

N3520

Document number N3520

Date 2013-01-11

robert.geva@intel.com

Critical sections in vector loops

A solution to a problem with vector loops raised in the Portland meeting

Robert Geva

In the WG21 meeting in Portland in October 2012, I presented “parallel loops and vector loops”. The

biggest concern raised at that presentation was regarding the proposal that critical sections would

be disallowed inside vector loops. It is worthwhile to emphasize that the occurrence of the problem

is unlikely, and the way in which this concern was raised was not in any way specific to critical

sections and vector loops. The reason for the concern was that any exclusion of one language

construct inside another creates a context which programmers have to be aware of, and that is error

prone.

Why is there a problem?
The order of evaluation of expressions in vector loops differs from that of serial loops and that of

parallel loops. Iterations of a parallel loop can execute in any order, and it is therefore acceptable for

the iteration corresponding to i==4 to be fully evaluated before any expression in the iteration

corresponding to i==2 starts. This order is not permissible in vector loops. As the proposal captures

existing practices, it specifies a possible order of evaluation of the expressions in vector loops. For

example, a vector loop with 4 iterations and the expressions A, B and C can execute as:

A0;A1;A2;A3

B0;B1;B2;B3;

C0;C1;C2;C3;

This order of evaluation then allows the compiler to group the 4 instances of A, which are now

consecutive, and generate a single vector instruction for them instead of 4 scalar instructions.

It is also important to note that existing practices expect the vector order of evaluation to be

allowed but not mandated. There are multiple downsides to mandating the vector order of

evaluation, such as significant loss of performance when the consecutive expressions are not

vectorizeable and may cause generation of temporaries.

Another inherent characteristic of vector loops is that vectorized iterations cannot make forward

progress independent of each other. Therefore, if vectorized iterations of a loop are trying to acquire

a lock, then if the first iteration gets the lock, then the second iteration cannot get it. Yet the first

iteration cannot make forward progress and release the lock either, and the result is a deadlock.

N3520

There are two concepts that are part of the proposal for vector loops, which will help make the

proposed solution to the above problem obvious to understand. These concepts are quoted here

because they help understand the solution to the specific concern raised in the meeting. Their

inclusion in the standard are not require for the purpose of the proposed solution.

Elemental Functions
Elemental functions are a language construct that can be applied to functions that may be called

from vector loops. When called from a vector loop, the body of an elemental function executes as if

it was part of the loop body. The function is invoked once per vector loop iteration, and the body of

the function executes a vector chuck of times per invocation instead of only once. A chunk of

arguments can be packed together (for example, inside a HW vector register) and be passed to the

single invocation of the function. By construct, if there is a call to a function inside a vector loop

which is not an elemental function, then no vector code for that function exists. The function will be

called once per iteration.

To illustrate, consider a loop with a function call, compiled for a CPU with 4-element-wide vector

registers:

float f(int);

float a[4], b[4], c[4];

simd_for (int i = 0; i < 4; ++i) {

 a[i] += b[i];

 c[i] = f(i);

 a[i] *= c[i];

}

If the function f is an elemental function then 4 sets of arguments are collected and passed together,

the function is invoked once and returns a vector of results:

float4 vec_f(int4);

float4 t1 = *(float4 *)b;

*(float4 *)a += t1;

float4 t2 = vec_f((float4)(0, 1, 2, 3));

*(float4 *)c = t2;

*(float4 *)a *= t2;

whereas if the function f is a “regular”, not elemental function, then it is invoked 4 times, and the

results have to be packed together:

float4 t1 = *(float4 *)b;

*(float4 *)a += t1;

float t3 = f(0);

float t4 = f(1);

float t5 = f(2);

N3520

float t6 = f(3);

float4 t2 = (float4)(t3, t4, t5, t6);

*(float4 *)c = t2;

*(float4 *)a *= t2;

Obviously, operations that acquire and release locks are “regular”, not elemental function calls. In

the context of the problem and solution described here, the thing to note is the order of evaluation

of “regular” (non elemental) function calls within a vector loop – their argument passing and the

collection of their return values.

In-order blocks
A part of the proposal for vector loops is to allow the programmer to constrain a section of the loop

to execute in scalar order (i.e. the same order the expression would evaluate in existing loops) while

allowing the rest of the loop to execute in vector order. Use cases for such a construct include the

ability to use a critical section, appending nodes to a linked list and others. The semantics of an in-

order block are, obviously, that the expressions within the block are evaluated in the order as

specified in the C++11 spec, not in the vector order that is allowed by the surrounding vector loop.

The Original, Restrictive Solution
The intent in the proposal as presented in October is simply to forbid (i.e., make ill-formed or

undefined behavior) the use of critical sections in vector loops. Note that this restriction is not as

severe as some may have feared from my presentation in Portland. A non-elemental function call

could acquire a lock, for example, provided that it also releases the lock before returning to the loop.

Such a function would be valid, since it does not impose an illegal synchronization requirement

across loop iterations. Even acquiring and not releasing a lock would valid, provided no other

iteration attempts to acquire the same lock. The only problem scenario is when a vector loop invokes

a function that tries to acquire a lock, and return to the loop without releasing it, and then the

subsequent iteration is trying to acquire the same lock.

The Non-restrictive Solution
In order to not create a special context to exclude critical sections from vector loops, the solution is

simply to specify the region of the loop from the first call to a non-elemental function to the last call

to a non-elemental function as an in-order block. With that order of evaluation, the first iteration will

be able to acquire a lock, continue processing and release the lock before the second iteration will

attempt to acquire the lock, and therefore the deadlock scenario does not occur. The advantage of

this solution is that it simplifies the standard. The cost is that some optimization opportunities could

be lost.

N3520

