N3612: Desiderata of a C++11 Database
Interface

Thomas Neumann

Technische Univeristat Miinchen
neumann@in.tum.de

2013-03-15

With the recent papers N3415 and N3458 two proposals have been made for a standard
database interface in the C++ standard, based upon C++11 features. In addition, a
wide range of C++498 database interfaces already exist. Before designing just another
interface, we therefore discuss the desirable properties or requirements of a database
interface. In the following we classify these requirements in three rough groups, from
high-level to low-level. It might not be feasible to fulfill all of these in one unified
interface, therefore the group order also roughly implies importance. Afterwards we give
a rough classification of existing interfaces according to the desired properties.

Note that while this text contains examples to illustrate certain trade-offs, these ex-
amples should not be interpreted as new proposals. They are included for illustrative
purposes only, an actual interface might be different.

1 High-Level Requirements

Before describing technical aspects, we briefly discuss the high-level requirements of a
database interface, i.e., the kind of functionality it should offer. These are more stylistic
requirements, but they describe what a user expects from a database interface.

1.1 A Clean, Concise Interface Query Interface

This is the foremost requirement for a database interface. Access to the database must
be easy and simple, and should require as little boilerplate code as possible. As a non-
normative example, the following code is concise and simple

auto x = db.queryValue<int>("select max(x) from table");

while the corresponding ODBC code fragment is not (and error handling would easily
double the size of the code)

1 N3612

SQLHandle st;
SQLAllocHandle(SQL_HANDLE_STMT,db,&st);
SQLINTEGER x;
SQLBindCol(st,1,SQL__C_SLONG,&x,sizeof(x),nullptr);
SQLExecDirect(st,"select max(x) from table",24);
SQLFetch(st);

Ideally, the interface is so simple that the boundary between C++ code and database
access is blurred. For example, accessing the database should be (nearly) as simple as
iterating over a standard container. And commonly used features should be particularly
simple. Queries, i.e., retrieving specific data items from the database, are extremely
common, and should be made as simple as possible. Rarely used functionality like
defining a new stored procedure must be supported too, of course, but might not warrant
specific syntactic sugar.

1.2 Support for Queries, Transactions, and Statements

As indicated in the section title, the database interface has to offer support for queries,
transactions, and general statements. This list might sound a bit arbitrary, but there
are actually good reasons to consider these three: First, queries, i.e., the programmatic
access to data stored within the database, is the core aspect of database usage. Queries
are used extremely frequently, and the query result are used by other parts of the appli-
cation. As such they warrant extra effort to make queries as painless as possible.

The second aspect, transactions, are one of the key characteristics of databases vs. flat
files. In a transaction context, database operations are executed atomically, on consistent
data, in isolation from other transactions, and with a durable result (the so-called ACID
properties). This affects both the database and the C++ program itself, and should
therefore be visible in the application. For example using a RAII idiom for transactions
seems to be a very good idea

{

transaction trans(db); // begin of atomic transaction block

db.query("...");

db.query("...");

trans.commit(); // end of atomic transaction block, destructor rolls back if no commit

}

as now the structure of database transaction is cleanly visible in the C++ code.

Finally, database systems will always support some special purpose functionality that
the database interface cannot anticipate. Examples include backup functionality, feder-
ation, etc. The database usually exposes these as general statements with side effects.
This functionality must be supported, but it will be used much more rarely, therefore it
can be handled with a more generic interface than queries.

In some cases statements can behave similar to queries in that they can return one
(or even more) results. This is the case for stored procedures, i.e., user code that
is embedded inside the database and potentially produces one or more query results.
These constructs are used more rarely, but an database interface should support it.

2 N3612

Ideally the result interface would be the same for both regular queries and query result
from statements, as then the user can treat both similar, for example like this:
auto st=db.statement("execute myprocedure(1,2,2)");
for (auto name:st.next_result<string>())
cout << name << endl;

for (auto id:st.next_result<int>())
cout << id << endl,;

Note that it might be useful to expose more than these three mechanisms to the users,
for example stored procedures, but these three are the required minimum.

