
P0462R0:

Marking memory order consume Dependency Chains

Doc. No.: WG21/P0462R0
Date: 2016-10-13

Reply to: Paul E. McKenney, Torvald Riegel, Jeff Preshing,
Hans Boehm, Clark Nelson, Olivier Giroux, Lawrence Crowl,

JF Bastien, and Micheal Wong
Email: paulmck@linux.vnet.ibm.com, triegel@redhat.com, jeff@preshing.com

boehm@acm.org, clark.nelson@intel.com, OGiroux@nvidia.com,
Lawrence@Crowl.org, jfbastien@apple.com, and fraggamuffin@gmail.com

Other contributors: Alec Teal, Alisdair Meredith, David Howells, David Lang
, George Spelvin, Jeff Law, Joseph S. Myers, Linus Torvalds, Mark Batty, Michael Matz,

Peter Sewell, Peter Zijlstra, Ramana Radhakrishnan, Richard Biener, Will Deacon,
Faisal Vali, Behan Webster, Tony Tye, Thomas Koeppe, Jens Maurer, ...

October 13, 2016

This document is based in part on
WG21/D0098R1, extracting the alternatives for
marking dependency chains (each headed by a
memory order consume [1] load). It also adds a
few additional alternatives based on discussions at
the March 2016 meeting in Jacksonville, Florida,
This document does not define the behavior of
dependency chains, but instead only the syntax used
to call the compiler’s attention to them. Please
see WG21/P0190R2 for detailed information on
dependency-chain behavior.

1 Introduction

Spirited discussions of memory order consume at the
Jacksonville meeting resulted in a few of items of
agreement:

1. Dependency chains should be restricted to point-
ers. Please note that this excludes not only the

troublesome objects of integral type, but also ac-
cesses to static members of classes.

2. Unmarked code can be handled by having the
implementation behave as if markings had been
supplied in all locations that could reasonably be
marked. This allows natural handling of depen-
dencies in unmarked code. This behavior should
be controlled by a compiler flag. Such a flag is
of course outside of the standard.

3. Software artifacts that are built standalone (such
as the Linux kernel and numerous embedded
projects) can reasonably use unmarked depen-
dency chains. In contrast, software artifacts that
are expected to dynamically link against stan-
dard libraries seem likely to need to mark their
dependency chains.

4. Discussions involving marking of library APIs
have been set aside for the moment, and so this

1

WG21/P0462R0 2

document does not address this point.

These points result in three known valid ways of
handling memory order consume:

1. Ignore the markings and promote memory

order consume to memory order acquire, as is
current practice.

2. Ignore the markings, demote memory order

consume to memory order relaxed, and sup-
press troublesome optimizations of pointers.
However, there was some difficulty in arriving
at a precise definition of “troublesome”.

3. Demote memory order consume to memory

order relaxed and suppress troublesome opti-
mizations of marked pointers. The fact that
such optimizations need not be suppressed for
unmarked pointers means that a much more con-
servative definition of “troublesome” is feasible,
thus reducing the need for precision. Note that
pointer comparisons will still break dependency
chains in some cases, unless the comparisons
were carried out using proposed dependency-
preserving pointer-comparison intrinsics. Note
further that the template-based method de-
scribed in Section 3.4.4 uses operator overload-
ing so that the usual relational operators invoke
these intrinsics.

However, a number of ways of marking dependency
chains have been proposed and there was nothing
resembling any sort of agreement on which should
be used. This paper therefore catalogs approaches
to marking dependency chains, and evaluates each
against a set of representative use cases.

2 Representative Use Cases

This section uses the common definitions shown in
Figure 1 to discuss the use cases in the following list:

1. Simple case.

2. Function in via parameter.

3. Function out via return value.

1 struct rcutest {
2 int a;
3 int b;
4 int c;
5 spinlock_t lock;
6 };
7
8 struct rcutest1 {
9 int a;

10 struct rcutest rt;
11 };
12
13 std::atomic<rcutest *> gp;
14 std::atomic<rcutest1 *> g1p;
15 std::atomic<int *> gip;
16 struct rcutest *gslp; /* Global scope, local usage. */
17 std::atomic<rcutest *> gsgp;
18
19 template<typename T>
20 T *rcu_consume(std::atomic<T*> *p)
21 {
22 volatile std::atomic<T> *q = p;
23 // Change to memory_order_consume once it is fixed
24 depending_ptr<T> temp(q->load(std::memory_order_relaxed));
25 return temp;
26 }
27
28 template<typename T>
29 T *rcu_consume(T *p)
30 {
31 // Alternatively, could cast p to volatile atomic...
32 T *temp(*(T *volatile *)&p);
33 return temp;
34 }
35
36 template<typename T>
37 T* rcu_store_release(std::atomic<T*> *p, T *v)
38 {
39 p->store(v, std::memory_order_release);
40 return v;
41 }
42
43 template<typename T>
44 T* rcu_store_release(T **p, T *v)
45 {
46 // Alternatively, could cast p to volatile atomic...
47 atomic_thread_fence(std::memory_order_release);
48 *((volatile T **)p) = v;
49 return v;
50 }
51
52 // Linux-kernel compatibility macros, not for atomics
53 #define rcu_dereference(p) rcu_consume(p)
54 #define rcu_assign_pointer(p, v) rcu_store_release(&(p), v)

Figure 1: Common Definitions

WG21/P0462R0 3

1 void *thread0(void *unused)
2 {
3 rcutest *p;
4
5 p = new rcutest();
6 assert(p);
7 p->a = 42;
8 assert(p->a != 43);
9 rcu_store_release(&gp, p);

10 return nullptr;
11 }
12
13 void *thread1(void *unused)
14 {
15 rcutest p;
16
17 p = rcu_consume(&gp);
18 if (p)
19 p->a = 43;
20 return nullptr;
21 }

Figure 2: Simple Case

4. Function both in and out, but different chains.

5. Dependency chain fanning out.

6. Dependency chain fanning in.

7. Dependency chain fanning both in and out.

8. Conditional compilation of endpoint accesses.

9. Examples involving handoff to locking.

Each of the above use cases is covered in one of the
following sections, followed by a discussion of evalu-
ation criteria.

