
N 1610: 1 of 6

Editors’ Report N 1610

March 15, 2012

Changes in WG14 Document from v. N1579 to v. N1609

Rule Identifiers

The following rule identifiers were adopted to replace original C Secure Coding identifiers such
as (MEM30-C) and (SIG31-C):

Identifier Rule
ptrcomp 5.1 Accessing an object through a pointer to an incompatible type
accfree 5.2 Accessing freed memory
accsig 5.3 Accessing shared objects in signal handlers
cntradd 5.4 Adding or subtracting a byte count integer to an element pointer
cndasgn 5.5 Assigning in conditional expressions
asyncsig 5.6 Calling functions in the C standard library other than abort, _Exit, and signal from

within a signal handler
argcomp 5.7 Calling functions with incorrect arguments
sigcall 5.8 Calling signal from interruptible signal handlers
syscall 5.9 Calling system
funcaddr 5.10 Comparing function addresses to zero
padcomp 5.11 Comparison of padding data
intptrconv 5.12 Converting a pointer to integer or integer to pointer
alignconv 5.13 Converting pointer values to more strictly aligned pointer types
filecpy 5.14 Copying a FILE object
funcdecl 5.15 Declaring the same function or object in incompatible ways
nullref 5.16 Dereferencing a null pointer
divzero 5.17 Dividing by zero
addrescape 5.18 Escaping of the address of an automatic object
signconv 5.19 Conversion of signed characters to wider integer types
swtchdflt 5.20 Use of an implied default in a switch statement
fileclose 5.21 Failing to close files or free dynamic memory when they are no longer needed
liberr 5.22 Failing to detect and handle standard library errors
libptr 5.23 Forming invalid pointers by library function
invptr 5.24 Forming or using out-of-bounds pointers or array subscripts
dblfree 5.25 Freeing memory multiple times
usrfmt 5.26 Including tainted or out-of-domain input in a format string
inverrno 5.27 Incorrectly setting and using errno
ioileave 5.28 Interleaving stream inputs and outputs without a flush or positioning call
strmod 5.29 Modifying string literals
libmod 5.30 Modifying the string returned by getenv, localeconv, setlocale, and strerror
intoflow 5.31 Overflowing signed integers
chrsgnext 5.32 Passing arguments to character handling functions that are not representable as unsigned
restrict 5.33 Passing pointers into the same object as arguments to different restrict-qualified

parameters
xfree 5.34 Reallocating or freeing memory that was not dynamically allocated
uninitref 5.35 Referencing uninitialized memory
ptrobj 5.36 Subtracting or comparing two pointers that do not refer to the same array
taintstrcpy 5.37 Tainted strings are passed to a string copying function

N 1610: 2 of 6

sizeofptr 5.38 Taking the size of a pointer to determine the size of the pointed-to type
taintnoproto 5.39 Using a tainted value as an argument to an unprototyped function pointer
taintformatio 5.40 Using a tainted value to write to an object using a formatted input or output function
xfilepos 5.41 Using a value for fsetpos that is returned from fgetpos
libuse 5.42 Using an object overwritten by getenv, localeconv, setlocale, and strerror
chreof 5.43 Using character values that are indistinguishable from EOF
resident 5.44 Using identifiers that are reserved for the implementation
invfmtstr 5.45 Using invalid format strings
taintsink 5.46 Tainted, potentially mutilated, or out-of-domain integer values are used in a taintedness

sink

Changes to Text

General
• All cross references to C99 were updated to C11
• Wording such as “C99-conforming” and “C11-conforming” was changed to C-

conforming
• All UB references were updated from C99 to C11
• References to “tainted sink” were changed to “restricted sink”

Introduction
Significantly modified; new text added

Section 1, Scope
Final paragraph deleted

Section 2, Conformance
Significantly modified; new text added

Section 4.0, Terms and Definitions
• Definitions were reworded to conform with ISO style.
• The following table shows new terms in italics and deleted terms in strikethrough.