1.3 Seamless Integration in C4++

Just as it should be simple to access the database, the database access could should fit
in naturally into the surrounding C++ code. For example it it would seem plausible to
treat database queries similar to functions or even lambdas, in the sense that they are
“callable” constructs, potentially with parameters, that produce a collection of result
tuples, as shown in the following example

auto query=db.prepare<int>("select name from table where id = ?7");

for (auto name:query<string>(5))
cout << name << endl;

Historically that has not been the case, largely due to C++498 restrictions. Many
database systems used a very verbose syntax to couple C++ and the database, which
leads to somewhat cumbersome code, as illustrated by the QtSql example below
QSqlQuery querys;
query.prepare("select name from table where id = ?7");
query.addBindValue(5);
query.exec();
while (query.next())

cout << query.value(0).toString().toStdString() << endl;

Other database libraries invented their own syntax constructs to express queries, as
illustrated by the following libsoci example
string name;
statement st = (sql.prepare << "select name from table where id = :val",use(5),into(i));
st .execute() ;

while (st.fetch())
cout << name << endl;

The libsoci code is quite readable, but the usage of overloaded comma operators is
a bit unusual. In addition, libsoci plays games with the lifetime of temporary objects
to detect the end of the statement (i.e., the last comma-separated value). These brittle
tricks would not be necessary in C++11 when using variadic template functions.

2 Technical Requirements

After these high-level requirements we now look at the technical requirements for a
database interface. Note that these are not necessarily hard requirements, a standard

3 N3612

interface might compromise in some of these, but all requirements mentioned here are
at least highly desirable.

2.1 Generic Support for Queries/Statements and Data Types

A fundamental assumption that any standard database interface should make is that
the database system is a black box. In particular, the interface itself should not try to
interpret the queries or statements in any way. The reason for this is that most database
vendor implement some non-standard language extensions, and it would be hopeless to
try to cope with all of these in a single standard database interface. Thus, all textual
statements have to be passed to the database (or more precisely: to the appropriate
database driver) uninterpreted. Note that the driver itself can interpret the query, as
the driver is database specific. Thus, parameter types, result types, etc., can be retrieved
from the driver after passing the textual query/statement.

In particular, one should not assume any kind of query syntax like SQL. Interpreting
the query is purely up to the driver. In fact one should not even assume that the
underlying database system is relational. Most “relational” database systems are not
purely relational any more anyway. The basic contract between the database interface
and the underlying database driver/system should be:

e a query is an n-ary function that produces a collection of tuples as output

e a statement is an n-ary function that changes the state of the database and pro-
duces a count as output (traditionally the number of affected rows, but that is
implementation defined)

An actual interface might wish to expose more constructs, i.e., for stored procedures,
but these are the basic requirements. And no interpretation of the semantics beyond
this contract should be done to allow for maximum flexibility.

Ideally this agnosticism towards database functionality contains the type system, too.
Many database systems offer proprietary data types for special purposes, and it should
be possible to use them in the C++ binding. Of course this requires that the underlying
database driver supports the data type, and in a practical implementation that will
require template functions to cope with the different types. But unless there are very
good reasons to forbid other data types, a database interface should be open to support
non-standard data types provided by a specific database driver.

Note that this requirement implicitly rules out approaches like LINQ that embed
the query as compiler-interpreted constructs. Interpreting the query at compile time is
attractive, as it can catch errors early. But adding similar functionality to C++ would
require significant language changes, which is unrealistic. Furthermore, LINQ does make
assumptions about the database, and thus cannot handle arbitrary query constructs. As
a compromise it would be possible to write a database-specific compiler plugin that
checks the textual queries for errors at compile time. But this would be implementation
defined and beyond the scope of the standard.

4 N3612

2.2 Support for SQL-92

This requirement somewhat contradicts the previous requirement, namely that the database
interface should be database agnostic. But even though we want to support arbitrary
queries and types, most real-world database system implement a super-set of SQL-92.
As such, it makes sense to ensure that 1) all of the SQL-92 functionality can be mapped
conveniently to the proposed interface, and that 2) standard type mappings exists for
all SQL-92 data types. Otherwise, different database vendors would implement the
mappings differently, which would lead to unnecessary fragmentation.