2.1 Simple Case

The simple case is shown in Figure 2. Here, the de-
pendency chain extends from line 16 through line 18,
where it terminates. Given the simplicity and com-
pactness of this example, any reasonable proposal
should handle this example simply and naturally.

2.2 In via Function Parameter

Figure 3 shows an example dependency chain that
begins at line 22, enters function thread1 help() at
line 23, and then extending from line 12 to line 15 in
the called function. This is a common encapsulation
technique.

1 void thread0(void)
2 {
3 struct rcutest *p;
4
5 p = new rcutest;
6 assert(p);
7 p->a = 42;
8 rcu_assign_pointer(gp, p);
9 }

10
11 void
12 thread1_help(struct rcutest *q)
13 {
14 if (q)
15 assert(q->a == 42);
16 }
17
18 void thread1(void)
19 {
20 struct rcutest *p;
21
22 p = rcu_dereference(gp);
23 thread1_help(p);
24 }

Figure 3: In via Function Parameter

2.3 Out via Function Return

Figure 4 shows a dependency chain exiting a func-
tion. It starts at line 21, is returned to line 20, and
terminates on line 22. This is also a common encap-
sulation technique.

2.4 In and Out, But Different Chains

Figure 5 shows an example where a dependency chain
enters a function (thread1 help() on lines 16-21)
and a dependency chain leaves that same function,
but where they are different chains.

2.5 Chain Fanning Out

Figure 6 shows a dependency chain fanning out, cour-
tesy of the thread1() function’s calls to thread1

help1() and thread1 help2() on lines 30 and 31.
This is a common pattern in the Linux kernel, as
it supports abstraction of data structures, for exam-
ple, allowing common RCU-protected data structures
to be aggregated into a larger RCU-protected data
structure. In this scenario, thread1 help1() might
implement one type of RCU-protected structure and
thread1 help2() might implement another.

WG21/P0462R0 4

1 void thread0(void)
2 {
3 struct rcutest *p;
4
5 p = new rcutest;
6 assert(p);
7 p->a = 42;
8 rcu_assign_pointer(gp, p);
9 }

10
11 struct rcutest *thread1_help(void)
12 {
13 return rcu_dereference(gp);
14 }
15
16 void thread1(void)
17 {
18 struct rcutest *p;
19
20 p = thread1_help();
21 if (p)
22 assert(p->a == 42);
23 }

Figure 4: Out via Function Return

1 void thread0(void)
2 {
3 struct rcutest *p;
4
5 p = new rcutest;
6 assert(p);
7 p->a = 42;
8 rcu_assign_pointer(gp, p);
9

10 p = new rcutest;
11 assert(p);
12 p->a = 43;
13 rcu_assign_pointer(gsgp, p);
14 }
15
16 struct rcutest *thread1_help(struct rcutest *p)
17 {
18 if (p)
19 assert(p->a == 42);
20 return rcu_dereference(gsgp);
21 }
22
23 void thread1(void)
24 {
25 struct rcutest *p;
26
27 p = rcu_dereference(gp);
28 p = thread1_help(p);
29 if (p)
30 assert(p->a == 43);
31 }

Figure 5: In and Out, But Different Chains

1 void thread0(void)
2 {
3 struct rcutest *p;
4
5 p = new rcutest;
6 assert(p);
7 p->a = 42;
8 rcu_assign_pointer(gp, p);
9 }

10
11 void
12 thread1_help1(struct rcutest *q)
13 {
14 if (q)
15 assert(q->a == 42);
16 }
17
18 void
19 thread1_help2(struct rcutest *q)
20 {
21 if (q)
22 assert(q->a != 43);
23 }
24
25 void thread1(void)
26 {
27 struct rcutest *p;
28
29 p = rcu_dereference(gp);
30 thread1_help1(p);
31 thread1_help2(p);
32 }

Figure 6: Chain Fanning Out

WG21/P0462R0 5

1 void thread0(void)
2 {
3 struct rcutest *p;
4 struct rcutest1 *p1;
5
6 p = new rcutest;
7 assert(p);
8 p->a = 42;
9 rcu_assign_pointer(gp, p);

10
11 p1 = new rcutest;
12 assert(p1);
13 p1->a = 41;
14 p1->rt.a = 42;
15 rcu_assign_pointer(g1p, p1);
16 }
17
18 void
19 thread1_help(struct rcutest *q)
20 {
21 if (q)
22 assert(q->a == 42);
23 }
24
25 void thread1(void)
26 {
27 struct rcutest *p;
28
29 p = rcu_dereference(gp);
30 thread1_help(p);
31 }
32
33 void thread2(void)
34 {
35 struct rcutest1 *p1;
36
37 p1 = rcu_dereference(g1p);
38 thread1_help(&p1->rt);
39 }

Figure 7: Chain Fanning In

2.6 Chain Fanning In

Figure 7 demonstrates different dependency chains
fanning into the same function, in this case thread1

help(), from lines 29 and 37. This fanning-in is also
used to support abstraction, for example, allowing
a given implementation of an RCU-protected data
structure to be aggregated into several different data
structures.

