© ISO 2014 — All rights reserved

ISO/IEC JTC 1/SC 22/WG 21 N4302

Date: 2014-11-21
ISO/IEC JTC1 SC22
Secretariat: ANSI

Technical Specification for C++ Extensions for
Transactional Memory

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice
and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware
and to provide supporting documentation.

Document type: Draft Technical Specification
Document subtype:

Document stage: (40) Enquiry

Document language: E

© ISO/IEC N4302

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working
drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior
permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any
other purpose without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO’s
member body in the country of the requester:

ISO copyright officer

Case postale 56, CH-1211 Geneva 20
Tel. +4122 749 01 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Reproduction may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

© ISO/IEC N4302

Contents
B 2 1 1) 1 6
1.1 SCOPE . . 6
1.2 Acknowledgements L 6
1.3 Normative references e e e e 6
1.4 Implementation compliance 6
1.10 Multi-threaded executions and dataraces 6
2 Lexical conventions o v i i i i e 8
2011 Identifiers L e 8
2,12 Keywords e 8
4 Standard CONVErSIONS . . . o v v v i i i i i e 9
43 Function-to-pointer CONVETSION v v v v v v v e e e e e e e e 9
4.14 Transaction-safety CONVEISION i ittt e e e e e e e 9
T 5.4 1] (T 1) 1 10
5.1 Primary exXpressions e e e e e 10
5.1.2 Lambda eXpressions i e e e e e e e e e e e e 10
5.2 Postfix eXpressions 10
5.2.2 Functioncall 10
5.2.9 Staticcast L e e 11
5.10 Equality Operators e e e e e e e e e 11
5.16 Conditional operator e e e 11
L] 17 11 1<) 1 1 12
6.6 Jump statementso L L L e e e e 12
6.9 Synchronized statement e e e e e e 12
6.10 Atomic StatemMent e e e e e e e e e e 13
TooDeclarations o v i i e 14
7.4 The asm declaration L 14
7.6 AMrIDULES L L 14
7.6.6 Attribute for optimization in synchronized blocks oL o oL 14
8 Declarators i e 15
8.3 Meaning of declarators L 15
8.3.5 Functions 15
8.4 Function definitions L 16
8.4.1 Ingeneral L 16
8.4.4 Transaction-safe function e 16
10 Derived classes . . . o . v v v i i i e 18
10.3 Virtnal functions e 18
13 Overloading o o i i e e e e e e e e e e e e e e e e 19
13.1 Overloadable declarations e 19
13.3 Overload resolution L 19
13.3.3 Bestviable function 19
13.3.3.1 Implicit cONVersion SEQUENCES« v v v v v v e e e e e e e e e e e 19
13.3.3.1.1 Standard cOnversion SEqUENCES« ¢ v v v vt e e e 19
13.4 Address of overloaded function e 19
B) 111) 20
14.1 Template parameters e e e e e 20
14.7 Template instantiation and specialization L 20
14.7.3 Explicit specialization e e 20
14.8 Function template specializations e e e 20
14.8.2 Template argument deduction 20
14.8.2.1 Deducing template arguments from a functioncall L. 20
15 Exceptionhandling i i i e e e e e e e e e e e e e e e e e 21
15.1 Throwing an eXCeption v v v v it e e e e e e e 21
15.2 Constructors and destructorso e 21
15.3 Handling an exXCeption o it e e e 21

© ISO/IEC N4302

17

18

19

20

21

23

15.4 Exception specifications e 22
Library introduction 0 0 0 i it e 23
17.5 Method of description (Informative) e 23
17.5.1 Structure of eachclause L 23
17.5.1.4 Detailed specifications L e 23

17.6 Library-wide requirements o v i i e e e e e e e e e e e e e 23
17.6.3 Requirements on types and eXpressions a e e e e e e e e e e e e 23
17.6.3.5 Allocator reqUIirements e e e e e e e e e e e e e 23

17.6.5 Conforming implementations 23
17.6.5.16 Transactionsafety e 23

Language support library o 0 0 i i e 24
18.5 Startand termination L e e 24
18.6 Dynamic memory management o.ovoeu e e e e e e e e e e e e e e e e e 24
18.6.1 Storage allocation and deallocation 24

18.6.2 Storage allocation €ITOrS v v v v i e e e e 24
18.6.2.1 Classbad alloc 24

18.6.2.2 Classbad array new length 24

18.7 Typeidentification e e 24
18.7.2 Classbad cast e 24

18.7.3 Classbad typeid e 25

18.8 Exceptionhandling L e 25
18.8.1 Class eXCEPLON v v v v i e i e e e e e e e e e e e 25

18.8.2 Classbad eXCeption v v v v it e 25

18.10 Other runtime SUPPOTIT o v i i e e e e e e e e e e e e e e e 25
Diagnostics library o 0 0 i i e 26
19.2 Exception Classes e e 26
19.2.10 Class template tX_eXCeption v v v v v v v e e e 26
General utilities library o o L e e e e e e e e e e e e e e e e e e 27
20.7 MEMOTY . . . o ot e e e e e e 27
20.7.3 PoIntertraitso 27
20.7.3.2 Pointer traits member functions L 27

20.7.5 ALlIgN ... 27

20.7.8 Allocator traitso 27
20.7.8.2 Allocator traits static member functions 27

20.7.9 Thedefaultallocator 27
20.7.9.1 allocator members e 27

20.7.11 Temporary buffers 28
20.7.12 Specialized algorithms 28
20.7.12.1 addressof 28

20.7.13 CHbrary o e e e e 28

20.8 SMart POINLETS o o e e e e e e e e e e e 28
20.8.1 Classtemplate unique Ptr o o v v e e 28
Strings Hbrary o i e 29
21,1 Generalo 29
21.4 Classtemplate basic String o . e 29
21.4.3 Dbasic_string iterator SUPPOTt v v v v v e e e e 29

21.4.4 Dbasic SriNG CAPACILY v v v v e e e e e e e e 29

21.4.5 Dbasic_string element aCCeSS i e e 29
Containers Ibrary o 0 0 i i e 30
23.2 Container reqUIreMENtS v v v v e e e e e e e e e e e e e e e 30
23.2.1 General container reqUITEMENES v v v v v e e e e e e 30

23.2.3 Sequence CONtAINEIS v v v v v v v v e e e e e e e e e e 30

23.2.5 Unordered associative CONtAINerS o v v vttt e e e 30

233 Sequence CONAINETS v v v v v v e e e e e e e e e e e 31
23.3.2 Classtemplate array o o oo e e e e e e e 31
23.3.2.1 Class template array OVEIVIEW o o v it e e e e e e e e e e e e e e e 31

2333 Classtemplate deque o oo 31
23.3.3.1 Classtemplate deque OVEIVIEW o o i e e e e e e e e e 31

© ISO/IEC N4302

24

25

26

23.3.4 Classtemplate forward list. 31
23.3.4.1 Class template forward listoverview 31

23.3.4.6 forward listoperations L e e e e e 31

23.3.5 Classtemplate list o e 31
23.3.5.1 Classtemplate listoverview e 31

23.3.5.5 LStOperations e e e e e e e e e e 31

23.3.6 Classtemplate VECtOr v v v v it 31
23.3.6.1 Class template VECtOr OVEIVIEW o i it i i e e e e e e e e e e 31

23.3.6.3 vector capacity e e e e e e e 32

233.6.4 vectordata 32

23.3.7 Classvector<bool™ L 32

234 ASSOCIAtive COMLAINETS o v v v ittt e e e e e e e 32
23.44 Classtemplate map o v oo e 32
23.4.4.1 Classtemplate map OVEIVIEW o vttt e e e e e e e e e e e e e 32

23.4.5 Classtemplate multimap 32
23.4.5.1 Class template multimap overviewo 32

23.4.6 Classtemplate Set. o v i 32
23.4.6.1 Classtemplate SSt OVEIVIEW o o it i i e e e e e e e e e e e e 32

23.47 Classtemplate multiset 32
23.47.1 Class template multiset Overview e 32

23.5 Unordered associative CONAINEIS v v v it ittt e e e e e e e 33
23.5.4 Classtemplate unordered map 33
23.5.4.1 Class template unordered map OVEIrVIEW o v v i i e e e e e e 33