N1609 (current) N1570 (original)

4.1 analyzer 4.1 analyzer

4.2 asynchronous-safe function;
asynchronous-signal safe

4.2 asynchronous-safe

4.3 data flow analysis 4.3 data flow

4.4 dereferenceable pointer 4.4 dereferenceable pointer

4.5 derived type 4.5 derived type

4.6 exploit 4.6 exploit

4.7 mutilated 4.7 invalid pointer

4.8 out-of-domain value 4.8 non-dereferenceable pointer

N 1610: 3 of 6

4.9 persistent signal handler 4.9 out-of-domain value

4.10 restricted sink 4.10 persistent signal handler

4.11 sanitize 4.11 sanitize

4.12 security flaw 4.12 security flaw

4.13 security policy 4.13 security policy

4.14 static analysis 4.14 static analysis

4.15 tainted value 4.15 tainted data

4.16 target implementation 4.16 taintedness sink

4.17 UB 4.17 untrusted data

4.18 unexpected behavior 4.18 valid pointer

4.19 unsigned integer wrapping 4.19 vulnerability

4.20 untrusted data

4.21 valid pointer

4.22 vulnerability

Section 5.0, Rules
The following table lists rules whose text and/or code examples have been modified.

Rule Modification

5.1 Accessing an object through a pointer to an
incompatible type [ptrcomp]

slightly modified Ex. 1 code; deleted Ex. 2

5.2 Accessing freed memory [accfree] slightly modified Ex. 2 code

5.3 Accessing shared objects in signal handlers [accsig] modified code example

5.4 Adding or subtracting a byte count to an element
pointer [cntradd]

modified text; modified code, Ex. 4

5.5 No assignment in conditional expressions [boolasgn] inserted ...while in third bullet (to read
do...while)

5.6 Calling functions in the C standard library other than
abort, _Exit, and signal from within a signal handler
[asyncsig]

slightly modified Ex. 1, 2, 3 code

5.7 Calling functions with incorrect arguments [argcomp] slightly modifed Ex. 2 code

5.8 Calling signal from interruptible signal handlers
[sigcall]

modified para 1

5.9 Calling system [syscall]

5.10 Comparing function addresses to zero [funcaddr] modified Ex. 1 (changed getuid and geteuid to
thrd_current)

5.11 Comparison of padding data [padcomp]

5.12 Converting a pointer to integer or integer to pointer
[intptrconv]

5.13 Converting pointer values to more strictly aligned slightly modified Ex. 1 & 2 code

N 1610: 4 of 6

pointer types [alignconv]

5.14 Copying a FILE object [filecpy] slightly modified code example

5.15 Declaring the same function or object in
incompatible ways [funcdecl]

deleted note 2

5.16 Dereferencing an out-of-domain pointer [nullref] slightly modified text and code example

5.17 Dividing by zero [divzero] slightly modified Ex. 1 & 2 text and code

5.18 Escaping of the address of an automatic object
[addrescape]

modified Ex. 1 & 3code

5.19 Conversion of signed characters to wider integer
types [signconv]

modified code example

5.20 Use of an implied default in a switch statement
[swtchdflt]

modified text

5.21 Failing to close files or free dynamic memory when
they are no longer needed [fileclose]

significantly modified text, added new text; modified
Ex. 1 & 2 code

5.22 Failing to detect and handle standard library errors
[liberr]

modified code example

5.23 Forming invalid pointers by library function [libptr] significantly modified text, added new text;
significantly modified example text

5.24 Forming or using out-of-bounds pointers or array
subscripts [invptr]

modified Ex 1–5 and 11 code; deleted Ex. 12–15

5.25 Freeing memory multiple times [dblfree] slightly modified Ex. 2 code

5.26 Including tainted or out-of-domain input in a format
string [usrfmt]

slightly modified Ex. 3 code

5.27 Incorrectly setting and using errno [inverrno] 5.27.1 Table 5 is now Table 4
5.27.2 Table 6 is now Table 5
5.27.3 slightly modified para. 1
5.27.4 slightly modified Ex. 1 code