2.7 Chain Fanning In and Out

Figure 8 shows dependency chains fanning both in
and out, starting at lines 45 and 53, fanning into
thread1 help(), and fanning out again at the call to
thread1a help() on line 36 and to thread1b help()

1 void thread0(void)
2 {
3 struct rcutest *p;
4 struct rcutest1 *p1;
5
6 p = new rcutest;
7 assert(p);
8 p->a = 42;
9 p->b = 43;

10 rcu_assign_pointer(gp, p);
11
12 p1 = new rcutest;
13 assert(p1);
14 p1->a = 41;
15 p1->rt.a = 42;
16 p1->rt.b = 43;
17 rcu_assign_pointer(g1p, p1);
18 }
19
20 void
21 thread1a_help(struct rcutest *q)
22 {
23 assert(q->a == 42);
24 }
25
26 void
27 thread1b_help(struct rcutest *q)
28 {
29 assert(q->b == 43);
30 }
31
32 void
33 thread1_help(struct rcutest *q)
34 {
35 if (q) {
36 thread1a_help(q);
37 thread1b_help(q);
38 }
39 }
40
41 void thread1(void)
42 {
43 struct rcutest *p;
44
45 p = rcu_dereference(gp);
46 thread1_help(p);
47 }
48
49 void thread2(void)
50 {
51 struct rcutest1 *p1;
52
53 p1 = rcu_dereference(g1p);
54 thread1_help(&p1->rt);
55 }

Figure 8: Chain Fanning In and Out

WG21/P0462R0 6

on line 37. This combination permits composition
of the types of abstraction described in Sections 2.5
and 2.6.

2.8 Conditional Compilation of Chain
Endpoints

Although the C preprocessor does not necessarily
have the best reputation among the various aspects
of either C or C++, it is true that it is always there
when you need it. Figure 9 applies conditional compi-
lation to Figure 8, so that portions of the dependency
chain can come and go, depending on the value of the
C-preprocessor macro FOO.

2.9 Handoff to Locking

Figure 10 shows how RCU protection can hand off to
other synchronization primitives, in this case, lock-
ing. The dependency chain starts at line 16 and
continues through line 18 and 19. However, once
line 19 has completed, the code is under the protec-
tion of p->lock, so line 20 explicitly ends the depen-
dency chain. The lock then protects the increment
on line 21.

It is also possible to hand off protection from
RCU to reference counting, explicit memory barri-
ers, transactional memory, and so on.

Note that the std::kill dependency() on line 20
will typically have no effect on code generation.

2.10 Evaluation Criteria

1. Ease of compilation.

2. Ease of modification of programs.

3. Precise specification of dependency chains.

4. Support for cross-function dependency chains.

5. Support for cross-compilation-unit dependency
chains.

6. Compatibility with C.

7. Formal Verification Compatibility.

1 void thread0(void)
2 {
3 struct rcutest *p;
4 struct rcutest1 *p1;
5
6 p = new rcutest;
7 assert(p);
8 p->a = 42;
9 p->b = 43;

10 rcu_assign_pointer(gp, p);
11
12 p1 = new rcutest;
13 assert(p1);
14 p1->a = 41;
15 p1->rt.a = 42;
16 p1->rt.b = 43;
17 rcu_assign_pointer(g1p, p1);
18 }
19
20 #ifdef FOO
21 void
22 thread1a_help(struct rcutest *q)
23 {
24 assert(q->a == 42);
25 }
26 #endif
27
28 void
29 thread1b_help(struct rcutest *q)
30 {
31 assert(q->b == 43);
32 }
33
34 void
35 thread1_help(struct rcutest *q)
36 {
37 if (q) {
38 #ifdef FOO
39 thread1a_help(q);
40 #endif
41 thread1b_help(q);
42 }
43 }
44
45 void thread1(void)
46 {
47 struct rcutest *p;
48
49 p = rcu_dereference(gp);
50 thread1_help(p);
51 }
52
53 void thread2(void)
54 {
55 struct rcutest1 *p1;
56
57 p1 = rcu_dereference(g1p);
58 thread1_help(&p1->rt);
59 }

Figure 9: Conditional Compilation of Chain End-
points

WG21/P0462R0 7

1 void thread0(void)
2 {
3 struct rcutest *p;
4
5 p = new rcutest;
6 assert(p);
7 p->a = 42;
8 assert(p->a != 43);
9 rcu_assign_pointer(gp, p);

10 }
11
12 void thread1(void)
13 {
14 struct rcutest *p;
15
16 p = rcu_dereference(gp);
17 if (p) {
18 assert(p->a == 42);
19 spin_lock(&p->lock);
20 p = std::kill_dependency(p);
21 p->a++;
22 spin_unlock(&p->lock);
23 }
24 }

Figure 10: Handoff to Locking

3 Marking Proposals

The following sections present alternative marking
proposals. Whatever proposal is chosen, implemen-
tors are encouraged to provide a means (for example,
a command-line argument) to cause the implementa-
tion to act as if markings were placed everywhere they
could reasonably be placed. This approach permits
unmarked programs containing dependency chains to
be handled in a reasonably natural manner.

Note that many of these proposals consist only
of short descriptions. Only proposals having propo-
nents willing to fill them out should be considered for
standardization.

3.1 Mark Translation Unit

Within the language, translation-unit marking could
be accomplished by a pragma or by a language fea-
ture that changed the way pointers are implemented.
A compiler command-line argument could also be
used, but this is of course outside the standard. It
would be desirable for marked translation units to be
able to be linked with unmarked translation units.

This approach could be useful in cases where only
a few of the translation units contain dependency

chains. However, software-engineering considerations
would likely cause many such projects to mark all the
translation units, which would of course result in the
same dependency-chain-tracing complexity as would
unmarked dependency chains. Any full proposal for
this approach should therefore describe how this issue
will be handled.

3.2 Mark Range of Code

Ranges of code could be marked by pragmas, through
use of C preprocessor symbols, or via other ad-hoc
means. However, again, software-engineering con-
siderations would likely cause many such projects
to mark all the translation units, which would of
course result in the same dependency-chain-tracing
complexity as would unmarked dependency chains.
Any full proposal for this approach should therefore
describe how this issue will be handled.