In a sense the database world is fragmented anyway, and realistically this fragmen-
tation cannot be completely healed by a database interface library, but one should try
to minimize the fragmentation. And SQL-92 is an extremely well supported basis that
should be handled well. Newer language revisions exist, the current SQL standard is
ISO/IEC 9075:2011, but de-facto SQL-92 is only standard revision that is really univer-
sally supported.

2.3 Support for both Static and Dynamic Usage

The main purpose of the database interface is to simplify the interaction with the
database. As such, it should be easy to couple queries (and in particular, query re-
sults) with code that interprets the result. We consider this the static use case, an
example is shown below.

int value;

for (auto row:db.query(querystring,123).into(value))
cerr << value << endl;

Note that the query text itself does not have to be static, it can be an arbitrary string.
But both the type of the query parameters (if any) and the type of the result is known
at compile time. This is probably the most common use case for a database interface,
as application programs will nearly always make assumptions about the result.

But sometimes even the structure of the query result is not known at compile time, for
example when implementing a web interface that supports arbitrary user queries. We
call this the dynamic use case, and it has to be supported, too. An example is shown
below
auto query=db.prepare__query(queryString);
for (auto& p:userParameters)

query.bind(p);

for (auto row:query()) {
for (auto index=0,limit=row.column_ count();index!=limit;++index)

cerr << row.to_string(index) << " ";
cerr << endl;

}

Such a fully dynamic use case is probably more rare, as without any prior knowledge
about the result the application cannot do much except pass it to the user as it is. But
still there is a need for such functionality.

S N3612

2.4 Efficiency

Finally, the database interface has to allow for an efficient implementation. Some appli-
cations access the database thousands of times per second, and the interface must cope
with such transaction rates (given a suitable driver implementation, of course). This
effectively implies two consequences: 1) the interface must allow for “prepared queries”,
i.e., queries that are compiled once by the database and that can the be executed re-
peatedly without recompilation by just changing the query parameters (if any). Query
compilation is very expensive, and can easily take many milliseconds, which is a problem
for high query rates. And 2) the interface, must allow for implementations that forgo
type conversions. In the static use case all types are known at compile time, and can
be passed to the database if needed. Therefore, the database can often produce data
in exactly the right format. This is mainly relevant for embedded high-performance
databases, network traffic or other communication costs will dominate conversion costs.
But still it is a desirable goal.

3 Implementation Requirements

Besides these more high-level requirements, there are also some implementation aspects
that have to be considered. These are more like small details, but they can have quite
some impact on the way the database interface can be used.

3.1 Exception Safety

The database interface must be able to cope with exceptions, and it should reports its
own errors using exceptions, too. While this might sound like an obvious requirement,
it is not trivial to implement, as there exists a database state this is coupled with but
separate from the application state. And exceptions might occur at any point in time,
for example while currently processing the result of an unfinished query. But while
exception safety requires some effort from the interface developer, it greatly simplifies
the life of the application developer. The same for using exceptions instead of return
code. In some of the existing database interfaces error handling is very complicated and
bloats the application code, even though errors are rare in practice and therefore the
costs of exceptions are negligible.

3.2 Strong Separation between Compilation and Execution

Most database systems have a clear separation between query compilation, i.e., preparing
the query for execution, and actually executing the query. Many applications have a fixed
core of queries that are executed very frequently, and which are therefore prepared once
and then executed multiple times. This separation should also be possible inside the
application program. Some of the existing database interfaces offer only an incomplete
separation, e.g., by requiring dedicated result variables already at prepare time. This is
unfortunate from a usability point of view.

6 N3612

3.3 Minimize Implementation Exposure

Database interfaces are often implemented using database cursors or similar techniques.
These implementation details should not be exposed the user, unless there are very com-
pelling reasons to do so. For example the interface should not encourage (or even allow
for) accessing a query result in arbitrary order, as this restricts possible implementations.
Most users do not need this functionality, and buffering can easily be implemented in
application code if needed. As the interface is supposed to be database agnostic, it
should not favor one implementation over the other. And for most user code it makes
absolutely not difference how a query is implemented internally. Most of the time a user
wants simple result comprehension like this
int value;
for (auto row:db.query("select value from foo").into(value))

cerr << value << endl;

and none of the internals should be visible. If arbitrary access is required, buffering
the value entries in the example above would be trivial for the application.