23.5.5 Class template unordered multimap overview 33
23.5.5.1 Class template unordered multimap overview 33

23.5.6 Class template unordered Set 33
23.5.6.1 Class template unordered SEt OVEIVIEWo i i e e e e 33

23.5.7 Class template unordered multiset 33
23.5.7.1 Class template unordered multiset overview 33

23.6 Container adaptors e e e e e e e e e e e e 33
23.6.1 Ingeneral e 33
Iterators library . . . o o o 0 i e 34
244 Tterator Primitives o i e e e e e e e e e e e e e e 34
24.4.4 Tterator OPErations v v v v v i e e e e e e e e e e e 34

24.5 Tterator adaptors e e e e e e e e 34
24.5.1 Reverse iterators o it e e e 34

24.5.2 Insert iteratorso e 34

24.53 MOVE IETatOrS« o v v vt e e e e e e 34

247 TANZE ACCESS « .« v v v e e e e e e e e e e e e e e e e e 34
Algorithms Hbrary o i i e 35
251 Generalo 35
Numerics Hbrary . . . o o 0 o it e 36
26.7 Generalized NUMETIC OPETAtIONS v v v v v v v e e e e e e e e e e 36
26.7.1 Header <nUMETiC™> SYNOPSIS . . o v v v v v v v e e e e e e e e e e 36

26.8 CLbrary e e 36

© ISO/IEC N4302

1 General [intro]

1.1 Scope [general.scope]

This Technical Specification describes extensions to the C++ Programming Language (1.3) that enable the specification of Transactional
Memory. These extensions include new syntactic forms and modifications to existing language and library.

The International Standard, ISO/IEC 14882, provides important context and specification for this Technical Specification. This
document is written as a set of changes against that specification. Instructions to modify or add paragraphs are written as explicit
instructions. Modifications made directly to existing text from the International Standard use green to represent added text and

strikethreugh to represent deleted text.

This Technical Specification is non-normative. Some of the functionality described by this Technical Specification may be considered for
standardization in a future version of C++, but it is not currently part of any C++ standard. Some of the functionality in this Technical
Specification may never be standardized, and other functionality may be standardized in a substantially changed form.

The goal of this Technical Specification is to build widespread existing practice for Transactional Memory. It gives advice on extensions
to those vendors who wish to provide them.

1.2 Acknowledgements [general.ack]

This work is the result of collaboration of researchers in industry and academia, including the Transactional Memory Specification
Drafting Group and the follow-on WG21 study group SG5. We wish to thank people who made valuable contributions within and outside
these groups, including Hans Boehm, Justin Gottschlich, Victor Luchangco, Jens Maurer, Paul McKenney, Maged Michael, Mark Moir,
Torvald Riegel, Michael Scott, Tatiana Shpeisman, Michael Spear, Michael Wong, and many others not named here who contributed to
the discussion.

1.3 Normative references [general.references]

The following referenced document is indispensable for the application of this document. For dated references, only the edition cited
applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

— ISO/IEC 14882:2014, Programming Languages - C++

ISO/IEC 14882:2014 is hereinafter called the C++ Standard. Beginning with section 1.4 below, all clause and section numbers, titles,
and symbolic references in [brackets] refer to the corresponding elements of the C++ Standard. Sections 1.1 through 1.3 of this Technical
Specification are introductory material and are unrelated to the similarly-numbered sections of the C++ Standard.

1.4 Implementation compliance [intro.compliance]

Conformance requirements for this specification are the same as those defined in 1.4 [intro.compliance]. [Note: Conformance is defined
in terms of the behavior of programs. — end note |

1.10 Multi-threaded executions and data races [intro.multithread]

Add a paragraph 9 to section 1.10 [intro.multithread] after paragraph 8:

The start and the end of each synchronized block or atomic block is a full-expression (1.9 [intro.execution]). A
synchronized block (6.9 [stmt.sync]) or atomic block (6.10 [stmt.tx]) that is not dynamically nested within another
synchronized block or atomic block is called an outer block. [Note: Due to syntactic constraints, blocks cannot
overlap unless one is nested within the other. | There is a global total order of execution for all outer blocks. If, in
that total order, T1 is ordered before T2, then the end of T1 synchronizes with the start of T2.

§ 1.10 6

© ISO/IEC N4302

2 Change in 1.10 [intro.multithread] paragraph 10:

Synchronized and atomic blocks as well as certain Cestain library calls synchronize with other synchronized blocks,
atomic blocks, and library calls performed by another thread.

3 Change in 1.10 [intro.multithread] paragraph 21:

The execution of a program contains a data race if it contains two conflicting actions in different threads, at least one of
which is not atomic, and neither happens before the other. Any such data race results in undefined behavior. [Note: It can be
shown that programs that correctly use mutexes, synchronized and atomic blocks, and memory order seq cst operations
to prevent all data races and use no other synchronization operations behave as if the operations executed by their constituent
threads were simply interleaved, with each value computation of an object being taken from the last side effect on that object
in that interleaving. This is normally referred to as "sequential consistency". However, this applies only to data-race-free
programs, and data-race-free programs cannot observe most program transformations that do not change single-threaded
program semantics. In fact, most single-threaded program transformations continue to be allowed, since any program that
behaves differently as a result must perform an undefined operation. -- end note]

4 Add a new paragraph 22 after 1.10 [intro.multithread] paragraph 21:

[Note: Due to the constraints on transaction safety (8.4.4 [dcl.fct.def.tx]), the following holds for a data-race-free
program: If the start of an atomic block T is sequenced before an evaluation A, A is sequenced before the end of
T, and A inter-thread happens before some evaluation B, then the end of T inter-thread happens before B. If an
evaluation C inter-thread happens before that evaluation A, then C inter-thread happens before the start of T. These
properties in turn imply that in any simple interleaved (sequentially consistent) execution, the operations of each
atomic block appear to be contiguous in the interleaving. -- end note |

§ 1.10 7

© ISO/IEC

2 Lexical conventions

2.11 Identifiers

I In section 2.11 [lex.name] paragraph 2, add transaction_safe and transaction_safe noinherit to the table.

2.12 Keywords

N4302

[lex]

[lex.name]

[lex.key]

I In section 2.12 [lex.key] paragraph 1, add the keywords synchronized, atomic_noexcept, atomic_cancel, and atomic_commit to the

table.

§2.12

© ISO/IEC N4302

4 Standard conversions [conv]

4.3 Function-to-pointer conversion [conv.func]

' Change in section 4.3 [conv.func] paragraph 1:

An lvalue of function type T can be converted to a prvalue of type "pointer to =" T'"'. An lvalue of type "transaction-safe
function' can be converted to a prvalue of type "pointer to function'. The result is a pointer to the function. [Footnote:

2]
4.14 Transaction-safety conversion [conv.tx]

1 Add a new section 4.14 [conv.tx] paragraph 1:

4.14 [conv.tx] Transaction-safety conversion

A prvalue of type "pointer to transaction_safe function" can be converted to a prvalue of type "pointer to
function". The result is a pointer to the function. A prvalue of type "pointer to member of type transaction_safe
function" can be converted to a prvalue of type "pointer to member of type function'. The result points to the
member function.

§4.14 9

© ISO/IEC N4302

5 Expressions [expr]

1" Change in 5 [expr] paragraph 13:

[Note: ...] The composite pointer type of two operands pl and p2 having types T1 and T2, respectively, where at least one
is a pointer or pointer to member type or std: :nullptr t, is:

— if T1 or T2 is "pointer to cvl void" and the other type is "pointer to cv2 T", "pointer to cv12 void", where cv12
is the union of cv1 and cv2 ;

— if T1 is "pointer to transaction_safe function" and T2 is "pointer to function", where the function types
are otherwise the same, T2, and vice versa;

5.1 Primary expressions [expr.prim]
5.1.2 Lambda expressions [expr.prim.lambda]

I Change in 5.1.2 [expr.prim.lambda] paragraph 1:

lambda-declarator:
(parameter-declaration-clause) mutablecpt transaction_safecgpt
exception-specificationept attribute-specifier-seqopt trailing-return-typeopt

2 Change in 5.1.2 [expr.prim.lambda] paragraph 5:
This function call operator or operator template is declared const (9.3.1) if and only if the lambda-expression's parameter-
declaration-clause is not followed by mutable. It is neither virtual nor declared volatile. It is declared transaction_safe if
and only if the lambda-expression's parameter-declaration-clause is followed by transaction_safe or, in a non-generic
lambda-expression, it has a transaction-safe function definition (8.4.4 [dcl.fct.def.tx]). Any exception-specification
specified on a lambda-expression applies to the corresponding function call operator or operator template. ...