3.3 Mark Functions

Functions containing dependency chains could be
marked with an attribute (for example, some-
thing like [[function carries dependencies]])
or a keyword (for example, something like
FunctionCarriesDependencies).

Proper use of this approach eliminates issues with
dependencies passing through dependency-unaware
code: Simply mark the relevant functions. However,
although there are many software-engineering rea-
sons for preferring small functions, the fact remains
that large functions are not uncommon in production
code. Large marked functions of course result in sim-
ilar dependency-chain-tracing complexity as would
unmarked code, so any full proposal for this approach
should describe how this tracing will be handled.

3.4 Mark Objects

This class of proposals marks the objects that are to
carry dependencies. These objects must be of pointer
type. Note that implementations requiring point-
to-point associations between each memory order

consume load and its corresponding dependent mem-
ory references can generate these associations based

WG21/P0462R0 8

on the operations carried out on a given marked ob-
ject.

3.4.1 Attribute

This approach, suggested by Clark Nelson, general-
izes the [[carries dependency]] attribute specified
in the C++11 standard so that it applies to objects,
including variables, formal parameters, return values,
and class members. This paper further modifies this
proposed attribute so as to also restrict it to pointer-
like objects.

There have been some objections to attributes
on the grounds that attributes are not supposed to
change program semantics, but no consensus as to
whether or not this objection is substantive.

The changes to the examples from Section 2 are
similar to those shown in Section 3.4.3.

3.4.2 Type Qualifier

This approach, put forward by Torvald Riegel in
response to Linus Torvalds’s spirited criticisms of
the current C11 and C++11 wording, introduces a
new value dep preserving type qualifier. Objects
marked with this type qualifier carry dependencies.

Again, the changes to the examples from Section 2
are similar to those shown in Section 3.4.3.

3.4.3 Object Modifier

This approach uses a keyword that does not par-
ticipate in type checking, for example, a Carries

dependency keyword. This might be treated in a
manner similar to a storage class. It need not neces-
sarily interact with the type system.

Figures 11–19 show how object modifiers can be
applied to each of the examples introduced in Sec-
tion 2. These changes are straightforward markings
of local variables, function parameters, and return-
value types. Object modifiers therefore easily sup-
port the use cases in the Linux kernel.1

1 Give or take a strong distaste for any sort of marking
scheme on the part of numerous Linux-kernel community mem-
bers.

1 void thread0()
2 {
3 rcutest *p = new rcutest();
7 p->a = 42;
8 assert(p->a != 43);
9 rcu_assign_pointer(gp, p);

10 }
11
12 void thread1()
13 {
14 rcutest _Carries_dependency *p = rcu_dereference(gp);
15 if (p)
16 p->a = 43;
17 }

Figure 11: Object Modifier: Simple Case

1 void thread0()
2 {
3 rcutest *p = new rcutest();
4 p->a = 42;
5 rcu_assign_pointer(gp, p);
6 }
7
8 void
9 thread1_help(rcutest _Carries_dependency *q)

10 {
11 if (q)
12 assert(q->a == 42);
13 }
14
15 void thread1()
16 {
17 rcutest _Carries_dependency *p = rcu_dereference(gp);
18 thread1_help(p);
19 }

Figure 12: Object Modifier: In via Function Param-
eter

1 void thread0()
2 {
3 rcutest *p = new rcutest();
4 p->a = 42;
5 rcu_assign_pointer(gp, p);
6 }
7
8 rcutest _Carries_dependency *thread1_help()
9 {

10 return rcu_dereference(gp);
11 }
12
13 void thread1()
14 {
15 rcutest _Carries_dependency *p = thread1_help();
16 if (p)
17 assert(p->a == 42);
18 }

Figure 13: Object Modifier: Out via Function Return

WG21/P0462R0 9

1 void thread0()
2 {
3 rcutest *p = new rcutest();
4 p->a = 42;
5 rcu_assign_pointer(gp, p);
6
7 p = new rcutest();
8 p->a = 43;
9 rcu_assign_pointer(gsgp, p);

10 }
11
12 rcutest _Carries_dependency *
13 thread1_help(rcutest _Carries_dependency *p)
14 {
15 if (p)
16 assert(p->a == 42);
17 return rcu_dereference(gsgp);
18 }
19
20 void thread1(void)
21 {
22 rcutest _Carries_dependency *p = rcu_dereference(gp);
23 p = thread1_help(p);
24 if (p)
25 assert(p->a == 43);
26 }

Figure 14: Object Modifier: In and Out, But Differ-
ent Chains

1 void thread0()
2 {
3 rcutest *p = new rcutest();
4 p->a = 42;
5 rcu_assign_pointer(gp, p);
6 }
7
8 void
9 thread1_help1(rcutest _Carries_dependency *q)

10 {
11 if (q)
12 assert(q->a == 42);
13 }
14
15 void
16 thread1_help2(rcutest _Carries_dependency *q)
17 {
18 if (q)
19 assert(q->a != 43);
20 }
21
22 void thread1()
23 {
24 rcutest _Carries_dependency *p = rcu_dereference(gp);
25 thread1_help1(p);
26 thread1_help2(p);
27 }

Figure 15: Object Modifier: Chain Fanning Out

1 void thread0()
2 {
3 rcutest *p = new rcutest();
4 p->a = 42;
5 rcu_assign_pointer(gp, p);
6 rcutest1 *p1 = new rcutest1();
7 p1->a = 41;
8 p1->rt.a = 42;
9 rcu_assign_pointer(g1p, p1);

10 }
11
12 void
13 thread1_help(rcutest _Carries_dependency *q)
14 {
15 if (q)
16 assert(q->a == 42);
17 }
18
19 void thread1()
20 {
21 rcutest _Carries_dependency *p = rcu_dereference(gp);
22 thread1_help(p);
23 }
24
25 void thread2()
26 {
27 rcutest1 _Carries_dependency *p1 = rcu_dereference(g1p);
28 thread1_help(&p1->rt);
29 }

Figure 16: Object Modifier: Chain Fanning In

3.4.4 Template

This approach, suggested off-list by JF Bastien, cre-
ates a depending ptr2 template to which a pointer-
like type is passed. This approach allows imple-
menters considerable freedom, as they can hook into
the -> and * if need be, and also use the C++
delete keyword to prohibit problematic operations.
Implementations that might nevertheless carry out
aggressive optimizations that might break dependen-
cies even for the non-problematic operations might
need to implement this template class in a manner
similar to the atomics template classes.