4 Use Cases

In order to get an idea about the practical implications of different library designs,
it is insightful to consider use cases. Some use cases are already included in N3415:
A Database Access Library by Bill Seymour. As a condensed example, it might be
interesting to consider the small pseudo-code fragment below:

create table users(id integer not null,name varchar(40) not null);

create table groups(id integer not null,name varchar(40) not null);

create table assignments(user integer not null,group intege not null);

create procedure dropprivileges(user integer not null) ... // database specific code

// parameterized transaction, should be C++ code
begin transaction
select u.name,u.id from users u,assignments a,groups g
where u.id=a.user and a.group=g.id and g.name="7 {
// mon—standard syntaz, loop over statement result
execute dropprivileges (a.id) —> privilege {
print u.name, ’ lost ’, priviledge

}
}

commit transaction

It assumes tables to manage users and groups, and a stored procedure that drop
the priviledges of a given user and reports the dropped priviledges as a query result.
Within a database transaction the user code finds all users from a given group, drops
their priviledges, and then reports the result back. Note that the pseudo-code should
be C++ code in reality, as this is the application logic, but we used pseudo-code here
to order to avoid biasing in favor of a certain proposal.

This small code fragments already highlights quite a few concepts (transactions,
queries, parameterized queries, statements, statement results), and should cover the

7 N3612

most common database usage scenarios. Therfore it should be a reasonable use case to
evaluate existing approaches, and we that future database proposal will consider this
example (or something similar) to illustrate their strength and weaknesses.

5 Some Preliminary Findings

In the following we include a brief overview over existing libraries. We mention some
of the limitations (by referencing the section numbers from above), and include a short
code fragments that prints the name of a certain user. This is only a preliminary survey
intended to get an idea of existing systems. Promising candidates should be evaluated
more thoroughly considering the use case shown above.

Note that most interfaces violate requirement 2.1, i.e., lack support for arbitrary data
types. Of course that could imply that the requirement is too difficult to implement.
But some of the interfaces support arbitrary data types. We should therefore not give
up on it too early.

ODBC

ODBC: http://msdn.microsoft.com/en-us/library/ms714562(v=vs.85)
unixODBC: http://www.unixodbc.org/
iODBC: http://www.iodbc.org/

Limitations: 1.1, 1.3, 2.4, 3.1, 3.3

ODBC is a standard database interface for C, released in 1992. Obviously the integra-
tion in C++ is quite poor, the code is very verbose and error handling is cumbersome.
But ODBC itself is well supported by vendors.

SQLHandle st;

SQLRETURN res=SQLAllocHandle(SQL_HANDLE_STMT,db,&st);

if ((res!=SQL_SUCCESS)&&(res!=SQL_SUCCESS_WITH_ INFO))
return false;

res=SQLPrepare(st,"select name from users where id=7",34);

if ((res!=SQL_SUCCESS)&&(res!=SQL_SUCCESS_WITH_INFO)) {
SQLFreeHandle(SQL_ HANDLE_ STMT ,st);
return false;

}

SQLINTEGER val=1234;

SQLLen len=sizeof(val);

res=SQLBindParameter(st,1,SQL_PARAM_INPUT,SQL_C_SLONG,SQL_INTEGER,len,0,&val,len,&len);

if ((res!=SQL_SUCCESS)&&(res!=SQL_SUCCESS_WITH_INFO)) {
SQLFreeHandle(SQL_ HANDLE_ STMT,st);
return false;

res=SQLExecute(st);

if ((res!=SQL_SUCCESS)&&(res!=SQL_SUCCESS_WITH_INFO)) {
SQLFreeHandle(SQL_HANDLE__STMT,st);
return false;