3 Change in 5.1.2 [expr.prim.lambda] paragraph 6:
The closure type for a non-generic lambda-expression with no lambda-capture has a public non-virtual non-explicit const
transaction_safe conversion function to pointer to function with C++ language linkage (7.5 [dcl.link]) having the same

parameter and return types as the closure type's function call operator. That pointer is a pointer to transaction-safe
function if the function call operator is transaction-safe.

5.2 Postfix expressions [expr.post]
5.2.2 Function call [expr.call]

1 Add at the end of 5.2.2 [expr.call] paragraph 1:

... [Note: ...] A call to a virtual function that is evaluated within a synchronized (6.9 [stmt.sync]) or atomic block
(6.10 [stmt.tx]) results in undefined behavior if the virtual function is declared transaction_safe noinherit and the
final overrider is not declared transaction_safe.

2 Add paragraph 10 after 5.2.2 [expr.call] paragraph 9:

Recursive calls are permitted, except to the function named main (3.6.1)

Calling a function that is not transaction-safe (8.4.4 [dcl.fct.def.tx]) through a pointer to or lvalue of type
"transaction-safe function' has undefined behavior.

§5.22 10

© ISO/IEC N4302

5.2.9 Static cast [expr.static.cast]

1" Change in 5.2.9 [expr.static.cast] paragraph 7:

The inverse of any standard conversion sequence (Clause 4 [conv]) not containing an lvalue-to-rvalue (4.1 [conv.lval]),
array-to-pointer (4.2 [conv.array]), function-to-pointer (4.3), null pointer (4.10), null member pointer (4.11), e boolean
(4.12), or transaction-safety (4.14 [conv.tx]) conversion, can be performed explicitly using static cast. ...

5.10 Equality operators [expr.eq]

I Change in 5.10 [expr.eq] paragraph 2:

If at least one of the operands is a pointer, pointer conversions (4.10 [conv.ptr]), transaction-safety conversions (4.14
[conv.tx]), and qualification conversions (4.4 [conv.qual]) are performed on both operands to bring them to their composite
pointer type (clause 5 [expr]). Comparing pointers is defined as follows: Before transaction-safety conversions, if one
pointer is of type ""pointer to function', the other is of type "pointer to transaction_safe function', and both point
to the same function, it is unspecified whether the pointers compare equal. Otherwise, Fwe two pointers compare equal
if they are both null, both point to the same function, or both represent the same address (3.9.2), otherwise they compare
unequal.

5.16 Conditional operator [expr.cond]

I Change in 5.16 [expr.cond] paragraph 6:
— One or both of the second and third operands have pointer type; pointer conversions (4.10 [conv.ptr]),

transaction-safety conversions (4.14 [conv.tx]), and qualification conversions (4.4 [conv.qual]) are performed
to bring them to their composite pointer type (5 [expr]). ...

§5.16 11

© ISO/IEC N4302

6 Statements [stmt.stmt]

I In 6 [stmt.stmt] paragraph 1, add two productions to the grammar:

statement:
labeled-statement
attribute-specifier-seqept expression-statement
attribute-specifier-seqeopt compound-statement
attribute-specifier-seqept Selection-statement
attribute-specifier-seqopt lteration-statement
attribute-specifier-seqopt jump-statement
declaration-statement
attribute-specifier-seqopt try-block
synchronized-statement
atomic-statement

6.6 Jump statements [stmt.jump]

I Add a new paragraph 3 at the end of 6.6 [stmt.jump]:

Transfer out of an atomic block other than via an exception executes the end of the atomic block. [Note: Colloquially,
this is known as committing the transaction. For exceptions, see 15.2 [except.ctor]. -- end note | Transfer out of a
synchronized block (including via an exception) executes the end of the synchronized block.

6.9 Synchronized statement [stmt.sync]

1 Add a new section 6.9 [stmt.sync] paragraph 1:

6.9 [stmt.sync] Synchronized statement

synchronized-statement:
synchronized compound-statement

A synchronized statement is also called a synchronized block.

The start of the synchronized block is immediately before the opening { of the compound-statement. The end of the
synchronized block is immediately after the closing } of the compound-statement.

A goto or switch statement shall not be used to transfer control into a synchronized block.
[Example:

int £()
{
static int i = 0;
synchronized {
printf ("before %d\n", 1i);
++1i;
printf ("after %d\n", 1i);
return i;

}

Each invocation of £ (even when called from several threads simultaneously) retrieves a unique value (ignoring
overflow). The output is guaranteed to comprise consistent before/after pairs. -- end example |

§6.9 12

© ISO/IEC N4302

6.10 Atomic statement [stmt.tx]

1 Add a new section 6.10 [stmt.tx] paragraph 1:

6.10 [stmt.tx] Atomic statement

atomic-statement:
atomic_noexcept compound-statement
atomic_cancel compound-statement
atomic_commit compound-statement

An atomic statement is also called an afomic block. The program is ill-formed if the compound-statement is a
transaction-unsafe statement (8.4.4 [dcl.fct.def.tx]).

The start of the atomic block is immediately before the opening { of the compound-statement. The end of the atomic
block is immediately after the closing } of the compound-statement. | Note: Thus, variables with automatic storage
duration declared in the compound-statement are destroyed prior to reaching the end of the atomic block; see 6.6
[stmt.jump]. -- end note |

A goto or switch statement shall not be used to transfer control into an atomic block.
[Example:

int £()
{
static int i = 0;
atomic_noexcept {
++i;
return i;

}

Each invocation of £ (even when called from several threads simultaneously) retrieves a unique value (ignoring
overflow). -- end example |

§6.10 13

© ISO/IEC N4302

7 Declarations [dcl.dcl]

7.4 The asm declaration [dcl.asm]

I Change in 7.4 [dcl.asm] paragraph 1:

... The asm declaration is conditionally-supported; its meaning is implementation-defined. [Note: Typically it is used to
pass information through the implementation to an assembler. -- end note | It is implementation-defined which asm
declarations are transaction-safe (8.4.4 [dcl.fct.def.tx]), if any.

7.6 Attributes [dcl.attr]
7.6.6 Attribute for optimization in synchronized blocks [dcl.attr.sync]

1 Add a new section 7.6.6 [dcl.attr.sync] paragraph 1:

7.6.6 [dcl.attr.sync] Attribute for optimization in synchronized blocks

The attribute-token optimize for synchronized specifies that a function definition should be optimized for
invocation from a synchronized-statement (6.9 [stmt.sync]). It shall appear at most once in each attribute-list and no
attribute-argument-clause shall be present. The attribute may be applied to the declarator-id in a function declaration.
The first declaration of a function shall specify the optimize for synchronized attribute if any declaration of
that function specifies the optimize for synchronized attribute. If a function is declared with the
optimize for_ synchronized attribute in one translation unit and the same function is declared without the
optimize for_ synchronized attribute in another translation unit, the program is ill-formed; no diagnostic required.

[Example:

// translation unit 1
[[optimize for_ synchronized]] int £ (int);

void g(int x) {
synchronized ({
int ret = f(x*x);
}
}

// translation unit 2
#include <iostream>

extern int verbose;

[[optimize for synchronized]] int f(int x)
{
if (x >= 0)
return x;
if (verbose > 1)
std: :cerr << "failure: negative x" << std::endl;
return -1;

}

If the attribute were not present for £, which is not declared transaction_safe, a program might have to drop out of
speculative execution in g's synchronized block every time when calling £, although that is only actually required for
displaying the error message in the rare verbose error case. -- end example |

§7.6.6 14

© ISO/IEC N4302

8 Declarators [dcl.decl]

I Change in clause 8 paragraph 4:

parameters-and-qualifiers:
(parameter-declaration-clause) cv-qualifier-seqopt
ref-qualifieropt tx-qualifierspt exception-specificationepr attribute-specifier-sedgopt

tx-qualifier:
transaction_safe
transaction_safe noinherit

8.3 Meaning of declarators [del.meaning]
8.3.5 Functions [del.fet]

I Change in 8.3.5 [dcl.fct] paragraph 1:

In a declaration T D where D has the form

D1 (parameter-declaration-clause) cv-qualifier-seqgept
ref-qualifiercpr tx-qualifiergpt exception-specificationepr attribute-specifier-seqopt

and the type of the contained declarator-id in the declaration T D1 is "derived-declarator-type-list T", the type of the
declarator-id in D is "derived-declarator-type-list transaction safegpt function of (parameter-declaration-clause) cv-
qualifier-seqopt ref-qualifieropt returning T", where the optional transaction_safe is present if a tx-qualifier is present.
The optional attribute-specifier-seq appertains to the function type.