5.28 Interleaving stream inputs and outputs without a
flush or positioning call [ioileave]

5.29 Modifying string literals [strmod] slightly modified Ex. 1 code; slightly modified Ex. 2
text and code; slightly modified code in Exception
section

5.30 Modifying the string returned by getenv, localeconv,
setlocale, and strerror [libmod]

slightly modified Ex. 1 code

5.31 Overflowing signed integers [intoflow] significantly modified text; deleted para 1; deleted
Table 7; modified Ex. 1 & 2 code

5.32 Passing arguments to character-handling functions
that are not representable as unsigned char
[chrsgnext]

5.33 Passing pointers into the same object as arguments
to different restrict-qualified parameters [restrict]

slightly modified Ex. 1 code

5.34 Reallocating or freeing memory that was not
dynamically allocated [xfree]

slightly modified Ex. 1 & 2 code

N 1610: 5 of 6

5.35 Referencing uninitialized memory [uninitref] modified Ex. 2, 3, 4 code

5.36 Subtracting or comparing two pointers that do not
refer to the same array [ptrobj]

slightly modified text and code (changed string to
c_str)

5.37 Tainted strings are passed to a string copying
function [taintstrcpy]

New

5.38 Taking the size of a pointer to determine the size of
the pointed-to type [sizeofptr]

significantly modified text; significantly modified code
example

5.39 Using a tainted value as an argument to an
unprototyped function pointer [taintnoproto]

New

5.40 Using a tainted value to write to an object using a
formatted input or output function [taintformatio]

New

5.41 Using a value for fsetpos other than a value returned
from fgetpos [xfilepos]

5.42 Using an object overwritten by getenv, localeconv,
setlocale, and strerror [libuse]

5.43 Using character values that are indistinguishable
from EOF [chreof]

5.44 Using identifiers that are reserved for the
implementation [resident]

slightly modified Ex. 4–9 code

5.45 Using invalid format strings [invfmtstr]

5.46 Tainted, potentially mutilated, or out-of-domain
integer values are used in a restricted sink [taintsink]

modified para 1; modified Ex. 1 & 2 code

Deleted Rules

The following rules that appeared in N1579 were deleted from N1609.

5.4 Accessing volatile objects through a non-volatile pointer (EXP32-C)

5.7 Assigning in controlling expressions (EXP15-C)

5.8 Assuming a positive remainder when using the % operator (INT10-C)

5.9 Assuming character data does not contain a null byte (FIO37-C)

5.10 atexit-registered handler does not return (ENV32-C)

5.16 Comparing or assigning expressions to a larger size objects (INT35-C)

5.19 Converting floating point values to types that cannot represent their value (FLP34-C)

5.20 Converting integer to a type that is unable to represent its value (INT31-C)

5.23 Declaring an identifier with conflicting linkage classifications (DCL36-C)

5.32 Failing to prevent or detect domain and range errors in math functions (FLP32-C)

5.33 Failing to sanitize the environment when invoking external programs (ENV03-C)

5.40 Invoking an unsafe macro with arguments containing side effects (PRE31-C)

5.41 Modifying constant values (EXP40-C)

N 1610: 6 of 6

5.44 Not finishing case labels with a break statement (MSC17-C)

5.48 Performing bitwise operations on Boolean operands (EXP16-C)

5.51 Shifting signed types (INT13-C)

5.55 Using abort or assert when atexit handlers are registered (ERR06-C)

5.59 Using integer arithmetic to calculate a value for assignment to a floating-point variable (FLP33-C)

5.61 Using non-unique identifiers (DCL32-C)

5.63 Using the sizeof operator on an expression that contains side effects (EXP06-C)

5.64 Using trigraphs (PRE07-C)

5.65 Wrapping unsigned integers (INT30-C)

Annex B

Updated table to C11 undefined behaviors and deleted classification column.

	Changes in WG14 Document from v. N1579 to v. N1609
	Rule Identifiers
	Changes to Text
	General
	Introduction
	Section 1, Scope
	Section 2, Conformance
	Section 4.0, Terms and Definitions
	Section 5.0, Rules

	Deleted Rules
	Annex B