8 N3612

http://msdn.microsoft.com/en-us/library/ms714562(v=vs.85)
http://www.unixodbc.org/
http://www.iodbc.org/

while (true) {
res=SQLFetch(st);
if (res==SQL_NO_DATA)
break;
if ((res!=SQL_SUCCESS)&&(res!=SQL_SUCCESS_WITH_INFO)) {
SQLFreeHandle(SQL_HANDLE__STMT st);
return false;

char buffer [1024]; SQLLen len;

res=SQLGetData(st,1,SQL_C_ CHAR,buffer,sizeof(buffer)—1,&len);

if ((res!=SQL_SUCCESS)&&(res!=SQL_SUCCESS_WITH_INFO)) {
SQLFreeHandle(SQL_HANDLE_ STMT st);
return false;

}
buffer [len]=0;
cout << buffer << endl;

SQLFreeHandle(SQL_HANDLE_STMT,st);

JDBC

http://www.oracle.com/technetwork/java/javase/jdbc/index.html
Limitations: 1.1, 1.3, 2.4, 3.1, 3.3

JDBC is a Java binding, and as such not so relevant for a C++ library. But JDBC
is extremely popular, and therefore included here. Interestingly, JDBC is one of the few
database interfaces to support arbitrary data types.

PreparedStatement st;
ResultSet rs;

try {
st=db.prepareStatement("select name from users where id=?");

st. setInt (1,1234);
rs=st.executeQuery();
while (rs.next())
System.out.println(rs.getString(1));
} finally {
if (rs!=null) try { rs.close(); } catch (SQLException ignore) {}
if (st!=null) try { st.close(); } catch (SQLException ignore) {}

}

libpgxx
http://pgxx.org/development/1ibpqxx/
Limitations: 1.1, 1.3, 2.1, 2.4, 3.3

Libpgxx is a C++ binding for PostgreSQL. While database specific, and thus not
generic, it offers a reasonable C+498 interface.

9 N3612

http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://pqxx.org/development/libpqxx/

db.prepare("myquery","select name from user where id=$1");

pgxx::prepare::invocation st=trans.prepared("myquery");

pgxx::result result =st(1234).exec();

for (pgxx::result :: const_ iterator iter =result.begin(), limit =result.end(); iter !=limit;++iter) {
paxx::tuple tuple=xiter;
cout << tuple[0].to<std::string>() << endl;

}

C interface for SQLite
http://wuw.sqlite.org/capi3ref.html
Limitations: 1.1, 1.3, 2.1, 2.4, 3.1, 3.3

SQLite offer a C/C++ binding that can be used for database access. Being C-based,
it is quite cumbersome to use compared to C++ bindings.

sqlite3__stmt* st;

if (sqlite3_prepare_v2(db,"select name from users where id=?",33,&st,nullptr)!=SQLITE_ OK)
return false;

if (sqlite3_bind_int(st,1,1234)!=SQLITE_OK) {
sqlite3_finalize (st);
return false;

while (true) {
int res=sqlite3_step(st);
if (res==SQLITE_DONE) break;
if (res!=SQLITE_ROW) {
sqlite3_ finalize (st);
return false;

}

cout << sqlite3__column__text(st,0) << endl;

sqlite3_finalize (st);

Poco::Data Library

http://pocoproject.org/docs-1.5.0/category-POCO_Data_Library-index.html
Limitations: 1.3, 2.1, 2.2, 2.4, 3.2, 3.3

The poco project offers a database library with a clean C+498 interface. It is easy
to use, but its SQL-92 support is incomplete regarding data types and the separation
between compilation and execution is weak.

// Query compilation, all variables must already ezist

std :: string name; int value;

Statement stmt = (db << "select name from users where id=?", use(value), into(name));
// Qury ezecution

value=1234;

stmt.execute()

RecordSet result(stmt);

10 N3612

http://www.sqlite.org/capi3ref.html
http://pocoproject.org/docs-1.5.0/category-POCO_Data_Library-index.html

while (result.moveNext())
cout << name << endl;

SOCI
http://soci.sourceforge.net/
Limitations: 1.3, 2.4, 3.2, 3.3

SOCI offers a very nice and powerful C4+ interface for database access. It makes
use of unusual constructs (comma operators, delayed side effects by destructors) to work
around C++498 limitations. It is very generic and explicitly aims at supporting aribtrary
data types. Like poco, separation between compilation and execution is weak.