2 Change in 8.3.5 [dcl.fct] paragraph 2:

In a declaration T D where D has the form
D1 (parameter-declaration-clause) cv-qualifier-seqopt

ref-qualifieropt tx-qualifiergpt exception-specificationept attribute-specifier-segoept tr

and the type of the contained declarator-id in the declaration T D1 is "derived-declarator-type-list T", T shall be the
single type-specifier auto. The type of the declarator-id in D is "derived-declarator-type-list transaction_safeopt function
of (parameter-declaration-clause) cv-qualifier-seqop: ref-qualifierqp; returning trailing-return-type", where the optional
transaction_safe is present if a tx-qualifier is present. The optional attribute-specifier-seq appertains to the function
type.

3 Change in 8.3.5 [dcl.fct] paragraph 5:

... After determining the type of each parameter, any parameter of type "array of T" or "transaction safeopt function
returning T" is adjusted to be "pointer to T" or "pointer to transaction_ safegpt function returning T," respectively. ...

4 Change in 8.3.5 [dcl.fct] paragraph 6:
... The return type, the parameter-type-list, the ref-qualifier, and the cv-qualifier-seq, and the transaction_safe qualifier,
but not the default arguments (8.3.6 [dcl.fct.default]) or the exception specification (15.4 [except.spec]), are part of the
function type. ...

5 Add paragraph 16 at the end of section 8.3.5 [dcl.fct]:
The transaction_safe_noinherit qualifier may only appear in a function declarator that declares a virtual function

in a class definition. A virtual function declared with the transaction_safe_noinherit qualifier is considered to
be declared transaction_safe. [Note: A virtual function so declared can be overridden by a function that is

§8.3.5 15

© ISO/IEC

N4302

not transaction-safe (see 10.3 class virtual), but calling such an overrider from a synchronized or atomic block
causes undefined behavior (see 5.2.2 expr.call). -- end note | All declarations of a function shall be declared
transaction_safe if any declaration of that function is declared transaction_safe, except that the declaration of an
explicit specialization (14.7.3 [temp.expl.spec]) may differ from the declaration that would be instantiated from the
template; no diagnostic is required if conflicting declarations appear in different translation units.

8.4 Function definitions

8.4.1 In general

[dcl.fct.def]

[del.fet.def.general]

' Change in section 8.4.1 [dcl.fct.def.general] paragraph 2:

The declarator in a function-definition shall have the form

8.4.4 Transaction-safe function

D1 4 parameter-declaration-clause—ev-gualificr—segopt

parameters-and-qualifiers trailing-return-typeopt

1 Add a new section after 8.4.4 [dcl.fct.def.tx] paragraph 1:

8.4.4 [dcl.fct.def.tx] Transaction-safe function definitions

An expression is transaction-unsafe if it contains any of the following as a potentially-evaluated subexpression (3.2
[basic.def.odr]):

an lvalue-to-rvalue conversion (4.1 [conv.lval]) applied to a volatile glvalue [Note: referring to a volatile
object through a non-volatile glvalue has undefined behavior; see 7.1.6.1 [dcl.type.cv] -- end note |,

an expression that modifies an object through a volatile glvalue,

the creation of a temporary object of volatile-qualified type or with a subobject of volatile-qualified type,
a function call (5.2.2 expr.call) whose postfix-expression is an id-expression that names a non-virtual
function that is not transaction-safe,

an implicit call of a non-virtual function that is not transaction-safe, or

any other call of a function, where the function type is not "transaction_safe function".

A statement is a transaction-unsafe statement if it lexically directly contains one of the following (including
evaluations of default argument expressions in function calls and evaluations of brace-or-equal-initializers for non-
static data members in aggregate initialization (8.5.1 dcl.init.aggr), but ignoring the declaration of default argument
expressions, local classes, and the compound-statement of a lambda-expression):

a full-expression that is transaction-unsafe,

an asm-definition (7.4 [dcl.asm]) that is not transaction-safe,

a declaration of a variable of volatile-qualified type or with a subobject of volatile-qualified type, or
a statement that is transaction-unsafe (recursively).

A function has a transaction-safe definition if none of the following applies:

any parameter has volatile-qualified type or has a subobject of volatile-qualified type,

its compound-statement (including the one in the function-try-block, if any) is a transaction-unsafe
statement,

for a constructor or destructor, the corresponding class has a volatile non-static data member, or

for a constructor, a full-expression in a mem-initializer or an assignment-expression in a brace-or-equal-
initializer that is not ignored (12.6.2 [class.base.init]) is transaction-unsafe.

[Example:

extern volatile int * p = 0;
struct S {
virtual ~S();

| ¥

§8.4.4

[del.fet.def.tx]

16

© ISO/IEC N4302

int f() transaction_safe ({
int x = 0; // ok: not volatile

P = &x; // ok: the pointer is not volatile
int i = *p; // error: read through volatile glvalue
S s; // error: invocation of unsafe destructor

}
-- end example |
A function declared transaction_safe shall have a transaction-safe definition.

A function is transaction-safe if it is declared transaction_safe (see 8.3.5 [dcl.fct]), or if it is a non-virtual function
defined before its first odr-use (3.2 [basic.def.odr]) and it has a transaction-safe function definition. A specialization
of a function template or of a member function of a class template, where the function or function template is not
declared transaction_safe, but defined before the first point of instantiation, is transaction-safe if and only if it
satisfies the conditions for a transaction-safe function definition. [Note: Even if a function is implicitly transaction-
safe, its function type is not changed to "transaction_safe function'. -- end note |

While determining whether a function £ is transaction-safe, £ is assumed to be transaction-safe for directly and
indirectly recursive calls. [Example:
int £ (int x) { // is transaction-safe
if (x <= 0)
return 0;
return x + f(x-1);

}

-- end example |

§8.4.4 17

© ISO/IEC N4302

10 Derived classes [class.derived]

10.3 Virtual functions [class.virtual]

I Add a new paragraph 17 at the end of section 10.3 [class.virtual]:

A function that overrides a function declared transaction_safe, but not transaction_safe_noinherit, is implicitly
considered to be declared transaction_safe. [Note: Its definition is ill-formed unless it actually has a transaction-
safe definition (8.4.4 dcl.fct.def.tx). -- end note | A function declared transaction_safe noinherit that overrides a
function declared transaction_safe (but not transaction_safe noinherit) is ill-formed. [Example:

struct B {
virtual void f() transaction_safe;
virtual ~B() transaction_safe noinherit;

};

// pre-existing code

struct D1 : B

{
void £() override { } // ok
~D1() override { } // ok

|

struct D2 : B
{
void f£() override { std::cout << "D2::f" << std::endl; }
// error: transaction-safe f has transaction-unsafe definition
~D2 () override { std::cout << "~D2" << std::endl; } // ok
};

struct D3 : B
{
void f() transaction_safe noinherit override;
// error: B::f() is transaction_safe

};

int main ()

{
D2 * d2 = new D2;
B * b2 = d2;
atomic_commit {

B b; // ok

D1 di; // ok

B& bl = dl;

D2 x; // error: destructor of D2 is not transaction-safe
bl.£(); // ok, calls D1::£()

delete b2; // undefined behavior: calls unsafe destructor of D2

}

-- end example |

§10.3 18

© ISO/IEC N4302

13 Overloading [over]

13.1 Overloadable declarations [over.load]

I Change in 13.1 [over.load] paragraph 2:

Certain function declarations cannot be overloaded:
— Function declarations that differ only in the return type cannot be overloaded.
— Function declarations that differ only in the presence or absence of a tx-qualifier cannot be overloaded.

