
Document Number: P0662R0
Date: 2017-06-13
Reply to: Casey Carter

casey@carter.net
Reply to: Eric Niebler

eric.niebler@gmail.com

Wording for Ranges TS Issue 345 / US-2:
Update ranged-for-loop wording

© ISO/IEC P0662R0

1 Description of Instructions [intro]
[stmt.ranged] in the Ranges TS is written as a set of editorial instructions relative to C++14 that update
the wording for the range-based for loop. This paper proposes alterations to those editorial instructions
in the form of — you guessed it — even more editorial instructions. In an attempt to provide clarity of
presentation, this paper uses five distinct formatting styles to represent text with different properties:

— Text that is the same in C++ 14 and in the Ranges TS is presented in a plain style without adornment.

— Text which the TS strikes from C++ 14 is red in color.

— Text which the TS adds to C++ 14 is cyan in color.

— Text which this paper proposes to strike from the TS is purple and struck-through.

— Text which this paper proposes to add to the TS is gold and underlined.

5.1.1 The range-based for statement [stmt.ranged]
[Editor’s note: Modify [stmt.ranged] to use a formulation similar to the C++17 FDIS:]

1 For aThe range-based for statement of the form
for (for-range-declaration : expressionfor-range-initializer) statement

let range-init be equivalent to the expression surrounded by parentheses
(expression)

and for a range-based for statement of the form
for (for-range-declaration : braced-init-list) statement

let range-init be equivalent to the braced-init-list. In each case, a range-based for statement is
equivalent to

{
auto &&__range = range-init ;
for (auto __begin = begin-expr ,

__end = end-expr ;
__begin != __end;
++__begin) {

for-range-declaration = *__begin;
statement

}
}

{
auto &&__range = range-initfor-range-initializer ;
auto __begin = begin-expr ;
auto __end = end-expr ;
for (; __begin != __end; ++__begin) {

for-range-declaration = *__begin;
statement

}
}

where

§ 5.1.1 1

© ISO/IEC P0662R0

—(1.1) if the for-range-initializer is an expression, it is regarded as if it were surrounded by
parentheses (so that a comma operator cannot be reinterpreted as delimiting two init-declarators);

—(1.2) __range, __begin, and __end are variables defined for exposition only; and _RangeT is
the type of the expression, and begin-expr and end-expr are determined as follows:

—(1.3) begin-expr and end-expr are determined as follows:
—(1.3.1) if _RangeTthe for-range-initializer is an an expression of array type R, begin-expr

and end-expr are __range and __range + __bound, respectively, where __bound is the
array bound. If _RangeTR is an array of unknown sizebound or an array of incomplete
type, the program is ill-formed;

—(1.3.2) if _RangeTthe for-range-initializer is aan expression of class type C, the unqualified-
ids begin and end are looked up in the scope of class _RangeTC as if by class member
access lookup (3.4.5), and if either (or both) finds at least one declaration, begin-expr
and end-expr are __range.begin() and __range.end(), respectively;

—(1.3.3) otherwise, begin-expr and end-expr are begin(__range) and end(__range), respec-
tively, where begin and end are looked up in the associated namespaces (3.4.2). [Note:
Ordinary unqualified lookup (3.4.1) is not performed. —end note]

[Example:
int array[5] = { 1, 2, 3, 4, 5 };
for (int& x : array)

x *= 2;

—end example]
2 In the decl-specifier-seq of a for-range-declaration, each decl-specifier shall be either a type-

specifier or constexpr. The decl-specifier-seq shall not define a class or enumeration.

§ 5.1.1 2

	1 Description of Instructions
	5.1.1 The range-based for statement