// Query compilation, all variables must already existing
std :: string name; int value;
statement st = (db.prepare << "select name from users where id=:val",use(value),into(name));
// Query execution
value=1234;
st .execute() ;
while (st.fetch())
cout << name << endl;

OTL

http://otl.sourceforge.net/home.htm Limitations: 1.3, 2.1, 2.4, 3.2, 3.3

The OTL library offers a rich C++ library for database access. Although geared
towards Oracle support, it can be configured for other databases using preprocessor de-
fines. It is simple to use, but the heavy reliance on preprocessor settings for configuration
seems unfortunate.

otl_stream st(50," select name from users where id=:{");
st << 1234;
while (Ist.eof()) {

std :: string name;

st >> name;

cout << name << endl;

}

5.1 DTL
http://dtemplatelib.sourceforge.net/index.htm
Limitations: 1.1, 1.2, 1.3, 2.1, 2.2, 2.4, 3.2, 3.3

The Database Template Library (DTL) offers STL-style view over database tables,
allowing for simple access. It aims for shielding the user from raw SQL, but its native

11 N3612

http://soci.sourceforge.net/
http://otl.sourceforge.net/home.htm
http://dtemplatelib.sourceforge.net/index.htm

SQL support is quite limited. This makes usage awkward for more complex application
scenarios.

// Earlier declarations
struct Row {
std :: string name;

};
template<> class dtl::Default BCA<Row> {
public:
void operator()(BoundIOs &cols, Row &rowbuf) {
cols ["name"]==rowbuf.name;
}
};
struct Param {
int value;

class BPAParam {
public:
void operator()(BoundIOs &boundIOs, Param ¶mObj) {
boindIOs[0] << paramObj.int;

};

// Usage
DBView<Row,Param> view("USERS",dtl::Default BCA<Row>(),"where id=?",BPAParam());

DBView<Row>::select_iterator read it = view.begin():
read it.Params().value=1234;
for (; read_it != view.end(); ++read_it)

cout << (*read_it).name << endl;

libodbc++
http://1libodbcxx.sourceforge.net/
Limitations: 1.1, 1.3, 2.1, 2.4, 3.3

libodbc++ offers a JDBC-style database binding for C++. Like its Java equivalent
it is somewhat verbose, but at least error handling is simpler in C+—+.

std :: auto_ptr<PreparedStatement> st=db—>prepareStatement("select name from users where
id="7");
st—>setInt(1,1234);
std :: auto_ ptr<ResultSet> rs=st—>executeQuery();
while (rs—>next())
cout << rs—>getString(0) << endl;

QtSQL
http://qt-project.org/doc/qt-4.8/qtsql.html
Limitations: 1.1, 1.3, 2.1, 2.4, 3.1, 3.3

12 N3612

http://libodbcxx.sourceforge.net/
http://qt-project.org/doc/qt-4.8/qtsql.html

The well-known qt library offers an SQL module for database access.

SqlQuery st(db);
if (!st.prepare("select name from users where id=7"))
return false;
st .addBindValue(1234);
if (!st.exec())
return false;
while (st.next())
cout << query.value(0).toString().toStdString() << end]l;

N3458

http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2012/n3458.pdf
Limitations: Currently only a prototype

The N3458 proposal was made to address all the requirements here. However, currently
only a prototype for an experimental database back-end and a partial ODBC back-end
exist,.

prepared__query<int> query=db.prepare_ query("select name from users where id=7");
std :: string name;
for (auto row:query(1234).into(name))

cout << name << endl;

Acknowledgements: Thanks to Jens Maurer for his help in preparing this document
and many insightful comments.

13 N3612

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3458.pdf

	High-Level Requirements
	A Clean, Concise Interface Query Interface
	Support for Queries, Transactions, and Statements
	Seamless Integration in C++

	Technical Requirements
	Generic Support for Queries/Statements and Data Types
	Support for SQL-92
	Support for both Static and Dynamic Usage
	Efficiency

	Implementation Requirements
	Exception Safety
	Strong Separation between Compilation and Execution
	Minimize Implementation Exposure

	Use Cases
	Some Preliminary Findings
	DTL