13.3 Overload resolution [over.match]
13.3.3 Best viable function |over.match.best]
13.3.3.1 Implicit conversion sequences [over.best.ics]
13.3.3.1.1 Standard conversion sequences |over.ics.scs]

1 In 13.3.3.1.1 [over.ics.scs] paragraph 3, add an entry to table 12:
— Conversion: Transaction-safety conversion
— Category: Lvalue transformation

— Rank: Exact Match
— Subclause: 4.14 [conv.tx]

13.4 Address of overloaded function [over.over]

I Change in 13.4 [over.over] paragraph 1:

e+ cHOn € O5C pC gentica o—+tHe+HHhRcHOoRB Hetarg PE ‘.C.‘.:‘ HE-CORtE A
function with type F is selected for the function type r of the target type required in the context if F (after possibly
applying the transaction-safety conversion (4.14 [conv.tx])) is identical to FT. [Note: ... |

2 Change in 13.4 [over.over] paragraph 7:

[Note: Fhe anda
if B is a public base of D, we have
D* £();
B* (*pl) () = &f; // error
void g(D*);
void (*p2) (B*) = &g; // error

§13.4 19

© ISO/IEC N4302

14 Templates [temp]

14.1 Template parameters [temp.param]

1" Change in 14.1 temp.param paragraph 8:

A non-type template-parameter of type "array of T" or "transaction_ safeopt function returning T" is adjusted to be of type
"pointer to T" or "pointer to transaction_safeopt function returning T", respectively. [Example: ...]

14.7 Template instantiation and specialization [temp.spec]
14.7.3 Explicit specialization [temp.expl.spec]

1 Add a new paragraph 20 in 14.7.3 temp.expl.spec:

An explicit specialization of a function template or of a member function of a class template can be declared
transaction_safe (8.3.5 [dcl.fct.def]) independently of whether the corresponding template entity is declared
transaction_safe. [Example:

template<class T>
void £(T) transaction_safe;

template<>
void £ (bool) ; // not transaction-safe

-- end example |
14.8 Function template specializations [temp.fct.spec]

1 Add a new paragraph 3 at the end of 14.8 [temp.fct.spec]:

A specialization instantiated from a function template or from a member function of a class template, where the
function template or member function is declared transaction_safe, shall have a transaction-safe definition (8.4.4

[dcl.fet.def.tx]).
14.8.2 Template argument deduction [temp.deduct]
14.8.2.1 Deducing template arguments from a function call [temp.deduct.call]

4 Change in 14.8.2.1 temp.deduct.call paragraph 4:

... However, there are three cases that allow a difference:

— The transformed A can be another pointer or pointer to member type that can be converted to the deduced A via
a qualification conversion (4.4 c[onv.qual]) or a transaction-safety conversion (4.14 [conv.tx]).

§14.8.2.1 20

© ISO/IEC N4302

15 Exception handling [except]

15.1 Throwing an exception [except.throw]

1 Change in 15.1 except.throw paragraph 3:

... Evaluating a throw-expression with an operand throws an exception; the type of the exception object is determined
by removing any top-level cv-qualifiers from the static type of the operand and adjusting the type from "array of T" or
"transaction_safegpt function returning T" to "pointer to T" or "pointer to transaction_safegpt function returning T,"
respectively.

15.2 Constructors and destructors [except.ctor]

I Change the section heading of 15.2 [except.ctor] and paragraph 1:

Section 15.2 [except.ctor] Constructors, aré destructors, and atomic blocks

As control passes from the point where an exception is thrown to a handler, destructors are invoked for all automatic objects
constructed since the try block was entered yet still in scope (6.6 [stmt.jump], and atomic blocks are terminated (see
below) where the start, but not the end of the block, was executed since the try block was entered (6.10 [stmt.tx]).
The automatic objects are destroyed and atomic blocks are terminated in the reverse order of the completion of their
construction and the execution of the start of the atomic blocks.

2 In section 15.2 [except.ctor], add new paragraphs 4 and 5:

An atomic block is terminated according to its kind, as follows: Terminating an atomic_commit block executes the
end of the atomic block (1.10 intro.multithread) and has no further effect. [Note: That is, control exits the atomic
block after causing inter-thread synchronization. -- end note | Terminating an atomic_cancel block, if the type of
the current exception does not support transaction cancellation, or terminating an atomic_noexcept block, invokes
std: :abort (18.5 [support.start.term]). [Footnote: If the effects of the atomic block become visible to other threads
prior to program termination, some thread might make progress based on broken state, making debugging harder.
-- end footnote |. Terminating an atomic_cancel block, if the type of the current exception supports transaction
cancellation, cancels the atomic block by performing the following steps, in order:
— A temporary object is copy-initialized (8.5 [dcl.init]) from the exception object. [Note: if the initialization
terminates via an exception, std: : terminate is called (15.1 [except.throw]). -- end note |
— The values of all memory locations in the program that were modified by side effects of the operations of
the atomic block, except those occupied by the temporary object, are restored to the values they had at the
time the start of the atomic block was executed.
— The end of the atomic block is executed. [Note: This causes inter-thread synchronization. -- end note |
— The temporary object is used as the exception object in the subsequent stack unwinding.

[Note: A cancelled atomic block, although having no visible effect, still participates in data races (1.10
[intro.multithread]). -- end note |

Non-volatile scalar types support transaction cancellation, as do those types specified as doing so in clauses 18 and 19.
15.3 Handling an exception [except.handle]

I Change in 15.3 except.handle paragraph 3:

A handler is a match for an exception object of type E if

— the handler is of type cv T or const T& where T is a pointer type and E is a pointer type that can be converted to
T by eitheror-beth-ef one or more of

§153 21

© ISO/IEC N4302

— a standard pointer conversion (4.10 [conv.ptr]) not involving conversions to pointers to private or
protected or ambiguous classes

— aqualification conversion (4.4 [conv.qual])

— a transaction-safety conversion (4.14 [conv.tx])

15.4 Exception specifications [except.spec]

I Change in 15.4 except.spec paragraph 2:

... A type cv T, "array of T", or "transaction_safegpt function returning T" denoted in an exception-specification is
adjusted to type T, "pointer to T", or "pointer to transaction_safeopt function returning T", respectively.

§15.4 22

© ISO/IEC N4302

17 Library introduction [library]
17.5 Method of description (Informative) [description]
17.5.1 Structure of each clause [structure]
17.5.1.4 Detailed specifications [structure.specifications]

I Change in 17.5.1.4 [structure.specifications] paragraph 3:

— Synchronization: the synchronization operations (1.10) applicable to the function
— Transactions: the transaction-related properties of the function, in particular whether the function is
transaction-safe (8.4.4 [dcl.fct.def.tx])

17.6 Library-wide requirements [requirements]
17.6.3 Requirements on types and expressions [utility.requirements]
17.6.3.5 Allocator requirements [allocator.requirements]

I In table 27 in 17.6.3.5 [allocator.requirements] paragraph 2, add a note for x: : rebind:

All operations that are transaction-safe on x shall be transaction-safe on v.
17.6.5 Conforming implementations [conforming]
17.6.5.16 Transaction safety [lib.txsafe]

1 Add a new section 17.6.5.16 [lib.txsafe] paragraph 1:

17.6.5.16 [lib.txsafe| Transaction safety

This standard explicitly requires that certain standard library functions are transaction-safe (8.4.4 dcl.fct.def.tx).
An implementation shall not declare any standard library function signature as transaction_safe except for those
where it is explicitly required.

§17.6.5.16 23

© ISO/IEC N4302

18 Language support library [language.support]

18.5 Start and termination [support.start.term]

Change in 18.5 [support.start.term] paragraph 4:

[[noreturn]] void abort(void) transaction_ safe noexcept ;

The function avort () has additional behavior in this International Standard:
— The program is terminated without executing destructors for objects of automatic, thread, or static storage
duration and without calling functions passed to atexit() (3.6.3).

18.6 Dynamic memory management [support.dynamic]
18.6.1 Storage allocation and deallocation [new.delete]

Add to 18.6.1 [new.delete] paragraph 1:

... The library versions of the global allocation and deallocation functions are declared transaction_safe (8.3.5
dcl.fct).

18.6.2 Storage allocation errors [alloc.errors]

Add a first paragraph to section 18.6.2 [alloc.errors]:

The classes bad alloc, bad_array length, and bad array new_length support transaction cancellation (15.2
[except.ctor]). [Note: Special support from the implementation might be necessary to successfully rethrow such an
exception after leaving an atomic_cancel block. -- end note]

18.6.2.1 Class bad_alloc [bad.alloc]

In 18.6.2.1 [bad.alloc], add transaction safe to the declaration of each non-virtual member function and add
transaction safe noinherit to the declaration of each virtual member function.

18.6.2.2 Class bad_array new_length [new.badlength]

In 18.6.2.2 [new.badlength], add transaction safe to the declaration of each non-virtual member function and add
transaction safe noinherit to the declaration of each virtual member function.