This approach would need to be augmented with a
non-template solution for C, for example, the object-
modifier approach from Section 3.4.3. Implementa-
tions that support both C and C++ would presum-
ably relate Section 3.4.3’s keyword to the templates
in this section in a manner similar to that used for
atomics.

Figure 20 shows the resulting template declaration,

2 Arbitrarily chosen name with no Google hits.

WG21/P0462R0 10

1 void thread0()
2 {
3 rcutest *p = new rcutest();
4 p->a = 42;
5 p->b = 43;
6 rcu_assign_pointer(gp, p);
7 rcutest1 *p1 = new rcutest1();
8 p1->a = 41;
9 p1->rt.a = 42;

10 p1->rt.b = 43;
11 rcu_assign_pointer(g1p, p1);
12 }
13
14 void
15 thread1a_help(rcutest _Carries_dependency *q)
16 {
17 assert(q->a == 42);
18 }
19
20 void
21 thread1b_help(rcutest _Carries_dependency *q)
22 {
23 assert(q->b == 43);
24 }
25
26 void
27 thread1_help(rcutest _Carries_dependency *q)
28 {
29 if (q) {
30 thread1a_help(q);
31 thread1b_help(q);
32 }
33 }
34
35 void thread1()
36 {
37 rcutest _Carries_dependency *p = rcu_dereference(gp);
38 thread1_help(p);
39 }
40
41 void thread2()
42 {
43 rcutest1 _Carries_dependency *p1 = rcu_dereference(g1p);
44 thread1_help(&p1->rt);
45 }

Figure 17: Object Modifier: Chain Fanning In and
Out

1 void thread0()
2 {
3 struct rcutest *p = new rcutest();
4 p->a = 42;
5 p->b = 43;
6 rcu_assign_pointer(gp, p);
7 struct rcutest1 *p1 = new rcutest1();
8 p1->a = 41;
9 p1->rt.a = 42;

10 p1->rt.b = 43;
11 rcu_assign_pointer(g1p, p1);
12 }
13
14 #ifdef FOO
15 void
16 thread1a_help(rcutest _Carries_dependency *q)
17 {
18 assert(q->a == 42);
19 }
20 #endif
21
22 void
23 thread1b_help(rcutest _Carries_dependency *q)
24 {
25 assert(q->b == 43);
26 }
27
28 void
29 thread1_help(rcutest _Carries_dependency *q)
30 {
31 if (q) {
32 #ifdef FOO
33 thread1a_help(q);
34 #endif
35 thread1b_help(q);
36 }
37 }
38
39 void thread1()
40 {
41 rcutest _Carries_dependency *p = rcu_dereference(gp);
42 thread1_help(p);
43 }
44
45 void thread2()
46 {
47 rcutest1 _Carries_dependency *p1 = rcu_dereference(g1p);
48 thread1_help(&p1->rt);
49 }

Figure 18: Object Modifier: Conditional Compila-
tion of Chain Endpoints

WG21/P0462R0 11

1 void thread0()
2 {
3 rcutest *p = new rcutest();
4 p->a = 42;
5 assert(p->a != 43);
6 rcu_assign_pointer(gp, p);
7 }
8
9 void thread1()

10 {
11 rcutest _Carries_dependency *p = rcu_dereference(gp);
12 if (p) {
13 assert(p->a == 42);
14 spin_lock(&p->lock);
15 p = std::kill_dependency(p);
17 p->a++;
18 spin_unlock(&p->lock);
19 }
20 }

Figure 19: Object Modifier: Handoff to Locking

each member function of which has a straightfor-
ward definition. Note especially that the relational
operators are defined in terms of the pointer cmp

eq dep(), pointer cmp ne dep(), pointer cmp

gt dep(), pointer cmp ge dep(), pointer cmp lt

dep(), and pointer cmp le dep() functions shown
in Figure 21, so that as long as the first argument to
a relational operator is of type class depending

ptr<T>, pointers may be safely compared with-
out risk of breaking dependency chains.3 In addi-
tion, the operators that cannot be safely applied to
dependency-bearing pointers are omitted.4 Finally,
Figure 22 shows how the Linux-kernel-style rcu

dereference() and rcu assign pointer() macros
could be implemented given this templated approach.

Figures 23–31 show how templates can be applied
to each of the examples introduced in Section 2. As
with the object-modifier approach in Section 3.4.3,
these changes are straightforward markings of lo-
cal variables, function parameters, and return-value
types.

Full source code for a prototype implementa-
tion (and for this paper) may be downloaded from

3 That said, in the prototype implementation, these are
not intrinsics, but rather separately compiled functions. In
the absence of link-time optimizations, separate compilation
preserves dependency chains in most implementations.

4 The number of pointer-tagging algorithms should moti-
vate allowing bitwise operations on dependency-bearing point-
ers, but this should be handled separately.

