-ownership-declaration

toplevel-declaration
 module-declaration
 proclaimed-ownership-declaration
 declaration

module-declaration:
exportopt module module-name attribute-specifier-seqopt ;
exportopt module module-name attribute-specifier-seqopt global-module

global-module:
using { declaration-seqopt }

proclaimed-owernship-declaration:
extern module module-name : declaration

module-name:
module-name-qualifier-seqopt identifier

module-name-qualifier-seq:
 module-name-qualifier .

module-name-qualifier-seqopt identifier .

module-name-qualifier
 identifier

Modify [dcl.module,10.7] as follows:

1 A module unit is a translation unit that contains a module-declaration. A named module is
the collection of module units with the same module-name. A translation unit may not
contain more than one module-declaration. A module-name has external linkage but cannot
be found by name lookup.

P0774r0:Module Declaration Location - 4 - Nathan Sidwell

3 A module unit purview starts atimmediately after the module-declaration and extends to
the end of the translation unit. The purview of a named module M is the set of module unit
purviews of M’s module units.

4 A namespace-scope declaration D of an entity (other than a module)1 in the purview of a
module M is said to be owned by M. Equivalently, the module M is the owning module of D.

5 The global module is the collection of all declarations in global-module fragments not in
the purview of any module-declaration. By extension, such declarations are said to be in
the purview of the global module. [Note: The global module has no name, and no module
interface unit, and is not introduced by any module-declaration. — end note]

3.2 Explicit Global Module
To accept the ‘export module foo; module {…}’ syntax, change the grammar added to

[basic.link,6.5]/1 as follows:

translation-unit:
module-preambleopt

toplevel-declaration-seqopt

toplevel-declaration-seq:
toplevel-declaration
toplevel-declaration-seqopt toplevel-declaration
toplevel-declaration-seqopt proclaimed-ownership-declaration

toplevel-declaration
 module-declaration
 proclaimed-ownership-declaration
 declaration

module-preamble:
module-declaration global-module-declarationopt

module-declaration:
exportopt module module-name attribute-specifier-seqopt ;

global-module-declaration:
module { declaration-seqopt }

proclaimed-owernship-declaration:
extern module module-name : declaration

1 Also noted in p0775r0, this appears to be superfluous wording, regardless of new restrictions on the module-declaration
location.

P0774r0:Module Declaration Location - 5 - Nathan Sidwell

module-name:
module-name-qualifier-seqopt identifier

module-name-qualifier-seq:
 module-name-qualifier .

module-name-qualifier-seqopt identifier .

module-name-qualifier
 identifier

Modify [dcl.module,10.7] as follows:

1 A module unit is a translation unit that contains a module-declaration. A named module is
the collection of module units with the same module-name. A translation unit may not
contain more than one module-declaration. A module-name has external linkage but cannot
be found by name lookup.

3 A module unit purview starts atimmediately after the module-declarationpreamble and
extends to the end of the translation unit. The purview of a named module M is the set of
module unit purviews of M’s module units.

5 The global module is the collection of all declarations in global-module-declarations not in
the purview of any module-declaration. By extension, such declarations are said to be in
the purview of the global module. [Note: The global module has no name, and no module
interface unit, and is not introduced by any module-declaration. — end note]

3.3 Common Changes
Amend the note in [lex.key,5.11]:

[Note: The export and register keywords areis unused but areis reserved for future use. —
end note]

P0774r0:Module Declaration Location - 6 - Nathan Sidwell

	1 Background
	2 Proposal
	2.1 Direct Combination
	2.2 Explicit Global Module
	2.3 Commonalities
	2.3.1 Context Sensitivity

	3 Changes to Modules-TS Draft
	3.1 Direct Combination
	3.2 Explicit Global Module
	3.3 Common Changes