18.7 Type identification [support.rtti]
18.7.2 Class bad_cast [bad.cast]

Change in 18.7.2 [bad.cast] paragraph 1:

The class bad cast defines the type of objects thrown as exceptions by the implementation to report the execution
of an invalid dynamic-cast expression (5.2.7 [expr.dynamic.cast]). The class supports transaction cancellation (15.2
[except.ctor]). [Note: Special support from the implementation might be necessary to successfully rethrow such an
exception after leaving an atomic_cancel block. -- end note |

§18.7.2 24

© ISO/IEC N4302

2 In 18.7.2 [bad.cast], add transaction safe to the declaration of each non-virtual member function and add
transaction safe noinherit to the declaration of each virtual member function.

18.7.3 Class bad_typeid [bad.typeid]

I Change in 18.7.3 [bad.typeid] paragraph 1:
The class bad_typeid defines the type of objects thrown as exceptions by the implementation to report a null pointer in a
typeid expression (5.2.8 [expr.typeid]). The class supports transaction cancellation (15.2 [except.ctor]). [Note: Special
support from the implementation might be necessary to successfully rethrow such an exception after leaving an
atomic_cancel block. -- end note |

2 In 18.7.3 [bad.typeid], add transaction safe to the declaration of each non-virtual member function and add
transaction safe noinherit to the declaration of each virtual member function.

18.8 Exception handling [support.exception]
18.8.1 Class exception [exception]

I In 18.8.1 [exception], add transaction safe to the declaration of each non-virtual member function and add
transaction safe noinherit to the declaration of each virtual member function.

18.8.2 Class bad_exception [bad.exception]

1" Change in 18.8.2 [bad.exception] paragraph 1:

The class bad exception defines the type of objects thrown as described in (552 fexeceptunexpeetedd: 15.5.2
[except.unexpected]. The class supports transaction cancellation (15.2 [except.ctor]). [Note: Special support from the
implementation might be necessary to successfully rethrow such an exception after leaving an atomic_cancel block.
-- end note |

2 In 18.8.2 [bad.exception], add transaction safe to the declaration of each non-virtual member function and add
transaction safe noinherit to the declaration of each virtual member function.

18.10 Other runtime support [support.runtime]

I Change in 18.10 [support.runtime] paragraph 4:

The function signature longjmp (jmp buf jbuf, int val) has more restricted behavior in this International Standard. A
setjmp/longjmp call pair has undefined behavior if replacing the setjmp and longjmp by catch and throw would invoke
any non-trivial destructors for any automatic objects, or would transfer out of a synchronized block (6.9 [stmt.sync]) or
atomic block (6.10 [stmt.tx]).

§18.10 25

© ISO/IEC N4302

19 Diagnostics library [diagnostics]

19.2 Exception classes [std.exceptions]

1 Change in 19.2 [std.exceptions] paragraph 3:

. These exceptions are related by inheritance. The exception classes support transaction cancellation (15.2
[except.ctor]). [Note: Special support from the implementation might be necessary to successfully rethrow such an
exception after leaving an atomic_cancel block. -- end note |].

Add the following to the synopsis in 19.2 [std.exceptions] paragraph 3:
template<class T> class tx exception;

2 In 19.2 [std.exceptions], add transaction safe to the declaration of each non-virtual member function and add
transaction safe noinherit to the declaration of each virtual member function.

19.2.10 Class template tx_exception [tx.exception]

1 Add a new section 19.2.10 [tx.exception] paragraph 1:

19.2.10 [tx.exception] Class template tx_exception
Class template tx_exception

namespace std {
template<class T>
class tx_exception : public runtime_error {
public:
explicit tx_exception (T value) transaction_safe;
tx_exception (T value, const char* what arg) transaction_safe;
tx_exception (T value, const string& what_arg) transaction_safe;
T get() const transaction_safe;
}:
}

A specialization of tx_exception supports transaction cancellation (15.2 [except.ctor]). If T is not a trivially copyable
type (3.9 [basic.types]), the program is ill-formed.

tx_exception (T value) transaction_safe;

Effects: Constructs an object of class tx_exception.

Postcondition: The result of calling get () is equivalent to value.
tx_exception(T value, const char * what_arg) transaction_safe;

Effects: Constructs an object of class tx_exception.

Postcondition: strcmp (what (), what_arg) == 0 and the result of calling get () is equivalent to value.
tx_exception (T value, const stringé& what arg) transaction_safe;

Effects: Constructs an object of class tx_exception.

Postcondition: strcmp (what (), what_arg.c_str()) == 0 and the result of calling get () is equivalent to value.

§19.2.10 26

© ISO/IEC N4302

20 General utilities library [utilities]
20.7 Memory [memory]
20.7.3 Pointer traits [pointer.traits]
20.7.3.2 Pointer traits member functions [pointer.traits.functions]

Change in 20.7.3.2 [pointer.traits.functions]:

static pointer pointer traits::pointer to(see below r);
static pointer pointer traits<T*>::pointer to(see below r) transaction_ safe noexcept;

Transactions: The first member function is transaction-safe if the invoked member function of ptr is transaction-
safe.

20.7.5 Align [ptr.align]

Change the signature in 20.7.5 [ptr.align] paragraph 1:

void* align(std::size t alignment, std::size t size,
void*& ptr, std::size t& space) transaction_safe;

20.7.8 Allocator traits [allocator.traits]
20.7.8.2 Allocator traits static member functions [allocator.traits.members]

In 20.7.8.2 [allocator.traits.members], add before paragraph 1:

A function in this section is transaction-safe if the invoked function (as specified below) is transaction-safe.
20.7.9 The default allocator |default.allocator]
20.7.9.1 allocator members |allocator.members]

In 20.7.9.1 [allocator.members], add "transaction safe" to the declarations of the following member functions: address (twice),

allocate, deallocate, max size.

Change in 20.7.9.1 [allocator.members] paragraphs 12 and 13:

template <class U, class... Args>
void construct (U* p, Args&&... args);

Eﬂects.‘ ::new ((void *)p) U(std::forward(args)...)
Transactions: Transaction-safe if the invoked constructor of U is transaction-safe.

template <class U>
void destroy (U* p);

Effects: p->~u ()
Transactions: Transaction-safe if the destructor of U is transaction-safe.

§20.7.9.1 27

© ISO/IEC N4302

20.7.11 Temporary buffers [temporary.buffer]

Change the signatures in 20.7.11 [temporary.buffer]:

template <class T>
pair<T*, ptrdiff t> get temporary buffer (ptrdiff t n) transaction_safe noexcept;

template <class T> void return_temporary buffer (T* p) transaction_safe;
20.7.12 Specialized algorithms [specialized.algorithms]

Change in 20.7.12 [specialized.algorithms] paragraph 1:

... In the following algorithms, if an exception is thrown there are no effects. Each of the following functions is
transaction-safe if the constructor invoked via the placement allocation function is transaction-safe.

20.7.12.1 addressof [specialized.addressof]

Change the signature in 20.7.12.1 [specialized.addressof]:

template <class T> T* addressof (T& r) transaction_safe noexcept;
20.7.13 C library [c.malloc]

Add after 20.7.13 [c.malloc] paragraph 2:

The contents are the same as the Standard C library header <stdlib.h>, with the following changes:

The functions are transaction-safe.
Change in 20.7.13 [c.malloc] paragraph 7:

The contents are the same as the Standard C library header <string.h>, with the change to memchr () specified in 21.8
[c.strings]. The functions are transaction-safe.

20.8 Smart pointers [smartptr]
20.8.1 Class template unique ptr [unique.ptr]

Change in 20.8.1 [unique.ptr] paragraph 5:

... The template parameter T of unique_ptr may be an incomplete type. Each of the functions in this section is transaction-
safe if either no functions are called or all functions called are transaction-safe.