1 template<typename T>
2 class depending_ptr {
3 public:
4 typedef T* pointer;
5 typedef T element_type;
6
7 // Constructors
8 constexpr depending_ptr() noexcept;
9 explicit depending_ptr(T* v) noexcept;

10 depending_ptr(nullptr_t) noexcept;
11 depending_ptr(const depending_ptr &d) noexcept;
12 depending_ptr(const depending_ptr &&d) noexcept;
13
14 // Assignment
15 depending_ptr& operator=(pointer p) noexcept;
16 depending_ptr& operator=(const depending_ptr &d) noexcept;
17 depending_ptr& operator=(const depending_ptr &&d) noexcept;
18 depending_ptr& operator=(nullptr_t) noexcept;
19
20 // Modifiers
21 void swap(depending_ptr& d) noexcept;
22
23 // Unary operators
24 // No operator!
25 // No prefix bitwise complement operator
26 element_type operator*() noexcept;
27 pointer operator->() noexcept;
28 depending_ptr<element_type> operator++();
29 depending_ptr<element_type> operator++(int);
30 depending_ptr<element_type> operator--();
31 depending_ptr<element_type> operator--(int);
32 pointer get() const noexcept;
33 explicit operator bool();
34 element_type operator[](size_t);
35
36 // Binary relational operators
37 bool operator==(depending_ptr v) noexcept;
38 bool operator!=(depending_ptr v) noexcept;
39 bool operator>(depending_ptr v) noexcept;
40 bool operator>=(depending_ptr v) noexcept;
41 bool operator<(depending_ptr v) noexcept;
42 bool operator<=(depending_ptr v) noexcept;
43 bool operator==(pointer v) noexcept;
44 bool operator!=(pointer v) noexcept;
45 bool operator>(pointer v) noexcept;
46 bool operator>=(pointer v) noexcept;
47 bool operator<(pointer v) noexcept;
48 bool operator<=(pointer v) noexcept;
49
50 // Other binary operators
51 depending_ptr<T> operator+(size_t idx);
52 depending_ptr<T> operator+=(size_t idx);
53 depending_ptr<T> operator-(size_t idx);
54 depending_ptr<T> operator-=(size_t idx);
55
56 private:
57 pointer dp_rep;
58 };

Figure 20: Template: Declaration

WG21/P0462R0 12

1 bool pointer_cmp_eq_dep(void *p, void *q) noexcept;
2 bool pointer_cmp_ne_dep(void *p, void *q) noexcept;
3 bool pointer_cmp_gt_dep(void *p, void *q) noexcept;
4 bool pointer_cmp_ge_dep(void *p, void *q) noexcept;
5 bool pointer_cmp_lt_dep(void *p, void *q) noexcept;
6 bool pointer_cmp_le_dep(void *p, void *q) noexcept;

Figure 21: Dependency-Preserving Comparisons

1 template<typename T>
2 depending_ptr<T> rcu_consume(std::atomic<T*> *p)
3 {
4 volatile std::atomic<typename
5 depending_ptr<T>::pointer> *q = p;
6 // Change to memory_order_consume once it is fixed
7 depending_ptr<T> temp(q->load(std::memory_order_relaxed));
8
9 return temp;

10 }
11
12 template<typename T>
13 depending_ptr<T> rcu_consume(T *p)
14 {
15 // Alternatively, could cast p to volatile atomic...
16 depending_ptr<T> temp(*(T *volatile *)&p);
17
18 return temp;
19 }
20
21 template<typename T>
22 T* rcu_store_release(std::atomic<T*> *p, T *v)
23 {
24 p->store(v, std::memory_order_release);
25 return v;
26 }
27
28 template<typename T>
29 T* rcu_store_release(T **p, T *v)
30 {
31 // Alternatively, could cast p to volatile atomic...
32 atomic_thread_fence(std::memory_order_release);
33 *((volatile T **)p) = v;
34 return v;
35 }
36
37 // Linux-kernel compatibility macros, not for atomics
38 #define rcu_dereference(p) rcu_consume(p)
39 #define rcu_assign_pointer(p, v) rcu_store_release(&(p), v)

Figure 22: Dependency-Preserving Release and Con-
sume

1 void *thread0(void *unused)
2 {
3 rcutest *p;
4
5 p = new rcutest();
6 assert(p);
7 p->a = 42;
8 assert(p->a != 43);
9 rcu_store_release(&gp, p);

10 return nullptr;
11 }
12
13 void *thread1(void *unused)
14 {
15 depending_ptr<rcutest> p;
16
17 p = rcu_consume(&gp);
18 if (p)
19 p->a = 43;
20 return nullptr;
21 }

Figure 23: Template: Simple Case

1 void *thread0(void *unused)
2 {
3 rcutest *p;
4
5 p = new rcutest();
6 assert(p);
7 p->a = 42;
8 rcu_store_release(&gp, p);
9 return nullptr;

10 }
11
12 void
13 thread1_help(depending_ptr<rcutest> q)
14 {
15 if (q)
16 assert(q->a == 42);
17 }
18
19 void *thread1(void *unused)
20 {
21 depending_ptr<rcutest> p;
22
23 p = rcu_consume(&gp);
24 thread1_help(p);
25 return nullptr;
26 }

Figure 24: Template: In via Function Parameter

WG21/P0462R0 13

1 void *thread0(void *unused)
2 {
3 rcutest *p;
4
5 p = new rcutest();
6 assert(p);
7 p->a = 42;
8 rcu_store_release(&gp, p);
9 return nullptr;

10 }
11
12 depending_ptr<rcutest> thread1_help()
13 {
14 return rcu_consume(&gp);
15 }
16
17 void *thread1(void *unused)
18 {
19 depending_ptr<rcutest> p;
20
21 p = thread1_help();
22 if (p)
23 p->a = 43;
24 return nullptr;
25 }

Figure 25: Template: Out via Function Return

https://github.com/paulmckrcu/2016markconsume.git.