§20.8.1 28

© ISO/IEC

21 Strings library

21.1 General

1 Add after 21.1 [strings.general] paragraph 1:

N4302

[strings]

[strings.general]

All functions in this Clause are transaction-safe if the required operations on the supplied allocator (17.6.3.5

[allocator.requirements]) and character traits (21.2.1 [char.traits.require]) are transaction-safe.
21.4 Class template basic_string
21.4.3 vasic_string iterator support
1 In 21.4.3 [string.iterators], add "transaction_safe" to the declarations of all member functions.
21.4.4 basic_string capacity
I In 21.4.4 [string.capacity], add "transaction_safe" to the declarations of all member functions.
21.4.5 basic_string element access

1 In 21.4.5 [string.access], add "transaction_safe" to the declarations of all member functions.

§21.4.5

[basic.string]

[string.iterators]

[string.capacity]

[string.access]

29

© ISO/IEC N4302

23 Containers library [containers]
23.2 Container requirements [container.requirements]
23.2.1 General container requirements [container.requirements.general]

1 Add a new paragraph 4 in 23.2.1 [container.requirements.general] after paragraph 3:
Unless unconditionally specified to be transaction-safe, a function in this Clause is transaction-safe if all required
operations are transaction-safe. [Note: This includes operations on the element type, on std: :allocator_traits, and
on Compare, Pred, Or Hash objects, depending on the respective function. -- end note |

2 Intable 96 in 23.2.1 [container.requirements.general] paragraph 4, add a note for x: : iterator and X: : const_iterator:
all functions required for the iterator category are transaction-safe

3 Add in 23.2.1 [container.requirements.general] after paragraph 6:

... If the container is empty, then begin() == end(). The member functions begin, end, cbegin, cend, size, max_size,
and empty are transaction-safe.

4 Add in 23.2.1 [container.requirements.general] after paragraph 10:

If the iterator type of a container belongs to the bidirectional or random access iterator categories (24.2
[iterator.requirements)), the container is called reversible and satisfies the additional requirements in Table 97.

[table |

The member functions rbegin, rend, crbegin, and crend are transaction-safe.
23.2.3 Sequence containers [sequence.reqmts]

1 Add in 23.2.3 [sequence.reqmts] before paragraph 17:

[table |
The member functions £ront, back, and at as well as the indexing operation a[n] are transaction-safe.

The member function at () provides bounds-checked access to container elements. at () throws out of range if n >=

a.size().
23.2.5 Unordered associative containers [unord.req]

1" Add in 23.2.5 [unord.req] after paragraph 12:
The behavior of a program that uses operator== or operator!= on unordered containers is undefined unless the Hash and
Pred function objects respectively have the same behavior for both containers and the equality comparison operator for Key

is a refinement [Footnote: ...] of the partition into equivalent-key groups produced by Pred.

The member functions bucket_count, max_bucket_count, bucket_size, begin, end, cbegin, cend, load_factor, and
max_load factor are transaction-safe.

§23.2.5 30

© ISO/IEC N4302

23.3 Sequence containers [sequences]
23.3.2 Class template array |array]
23.3.2.1 Class template array overview [array.overview]

In 23.3.2.1 [array.overview] and the corresponding subsections, add "transaction safe" to the declarations of all member functions
except £i11 and swap.

23.3.3 Class template deque [deque]
23.3.3.1 Class template deque overview [deque.overview]

In 23.3.3.1 [deque.overview], add "transaction_safe" to the declarations of all variants of the begin and end member functions and to
the declarations of size, max_size, empty, operator[], front, back.

23.3.4 Class template forward list [forwardlist]
23.3.4.1 Class template forward_list overview [forwardlist.overview]

In 23.3.4.1 [forwardlist.overview], add "transaction safe" to the declarations of all variants of the begin and end member functions
and to the declarations of max_size, empty, front, splice after, and reverse.

23.3.4.6 forward_list operations [forwardlist.ops]

In 23.3.4.6 [forwardlist.ops], add "transaction_safe" to the declarations of all variants of the begin and end member functions and to
the declarations of max_size, empty, front, splice after, and reverse.

23.3.5 Class template 1ist [list]
23.3.5.1 Class template 1ist overview [list.overview]

In 23.3.5.1 [list.overview], add "t ransaction_safe" to the declarations of all variants of the begin and end member functions and to the
declarations of size, max_size, empty, front, back, splice, and reverse.

23.3.5.5 1ist operations [list.ops]

In 23.3.5.5 [list.ops], add "transaction safe" to the declarations of all variants of the begin and end member functions and to the
declarations of size, max_ size, empty, front, back, splice, and reverse.

23.3.6 Class template vector [vector]
23.3.6.1 Class template vector overview [vector.overview]

In 23.3.6.1 [vector.overview], add "transaction safe" to the declarations of all variants of the begin and end member functions and to
the declarations of size, max size, capacity, empty, operator[], front, back, data.

§23.3.6.1 31

© ISO/IEC N4302

23.3.6.3 vector capacity [vector.capacity]

In 23.3.6.3 [vector.capacity], add "transaction_safe" to the declarations of all variants of the begin and end member functions and to
the declarations of size, max size, capacity, empty, operator[], front, back, data.

23.3.6.4 vector data [vector.data]

In 23.3.6.4 [vector.data], add "transaction safe" to the declarations of all variants of the begin and end member functions and to the
declarations of size, max_ size, capacity, empty, operator[], front, back, data.

23.3.7 Class vector<bool> [vector.bool]

In 23.3.7 [vector.bool], add "transaction safe" to the declarations of all variants of the begin and end member functions, to the
declarations of size, max_size, capacity, empty, operator[], front, back, and f1ip, and to the static member function swap.

23.4 Associative containers [associative]
23.4.4 Class template map [map]
23.4.4.1 Class template map overview [map.overview]

In 23.4.4.1 [map.overview], add "transaction safe" to the declarations of all variants of the begin and end member functions and to
the declarations of size, max size, and empty.

23.4.5 Class template multimap [multimap]
23.4.5.1 Class template multimap Overview [multimap.overview]

In 23.4.5.1 [multimap.overview], add "transaction safe" to the declarations of all variants of the begin and end member functions and
to the declarations of size, max_size, and empty.

23.4.6 Class template set [set]
23.4.6.1 Class template set overview [set.overview]

In 23.4.6.1 [set.overview], add "transaction_safe" to the declarations of all variants of the begin and end member functions and to the
declarations of size, max_size, and empty.

23.4.7 Class template multiset [multiset]
23.4.7.1 Class template multiset overview [multiset.overview]

In 23.4.7.1 [multiset.overview], add "transaction safe" to the declarations of all variants of the begin and end member functions and
to the declarations of size, max_size, and empty.

§23.4.7.1 32

© ISO/IEC N4302

23.5 Unordered associative containers [unord]
23.5.4 Class template unordered_map [unord.map]
23.5.4.1 Class template unordered_map overview [unord.map.overview]

In 23.5.4.1 [unord.map.overview], add "transaction safe" to the declarations of all variants of the begin and end member functions
and to the declarations of size, max size, empty, operator[], bucket count, max bucket count, bucket size, load factor, and

max_load factor.
23.5.5 Class template unordered_multimap Overview [unord.multimap]
23.5.5.1 Class template unordered_multimap OvVerview [unord.multimap.overview]|

In 23.5.5.1 [unord.multimap.overview], add "transaction safe" to the declarations of all variants of the begin and end member
9 ! g

functions and to the declarations of size, max size, empty, operator[], bucket count, max bucket count, bucket size,

load_factor, and max_load_ factor.

23.5.6 Class template unordered_set [unord.set]
23.5.6.1 Class template unordered_set overview [unord.set.overview]

In 23.5.6.1 [unord.set.overview], add "transaction safe" to the declarations of all variants of the begin and end member functions and
to the declarations of size, max size, empty, operator[], bucket count, max_bucket count, bucket size, load factor, and

max_load_ factor.
23.5.7 Class template unordered_multiset [unord.multiset]
23.5.7.1 Class template unordered_multiset Overview [unord.multiset.overview]

In 23.5.7.1 [unord.multiset.overview], add "transaction safe" to the declarations of all variants of the begin and end member
functions and to the declarations of size, max size, empt operator[], bucket count, max bucket count, bucket size

bl g 9 p y’ p 9 g b o g bl ! bl
load factor, and max load factor.

23.6 Container adaptors [container.adaptors]
23.6.1 In general [container.adaptors.general]

Add in 23.6.1 [container.adaptors.general] after paragraph 3:

For container adaptors, no swap function throws an exception unless that exception is thrown by the swap of the adaptor's
Container Of Compare object (if any).

A member function £ of a container adaptor is transaction-safe if the required member functions of the adaptor's
Container and compare (if any) are transaction-safe, as given by the specification for £.