3.5 Mark Root/Leaf Pairs

These approaches create point-to-point associations
between memory order consume loads and the mem-
ory references that depend on them. Function calls
can be handled by using the arguments of the func-
tion call and the function parameters as intermediate
points in the association. Function returns can be
handled by using the function return declaration and
the function return value.

However, these point-to-point associations are re-
quired to gracefully handle bushy dependency trees,
dependency trees that fan both in and out, and con-
ditional compilation. Any scheme that relies on di-
rectly referencing a specific location in the source
code will fall afoul of these requirements.

One approach is to use a unique identifier for each
dependency tree, and associate each relevant point in
the code with the corresponding identifiers.

Note that the root-leaf information could in theory
be extracted by the compiler based on object mark-
ings (see Section 3.4).

1 void *thread0(void *unused)
2 {
3 rcutest *p;
4
5 p = new rcutest();
6 assert(p);
7 p->a = 42;
8 rcu_store_release(&gp, p);
9

10 p = new rcutest();
11 assert(p);
12 p->a = 43;
13 rcu_store_release(&gsgp, p);
14
15 return nullptr;
16 }
17
18 depending_ptr<rcutest>
19 thread1_help(depending_ptr<rcutest> p)
20 {
21 if (p)
22 assert(p->a == 42);
23 return rcu_consume(&gsgp);
24 }
25
26 void *thread1(void *unused)
27 {
28 depending_ptr<rcutest> p;
29
30 p = rcu_consume(&gp);
31 p = thread1_help(p);
32 if (p)
33 assert(p->a == 43);
34 return nullptr;
35 }

Figure 26: Template: In and Out, But Different
Chains

WG21/P0462R0 14

1 void *thread0(void *unused)
2 {
3 rcutest *p;
4
5 p = new rcutest();
6 p->a = 42;
7 rcu_store_release(&gp, p);
8 return nullptr;
9 }

10
11 void thread1_help1(depending_ptr<rcutest> q)
12 {
13 if (q)
14 assert(q->a == 42);
15 }
16
17 void thread1_help2(depending_ptr<rcutest> q)
18 {
19 if (q)
20 assert(q->a != 43);
21 }
22
23 void *thread1(void *unused)
24 {
25 depending_ptr<rcutest> p;
26
27 p = rcu_consume(&gp);
28 thread1_help1(p);
29 thread1_help2(p);
30 return nullptr;
31 }

Figure 27: Template: Chain Fanning Out

1 void *thread0(void *unused)
2 {
3 rcutest *p;
4 rcutest1 *p1;
5
6 p = new rcutest();
7 p->a = 42;
8 rcu_store_release(&gp, p);
9

10 p1 = new rcutest1();
11 p1->a = 41;
12 p1->rt.a = 42;
13 rcu_store_release(&g1p, p1);
14
15 return nullptr;
16 }
17
18 void thread1_help(depending_ptr<rcutest> q)
19 {
20 if (q)
21 assert(q->a == 42);
22 }
23
24 void *thread1(void *unused)
25 {
26 depending_ptr<rcutest> p;
27
28 p = rcu_consume(&gp);
29 thread1_help(p);
30 return nullptr;
31 }
32
33 void *thread2(void *unused)
34 {
35 depending_ptr<rcutest1> p1;
36
37 p1 = rcu_consume(&g1p);
38 thread1_help(depending_ptr<rcutest>(&p1->rt));
39 return nullptr;
40 }

Figure 28: Template: Chain Fanning In

WG21/P0462R0 15

1 void *thread0(void *unused)
2 {
3 rcutest *p;
4 rcutest1 *p1;
5
6 p = new rcutest();
7 assert(p);
8 p->a = 42;
9 p->b = 43;

10 rcu_store_release(&gp, p);
11
12 p1 = new rcutest1();
13 assert(p1);
14 p1->a = 41;
15 p1->rt.a = 42;
16 p1->rt.b = 43;
17 rcu_store_release(&g1p, p1);
18
19 return nullptr;
20 }
21
22 void thread1a_help(depending_ptr<rcutest> q)
23 {
24 assert(q->a == 42);
25 }
26
27 void thread1b_help(depending_ptr<rcutest> q)
28 {
29 assert(q->b == 43);
30 }
31
32 void thread1_help(depending_ptr<rcutest> q)
33 {
34 if (q) {
35 thread1a_help(q);
36 thread1b_help(q);
37 }
38 }
39
40 void *thread1(void *unused)
41 {
42 depending_ptr<rcutest> p;
43
44 p = rcu_consume(&gp);
45 thread1_help(p);
46 return nullptr;
47 }
48
49 void *thread2(void *unused)
50 {
51 depending_ptr<rcutest1> p1;
52
53 p1 = rcu_consume(&g1p);
54 thread1_help(depending_ptr<rcutest>(&p1->rt));
55 return nullptr;
56 }

Figure 29: Template: Chain Fanning In and Out

1 void *thread0(void *unused)
2 {
3 rcutest *p;
4 rcutest1 *p1;
5
6 p = new rcutest();
7 assert(p);
8 p->a = 42;
9 p->b = 43;

10 rcu_store_release(&gp, p);
11
12 p1 = new rcutest1();
13 assert(p1);
14 p1->a = 41;
15 p1->rt.a = 42;
16 p1->rt.b = 43;
17 rcu_store_release(&g1p, p1);
18
19 return nullptr;
20 }
21
22 #ifdef FOO
23 void thread1a_help(depending_ptr<rcutest> q)
24 {
25 assert(q->a == 42);
26 }
27 #endif
28
29 void thread1b_help(depending_ptr<rcutest> q)
30 {
31 assert(q->b == 43);
32 }
33
34 void thread1_help(depending_ptr<rcutest> q)
35 {
36 if (q) {
37 #ifdef FOO
38 thread1a_help(q);
39 #endif
40 thread1b_help(q);
41 }
42 }
43
44 void *thread1(void *unused)
45 {
46 depending_ptr<rcutest> p;
47
48 p = rcu_consume(&gp);
49 thread1_help(p);
50 return nullptr;
51 }
52
53 void *thread2(void *unused)
54 {
55 depending_ptr<rcutest1> p1;
56
57 p1 = rcu_consume(&g1p);
58 thread1_help(depending_ptr<rcutest>(&p1->rt));
59 return nullptr;
60 }