§23.6.1 33

© ISO/IEC N4302

24 Iterators library [iterators]
24.4 Tterator primitives [iterator.primitives]
24.4.4 Iterator operations [iterator.operations]

Change in 24.4.4 [iterator.operations] paragraph 1:
Since only random access iterators provide + and - operators, the library provides two function templates advance and
distance. These function templates use + and - for random access iterators (and are, therefore, constant time for them);
for input, forward and bidirectional iterators they use ++ to provide linear time implementations. A specialization of a

function template specified in this Clause is transaction-safe if all operations required for the template arguments
are transaction-safe.

24.5 Tterator adaptors [predef.iterators]
24.5.1 Reverse iterators [reverse.iterators]

Change in 24.5.1 [reverse.iterators] paragraph 1:
Class template reverse iterator is an iterator adaptor that iterates from the end of the sequence defined by its underlying
iterator to the beginning of that sequence. The fundamental relation between a reverse iterator and its corresponding iterator

1is established by the identity: s* (reverse iterator(i)) == &*(i - 1). A member function specified in this Clause is
transaction-safe if all operations required for the template argument of reverse_iterator are transaction-safe.

24.5.2 Insert iterators [insert.iterators]

Add a new paragraph after 24.5.2 [insert.iterators] paragraph 2:

A function or function template specified in this Clause is transaction-safe if all operations required for the template
arguments are transaction-safe.

24.5.3 Move iterators [move.iterators]

Add a new paragraph after 24.5.3 [move.iterators] paragraph 2:

A member function specified in this Clause is transaction-safe if all operations required for the template arguments
are transaction-safe.

24.7 range access [iterator.range]

Change in 24.7 [iterator.range] paragraph 1:

In addition to being available ..., and <vector>. A specialization of a function template specified in this Clause is
transaction-safe if all required operations (as specified by the Refurns element) are transaction-safe.

In24.7 [iterator.range], add "transactionisafe" to the declarations of begin (T (sarray) [N]) and end (T (sarray) [N])

§24.7 34

© ISO/IEC N4302

25 Algorithms library [algorithms]

25.1 General [algorithms.general]

1" Add a new 25.1 [algorithms.general] paragraph 13:

§25.1

A specialization of a function template specified in this Clause is transaction-safe if all functions and operations
required for the template arguments are transaction-safe. | Example: The £i11 function (25.3.6 [alg.fill]) is
transaction-safe if all required operations of its ForwardIterator template argument are transaction-safe and if T's
copy assignment operator is transaction-safe. -- end example |

35

© ISO/IEC N4302

26 Numerics library [numerics]
26.7 Generalized numeric operations [numeric.ops]
26.7.1 Header <numeric> synopsis [numeric.ops.overview]

1 Add a new paragraph after 26.7.1 [numeric.ops.overview] paragraph 1:

A specialization of a function template specified in this Clause is transaction-safe if all functions and operations
required for the template arguments are transaction-safe (see 25.1 [algorithms.general]).

26.8 C library [c.math]

1 Add after 26.8 [c.math] paragraph 4:

The contents of these headers are the same as the Standard C library headers <math.h> and <stdlib.h> respectively, with the
following changes:

The functions from <stdlib.h>, including the additional overloads in <cstdlib> (see below), but excluding rand and
srand, are transaction-safe.

§26.8 36

	Technical Specification for C++ Extensions for Transactional Memory
	Contents
	1 General
	1.1 Scope
	1.2 Acknowledgements
	1.3 Normative references
	1.4 Implementation compliance
	1.10 Multi-threaded executions and data races

	2 Lexical conventions
	2.11 Identifiers
	2.12 Keywords

	4 Standard conversions
	4.3 Function-to-pointer conversion
	4.14 Transaction-safety conversion

	5 Expressions
	5.1 Primary expressions
	5.1.2 Lambda expressions

	5.2 Postfix expressions
	5.2.2 Function call
	5.2.9 Static cast

	5.10 Equality operators
	5.16 Conditional operator

	6 Statements
	6.6 Jump statements
	6.9 Synchronized statement
	6.10 Atomic statement

	7 Declarations
	7.4 The asm declaration
	7.6 Attributes
	7.6.6 Attribute for optimization in synchronized blocks

	8 Declarators
	8.3 Meaning of declarators
	8.3.5 Functions

	8.4 Function definitions
	8.4.1 In general
	8.4.4 Transaction-safe function

	10 Derived classes
	10.3 Virtual functions

	13 Overloading
	13.1 Overloadable declarations
	13.3 Overload resolution
	13.3.3 Best viable function
	13.3.3.1 Implicit conversion sequences
	13.3.3.1.1 Standard conversion sequences

	13.4 Address of overloaded function

	14 Templates
	14.1 Template parameters
	14.7 Template instantiation and specialization
	14.7.3 Explicit specialization

	14.8 Function template specializations
	14.8.2 Template argument deduction
	14.8.2.1 Deducing template arguments from a function call

	15 Exception handling
	15.1 Throwing an exception
	15.2 Constructors and destructors
	15.3 Handling an exception
	15.4 Exception specifications

	17 Library introduction
	17.5 Method of description (Informative)
	17.5.1 Structure of each clause
	17.5.1.4 Detailed specifications

	17.6 Library-wide requirements
	17.6.3 Requirements on types and expressions
	17.6.3.5 Allocator requirements
	17.6.5 Conforming implementations
	17.6.5.16 Transaction safety

	18 Language support library
	18.5 Start and termination
	18.6 Dynamic memory management
	18.6.1 Storage allocation and deallocation
	18.6.2 Storage allocation errors
	18.6.2.1 Class bad_alloc
	18.6.2.2 Class bad_array_new_length

	18.7 Type identification
	18.7.2 Class bad_cast
	18.7.3 Class bad_typeid

	18.8 Exception handling
	18.8.1 Class exception
	18.8.2 Class bad_exception

	18.10 Other runtime support

	19 Diagnostics library
	19.2 Exception classes
	19.2.10 Class template tx_exception

	20 General utilities library
	20.7 Memory
	20.7.3 Pointer traits
	20.7.3.2 Pointer traits member functions
	20.7.5 Align
	20.7.8 Allocator traits
	20.7.8.2 Allocator traits static member functions
	20.7.9 The default allocator
	20.7.9.1 allocator members
	20.7.11 Temporary buffers
	20.7.12 Specialized algorithms
	20.7.12.1 addressof
	20.7.13 C library

	20.8 Smart pointers
	20.8.1 Class template unique_ptr

	21 Strings library
	21.1 General
	21.4 Class template basic_string
	21.4.3 basic_string iterator support
	21.4.4 basic_string capacity
	21.4.5 basic_string element access

	23 Containers library
	23.2 Container requirements
	23.2.1 General container requirements
	23.2.3 Sequence containers
	23.2.5 Unordered associative containers

	23.3 Sequence containers
	23.3.2 Class template array
	23.3.2.1 Class template array overview
	23.3.3 Class template deque
	23.3.3.1 Class template deque overview
	23.3.4 Class template forward_list
	23.3.4.1 Class template forward_list overview
	23.3.4.6 forward_list operations
	23.3.5 Class template list
	23.3.5.1 Class template list overview
	23.3.5.5 list operations
	23.3.6 Class template vector
	23.3.6.1 Class template vector overview
	23.3.6.3 vector capacity
	23.3.6.4 vector data
	23.3.7 Class vector<bool>

	23.4 Associative containers
	23.4.4 Class template map
	23.4.4.1 Class template map overview
	23.4.5 Class template multimap
	23.4.5.1 Class template multimap overview
	23.4.6 Class template set
	23.4.6.1 Class template set overview
	23.4.7 Class template multiset
	23.4.7.1 Class template multiset overview

	23.5 Unordered associative containers
	23.5.4 Class template unordered_map
	23.5.4.1 Class template unordered_map overview
	23.5.5 Class template unordered_multimap overview
	23.5.5.1 Class template unordered_multimap overview
	23.5.6 Class template unordered_set
	23.5.6.1 Class template unordered_set overview
	23.5.7 Class template unordered_multiset
	23.5.7.1 Class template unordered_multiset overview

	23.6 Container adaptors
	23.6.1 In general

	24 Iterators library
	24.4 Iterator primitives
	24.4.4 Iterator operations

	24.5 Iterator adaptors
	24.5.1 Reverse iterators
	24.5.2 Insert iterators
	24.5.3 Move iterators

	24.7 range access

	25 Algorithms library
	25.1 General

	26 Numerics library
	26.7 Generalized numeric operations
	26.7.1 Header <numeric> synopsis

	26.8 C library