Figure 30: Template: Conditional Compilation of
Chain Endpoints

WG21/P0462R0 16

1 void *thread0(void *unused)
2 {
3 rcutest *p;
4
5 p = new rcutest();
6 p->a = 42;
7 assert(p->a != 43);
8 rcu_store_release(&gp, p);
9 return nullptr;

10 }
11
12 void *thread1(void *unused)
13 {
14 depending_ptr<rcutest> p;
15
16 p = rcu_consume(&gp);
17 if (p) {
18 assert(p->a == 42);
19 spin_lock(&p->lock);
20 p = std::kill_dependency(p);
21 p->a++;
22 spin_unlock(&p->lock);
23 }
24 return nullptr;
25 }

Figure 31: Template: Handoff to Locking

4 Evaluation

Table 1 provides a rough comparison between the
various marking methods, and also includes the un-
marked option for comparison purposes.

For ease of compilation, the cells corresponding to
methods that explicitly mark dependency chains or
that don’t require marking at all are left blank. Those
that require tracing dependency chains throughout
the full translation unit are marked “T” and those
that limit the code in which tracing is required are
marked “t”.

For ease of modification, the cells corresponding to
methods that either require no marking or that mark
large-scale entities are left blank. Those that require
marking the definitions of objects that carry depen-
dencies are marked “o”, and those require marking
of individual accesses are marked “A”.

Cells corresonding to those methods that precisely
mark dependency chains are left blank, otherwise,
they are marked “N”.

For cross-function dependency chains, those meth-
ods that either support cross-function marking or
that do not require such marking are left blank.
Those that require manual consistency checks are

Mark: E
a
se

o
f

C
o
m

p
il
a
ti

o
n

E
a
se

o
f

M
o
d
ifi

ca
ti

o
n

P
re

ci
se

D
ep

en
d
en

cy
C

h
a
in

s

C
ro

ss
-F

u
n
ct

io
n

D
ep

en
d
en

cy
C

h
a
in

s

C
ro

ss
-C

o
m

p
il
a
ti

o
n
-U

n
it

D
ep

en
d
en

cy
C

h
a
in

s

C
C

o
m

p
a
ti

b
il
it

y

F
o
rm

a
l

V
er

ifi
ca

ti
o
n

Translation Unit T N m N

Range of Code t N m m N

Functions t N m m N

Objects

Attribute o t t a

Type Qualifier o N

Modifier o t t

Template o N

Template+Modifier o

Root/Leaf A ? ? ? ?

Nothing N N

Table 1: Dependency-Chain Marking Evaluation

WG21/P0462R0 17

marked “m”, those that are amenable to consistency-
check tooling are marked “t”, and those that are not
fleshed out sufficiently to tell are marked “?”. These
same markings are used for cross-compilation-unit
dependency chains.

Cells corresponding to those methods supporting C
compatibility are left blank. Those that would sup-
port C compatibility if C were to provide attributes
are marked “a”. Those that do not support C com-
patibility (at least not unless combined with some
other method) are marked “N”, and those that are
not fleshed out sufficiently to tell are marked “?”.

Cells corresponding to methods believed to support
formal verification are left blank, those that are be-
lieved not to support formal verification are marked
“N”, and those that are not fleshed out sufficiently
to tell are marked “?”. Note that the object type
qualifier could in theory support formal verification,
but the specific proposal rules this out by requiring
that the compiler treat memory order consume loads
as potentially returning any value from the type.

Following the lead of C11 and C++11 atomics, the
“Template+Modifier” row covers the combination of
marking objects with template classes (for C++) and
with an typed object modifier (for C), a combination
that appears to be quite attractive. This should be
further combined with a totally unmarked option for
use by standalone projects such as the Linux kernel.

The best possible method would have a row of all
blank cells.

5 Summary

This paper reviewed the 2016 discussions of memory
order consume that took place at the Jacksonville
meeting, presented several representative use cases,
listed evaluation criteria, presented a number of
marking proposals, and provided a comparative eval-
uation. The paper presents two of the marking pro-
posals in depth, including code for the representative
use cases.

We recommend a combination of typed object
modifier (for C compatibility) and a template class
(for C++), which is similar to the approach used
by atomics. For standalone applications such as the

Linux kernel, there should additionally be an un-
marked option, where the implementation assumes
that everything that could legally marked is so
marked.

References

[1] Smith, R. Working draft, standard
for programming language C++. http:

//www.open-std.org/jtc1/sc22/wg21/docs/

papers/2015/n4527.pdf, May 2015.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf

	1 Introduction
	2 Representative Use Cases
	2.1 Simple Case
	2.2 In via Function Parameter
	2.3 Out via Function Return
	2.4 In and Out, But Different Chains
	2.5 Chain Fanning Out
	2.6 Chain Fanning In
	2.7 Chain Fanning In and Out
	2.8 Conditional Compilation of Chain Endpoints
	2.9 Handoff to Locking
	2.10 Evaluation Criteria

	3 Marking Proposals
	3.1 Mark Translation Unit
	3.2 Mark Range of Code
	3.3 Mark Functions
	3.4 Mark Objects
	3.4.1 Attribute
	3.4.2 Type Qualifier
	3.4.3 Object Modifier
	3.4.4 Template

	3.5 Mark Root/Leaf Pairs

	4 Evaluation
	5 Summary

